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GW170814: A Three-Detector Observation of Gravitational Waves
from a Binary Black Hole Coalescence

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 23 September 2017; published 6 October 2017)

On August 14, 2017 at 10∶30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO
detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two
stellar mass black holes, with a false-alarm rate of ≲1 in 27 000 years. The signal was observed with a
three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black
holes are 30.5þ5.7

−3.0M⊙ and 25:3þ2.8
−4.2M⊙ (at the 90% credible level). The luminosity distance of the source is

540þ130
−210 Mpc, corresponding to a redshift of z ¼ 0.11þ0.03

−0.04 . A network of three detectors improves the sky
localization of the source, reducing the area of the 90% credible region from 1160 deg2 using only the two
LIGO detectors to 60 deg2 using all three detectors. For the first time, we can test the nature of
gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a
new class of phenomenological tests of gravity.

DOI: 10.1103/PhysRevLett.119.141101

I. INTRODUCTION

The era of gravitational-wave (GW) astronomy began
with the detection of binary black hole (BBH) mergers, by
the Advanced Laser Interferometer Gravitational-Wave
Observatory (LIGO) detectors [1], during the first of the
Advanced Detector Observation Runs. Three detections,
GW150914 [2], GW151226 [3], and GW170104 [4], and a
lower significance candidate, LVT151012 [5], have been
announced so far. The Advanced Virgo detector [6] joined
the second observation run on August 1, 2017.
On August 14, 2017, GWs from the coalescence of two

black holes at a luminosity distance of 540þ130
−210 Mpc, with

masses of 30.5þ5.7
−3.0M⊙ and 25.3þ2.8

−4.2M⊙, were observed in all
three detectors. The signal was first observed at the LIGO
Livingston detector at 10∶30:43 UTC, and at the LIGO
Hanford and Virgo detectors with a delay of ∼8 ms and
∼14 ms, respectively.
The signal-to-noise ratio (SNR) time series, the time-

frequency representation of the strain data, and the time
series data of the three detectors together with the inferred
GW waveform, are shown in Fig. 1. The different sensitiv-
ities and responses of the three detectors result in the GW
producing different values of matched-filter SNR in each
detector.
Three methods were used to assess the impact of the

Virgo instrument on this detection. (a) Using the best fit

waveform obtained from analysis of the LIGO detectors’
data alone, we find that the probability, in 5000 s of data
around the event, of a peak in SNR from Virgo data due to
noise and as large as the one observed, within a time
window determined by the maximum possible time of
flight, is 0.3%. (b) A search for unmodeled GW transients
demonstrates that adding Advanced Virgo improves the
false-alarm rate by an order of magnitude over the
two-detector network. (c) We compare the matched-filter
marginal likelihood for a model with a coherent BBH
signal in all three detectors to that for a model assuming
pure Gaussian noise in Virgo and a BBH signal only in the
LIGO detectors: the three detector BBH signal model is
preferred with a Bayes factor of more than 1600.
Until Advanced Virgo became operational, typical GW

position estimates were highly uncertain compared to the
fields of view of most telescopes. The baseline formed by
the two LIGO detectors allowed us to localize most mergers
to roughly annular regions spanning hundreds to about a
thousand square degrees at the 90% credible level [7–9].
Virgo adds additional independent baselines, which in
cases such as GW170814 can reduce the positional
uncertainty by an order of magnitude or more [8].
Tests of general relativity (GR) in the strong field regime

have been performed with the signals from the BBH
mergers detected by the LIGO interferometers [2–5,10].
In GR, GWs are characterized by two tensor (spin-2)
polarizations only, whereas generic metric theories may
allow up to six polarizations [11,12]. As the two LIGO
instruments have similar orientations, little information
about polarizations can be obtained using the LIGO
detectors alone. With the addition of Advanced Virgo
we can probe, for the first time, gravitational-wave polar-
izations geometrically by projecting the wave’s amplitude
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onto the three detectors. As an illustration, we perform a
test comparing the tensor-only mode with scalar-only and
vector-only modes. We find that purely tensor polarization
is strongly favored over purely scalar or vector polar-
izations. With this, and additional tests, we find that
GW170814 is consistent with GR.

II. DETECTORS

LIGOoperates two 4 km long detectors in the U.S., one in
Livingston, LA and one in Hanford, WA [14], while Virgo
consists of a single 3 km long detector near Pisa, Italy [15].
Together with GEO600 located near Hanover, Germany
[16], several science runs of the initial-era gravitational-
wave networkwere conducted through 2011. LIGO stopped
observing in 2010 for the Advanced LIGO upgrade [1]. The
Advanced LIGOdetectors have been operational since 2015
[17]. They underwent a series of upgrades between the first
and second observation runs [4], and began observing again
in November 2016.

Virgo stopped observing in 2011 for the Advanced Virgo
upgrade, during which many parts of the detector were
replaced or improved [6]. Among the main changes are an
increase of the finesse of the arm cavities, the use of heavier
test mass mirrors that have lower absorption and better
surface quality [18]. To reduce the impact of the coating
thermal noise [19], the size of the beam in the central part of
the detectorwas doubled,which requiredmodifications of the
vacuum system and the input-output optics [20,21]. The
recycling cavities are kept marginally stable as in the initial
Virgo configuration. The optical benches supporting themain
readout photodiodes have been suspended and put under
vacuum to reduce the impact of scattered light and acoustic
noise. Cryogenic traps have been installed to improve the
vacuum level. The vibration isolation and suspension system,
already compliant with the Advanced Virgo requirement
[22,23], has been further improved to allow for a more robust
control of the last-stage pendulum and the accommodation of
baffles to mitigate the effect of scattered light. The test mass

FIG. 1. The GWevent GW170814 observed by LIGO Hanford, LIGO Livingston, and Virgo. Times are shown from August 14, 2017,
10∶30:43 UTC. Top row: SNR time series produced in low latency and used by the low-latency localization pipeline on August 14, 2017.
The time series were produced by time shifting the best-match template from the online analysis and computing the integrated SNR at
each point in time. The single-detector SNRs in Hanford, Livingston, and Virgo are 7.3, 13.7, and 4.4, respectively. Second row: Time-
frequency representation of the strain data around the time of GW170814. Bottom row: Time-domain detector data (in color), and
90% confidence intervals for waveforms reconstructed from a morphology-independent wavelet analysis [13] (light gray) and BBH
models described in Sec. V (dark gray), whitened by each instrument’s noise amplitude spectral density between 20 Hz and 1024 Hz.
For this figure the data were also low passed with a 380 Hz cutoff to eliminate out-of-band noise. The whitening emphasizes different
frequency bands for each detector, which is why the reconstructed waveform amplitude evolution looks different in each column. The
left ordinate axes are normalized such that the physical strain of the wave form is accurate at 130 Hz. The right ordinate axes are in units
of whitened strain, divided by the square root of the effective bandwidth (360 Hz), resulting in units of noise standard deviations.
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mirrors are currently suspended with metallic wires. Follow-
ing one year of commissioning, Advanced Virgo joined
LIGO in August 2017 for the last month of the second
observation run.
For Virgo, the noises that are currently limiting the

sensitivity at low frequencies are thermal noise of the test
mass suspension wires, control noise, the 50 Hz mains line
and harmonics, and scattered light driven by seismic noise.
At high frequencies, the largest contribution comes from
shot noise of the main interferometer beam, with smaller
contributions coming from scattered light, and shot noise of
a secondary beam used to control the laser frequency. The
noise sources that limit LIGO’s sensitivity are described in
[24] and [25]. For bothLIGOandVirgo, commissioningwill
continue to reach their ultimate designed sensitivities [26].
Several noise sources that are linearly coupled to the GW

data channel can be subtracted in postprocessing, using
auxiliary sensors (e.g., photodiodes monitoring beam
motion) and coupling transfer functions calculated via
optimal Wiener filters. This technique was used in the
initial detector era [27–29]. For LIGO, we remove cali-
bration lines, power mains and harmonics, the effect of
some length and angular controls, and the effect of laser
beam motion. This noise removal can improve the sensi-
tivity of the LIGO detectors by approximately 20% [30].
For Virgo, we remove the effect of some length controls,
and the laser frequency stabilization control. The search
pipelines described in Sec. III use the calibrated strain data
which were produced in low latency and which have not
undergone postprocessing noise subtraction. They also use
data quality flags which were produced offline. The source
properties, however, described in Sec. V, are inferred using
the postprocessing noise-subtracted data. Figure 2 shows
the sensitivity of the Advanced LIGO–Advanced Virgo
network around the time of GW170814, after the post-
processing removal of several noise sources.
Detection validation procedures at LIGO [2,31], and

checks performed at Virgo found no evidence that instru-
mental or environmental disturbances could account for
GW170814. Tests quantifying the detectors’ susceptibility
to external environmental disturbances, such as electromag-
netic fields [32], indicated that any disturbance strong
enough to account for the signal would be clearly detected
by the array of environmental sensors. None of the envi-
ronmental sensors recorded anydisturbances consistentwith
a signal that evolved in time and frequency like GW170814.
A noise transient with a central frequency around 50 Hz
occurs in the Virgo detector 50 ms after GW170814. This
falls outside thewindow expected due to the light travel time
between the detectors, and has, therefore, no effect on the
interpretation of the GW signal.
LIGO is calibrated by inducing test-mass motion using

photon pressure from modulated auxiliary lasers [33,34],
and Virgo is calibrated using electromagnetic actuators
[35,36]. Frequency-dependent calibration uncertainties
are determined for both LIGO detectors for GW170814

using the method in [37], and used for estimation of the
properties of this event; themaximum 1-σ uncertainty for the
strain data in the frequency range 20–1024 Hz is 7% in
amplitude and 4° in phase. The maximum 1-σ uncertainties
for Virgo are 8% in amplitude and 3° in phase over the same
frequency range. The estimation of properties ofGW170814
use thesemaximumvalues for theVirgo uncertainty over the
whole frequency range. Uncertainties in the time stamping
of the data are 10 μs for LIGO and 20 μs for Virgo, which
does not limit the sky localization.

III. SEARCHES

GW170814 was first identified with high confidence
∼30 s after its arrival by two independent low-latency
matched-filter pipelines [38–44] that filter the data against a
collection of approximate gravitational-wave templates
[45–53], triggering an alert that was shared with partners
for electromagnetic follow-up [54].
The significance estimates for this event were found by

the two matched-filter pipelines, and a fully coherent
unmodeled search pipeline [55], analyzing 5.9 days of
coincident strain data from the Advanced LIGO detectors
spanning August 13, 2017 to August 21, 2017. The
matched-filter pipelines do not currently use data from
Virgo for significance estimates. Coherent searches, how-
ever, use the Virgo data to improve significance estimates.
The analysis was performed over the same source param-

eter space as the GW170104 matched-filter analysis [4] and
with additional data quality information unavailable in low
latency [5,31], although thenoise-subtracteddata described in
Sec. II were not used. Both pipelines identified GW170814
with a Hanford-Livingston network SNR of 15, with ranking
statistic values from the two pipelines corresponding to a

FIG. 2. Amplitude spectral density of strain sensitivity of the
Advanced LIGO–AdvancedVirgo network, estimated using 4096 s
of data around the time ofGW170814.Here, several known linearly
coupled noise sources have been removed from the data.
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false-alarm rate of 1 in 140 000 years in one search [38,39]
and 1 in 27 000 years in the other search [40–44,56], clearly
identifying GW170814 as a GW signal. The difference in
significance is due to the different techniques used to rank
candidate events and measure the noise background in these
searches; however, both report a highly significant event.
The significance of GW170814 was confirmed on the full

network of three detectors by an independent coherent
analysis that targets generic gravitational-wave transients
with increasing frequency over time [55]. This more generic
search reports a false-alarm rate < 1 in 5900 years. By
comparison, when we limit this analysis to the two LIGO
detectors only, the false-alarm rate is approximately 1 in
300 years; the use of the data from Virgo improves signifi-
cance by more than an order of magnitude. Moreover, this
independent approach recovers waveforms and SNRs at the
three detectors which are compatible with respect to the
coherent analyses used to infer source properties (see Sec. V).

IV. LOCALIZATION

Some compact object mergers are thought to produce not
just GWs but also broadband electromagnetic emission.
LIGO and Virgo have been distributing low-latency alerts
and localizations of GW events to a consortium now
consisting of ground- and space-based facilities who are
searching for gamma-ray, x-ray, optical, near-infrared,
radio, and neutrino counterparts [57–59].
For the purpose of position reconstruction, the LIGO-

Virgo GW detector network can be thought of as a phased
array of antennas. Any single detector provides only
minimal position information, its slowly varying antenna

pattern favoring two broad regions perpendicular to the
plane of the detectors’ arms [60,61]. However, with a
network of detectors, sky position can be inferred by
triangulation employing the time differences [62,63], phase
differences, and amplitude ratios on arrival at the sites [64].
An initial rapid localization was performed by coherent

triangulation of the matched-filter estimates of the times,
amplitudes, and phases on arrival [65]. The localization
was then progressively refined by full coherent Bayesian
parameter estimation [66], using more sophisticated wave-
form models and treatment of calibration systematics, as
described in the next section.
The localization of GW170814 is shown in Fig. 3. For

the rapid localization from Hanford and Livingston, the
90% credible area on the sky is 1160 deg2 and shrinks to
100 deg2 when including Virgo data. The full parameter
estimation further constrains the position to a 90% credible
area of 60 deg2 centered at the maximum a posteriori
position of right ascension RA ¼ 03h11m and declination
dec ¼ −44°57m (J2000). The shift between the rapid
localization and the full parameter estimation is partly
due to the noise removal and final detector calibration,
described in the previous section, that was applied for the
full parameter estimation but not the rapid localization.
Incorporating Virgo data also reduces the luminosity

distance uncertainty from 570þ300
−230 Mpc (rapid localization)

to 540þ130
−210 Mpc (full parameter estimation). As with the

previous paragraph, the three-dimensional credible volume
and number of possible host galaxies also decreases by an
order of magnitude [67–69], from 71 × 106 Mpc3, to
3.4 × 106 Mpc3, to 2.1 × 106 Mpc3.

FIG. 3. Localization of GW170814. The rapid localization using data from the two LIGO sites is shown in yellow, with the inclusion
of data from Virgo shown in green. The full Bayesian localization is shown in purple. The contours represent the 90% credible regions.
The left panel is an orthographic projection and the inset in the center is a gnomonic projection; both are in equatorial coordinates. The
inset on the right shows the posterior probability distribution for the luminosity distance, marginalized over the whole sky.
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Follow-up observations of GW170814 were conducted
by 25 facilities in neutrinos [70–72], gamma rays [73–81],
x rays [82–85], and in optical and near infrared [86–98]. No
counterpart has been reported so far.

V. SOURCE PROPERTIES

The parameters of the source are inferred through
a coherent Bayesian analysis [66,99] of offline noise-
subtracted data for the LIGO and Virgo detectors using
two independently developed waveform models.
Both of these waveform models are calibrated to partially

overlapping sets of numerical-relativity simulations of binary
black hole coalescences, following from the initial break-
throughs reported in [100–102]. One model includes the full
two-spin inspiral dynamics in the absence of precession
[53,103–109,109], whereas the other model includes an
effective treatment of the spin-precession dynamics through
a rotation of an originally nonprecessing model [110–113].
Previous studies [114–117] have investigated the effect of
systematic waveform modeling in sources we believe to be
similar to GW170814, albeit for a different detector network
configuration. Based on these analogous investigations, and
due to the brevity and amplitude of GW170814, we expect
systematic biases to be significantly smaller than the statistical
error reported in this work.
In addition to a waveform model, the coherent Bayesian

analysis also incorporates the detectors’ noise power
spectral densities at the time of the event [13,118] and
marginalizes over the calibration uncertainties described in
Sec. II, as in [4,5,119]. We note that the likelihood used in
our analyses assumes that the noise in the detectors is
Gaussian in the 4 s window around the event. While some
non-Gaussian and nonstationary features exist in the data,
initial investigations suggest that the non-Gaussian features
in the data do not significantly impact the reported
parameters, but we defer a detailed study of these effects
to future work. The coherent Bayesian analysis recovers
the maximum matched-filter SNR across the LIGO-
Virgo network of 18.3 [66,120], with individual detector
matched-filter SNRs of 9.7, 14.8, and 4.8 in LIGO
Hanford, LIGO Livingston, and Virgo, respectively.
Table I shows source parameters for GW170814, where

we quote the median value and the symmetric 90% credible
intervals. The final mass (or equivalently the energy
radiated), final spin, and peak luminosity are computed
from averages of fits to numerical relativity simulations
[121–125]. The reported uncertainties account for both
statistical and systematic uncertainties from averaging over
the two waveform models used. An independent calcula-
tion using direct comparison to numerical relativity gives
consistent parameters [114].
The inferred posterior distributions for the two black

hole masses m1 and m2 are shown in Fig. 4. GW170814
allows for measurements of comparable accuracy of the
total binary mass M ¼ m1 þm2, which is primarily

governed by the merger and ringdown, and the chirp mass
M ¼ ðm1m2Þ3=5=M1=5, determined by the binary inspiral
[64,131–137], similarly to both GW150914 [99] and
GW170104 [4].
The orbital evolution is dominated by the black hole

masses and the components of their spins S1;2 perpendicular
to the orbital plane, and other spin components affect the
GW signal on a subdominant level. The dominant spin
effects are represented through the effective inspiral spin
parameter χeff¼ðm1a1cosθLS1þm2a2cosθLS2Þ=M which is
approximately conserved throughout the evolution of the
binary orbit [138–141]. Here, θLSi is the angle between the
black hole spin Si and the Newtonian orbital angular
momentum L for both the primary (i ¼ 1) and secondary
(i ¼ 2) black holes, and ai ¼ jcSi=Gm2

i j is the dimension-
less spin magnitude of the initial (i ¼ 1, 2) and final (i ¼ f)
black holes. For a1;2, this analysis assumed a uniform prior
distribution between 0 and 0.99, with no restrictions on the
spin orientations. As with GW150914 and GW170104, χeff
is consistent with having a arbitrarily small value [4,5]. The
spin components orthogonal to L are interesting, as they
lead to a precession of the binary orbit [142,143] and are here
quantified by the effective precession spin parameter χp
[112,143]. As for previous events [4,5,116,130], the χp
posterior distribution is dominated by assumptions about the
prior, as shown in Fig. 4. Given these assumptions, as well as
statistical and systematic uncertainties, we cannot draw
further robust conclusions about the transverse components
of the spin. The event, GW170814, is consistent with the
population of BBHs, physical parameters, and merger rate
reported in previous BBH papers [5,144,145].
The accuracy with which parameters influencing the

phase evolution of the observed GW, the black hole masses

TABLE I. Source parameters for GW170814: median values
with 90% credible intervals. We quote source-frame masses;
to convert to the detector frame, multiply by (1þ z) [126,127].
The redshift assumes a flat cosmology with Hubble parameter
H0 ¼ 67.9 km s−1 Mpc−1 and matter density parameter Ωm ¼
0.3065 [128].

Primary black hole mass m1 30.5þ5.7
−3.0M⊙

Secondary black hole mass m2 25.3þ2.8
−4.2M⊙

Chirp mass M 24.1þ1.4
−1.1M⊙

Total mass M 55.9þ3.4
−2.7M⊙

Final black hole mass Mf 53.2þ3.2
−2.5M⊙

Radiated energy Erad 2.7þ0.4
−0.3M⊙ c2

Peak luminosity lpeak 3.7þ0.5
−0.5 × 1056 erg s−1

Effective inspiral spin parameter χeff 0.06þ0.12
−0.12

Final black hole spin af 0.70þ0.07
−0.05

Luminosity distance DL 540þ130
−210 Mpc

Source redshift z 0.11þ0.03
−0.04
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and spins, can be measured is determined by the network
SNR. For GW170814 this is dominated by the two LIGO
detectors. The inclusion of Virgo data into the coherent

analysis significantly improves the inference of parameters
describing the binary’s position relative to the Earth, as
shown in Fig. 3, since those parameters are predominantly
determined by the relative amplitudes and arrival times
observed in the detector network [67,146,147]. Because of
the inferred orientation of the binary, we do not see a
significant improvement in parameters such as inclination
and polarization angle for GW170814.

VI. TESTS OF GENERAL RELATIVITY

To determine the consistency of the signal with GR, we
allowed the post-Newtonian (PN) and additional coeffi-
cients describing the waveform to deviate from their
nominal values [148–150], as was done for previous
detections [2–5,10]. In addition to previously tested coef-
ficients, these analyses were expanded to also explicitly
consider phase contributions at effective −1PN order, i.e.,
with a frequency dependence of f−7=3. Additionally, as in
[2–4], we check that the inspiral and merger-ringdown
regimes are mutually consistent, and check for possible
deviations from GR in the propagation of GWs due to a
massive graviton and/or Lorentz invariance violation.
Preliminary results of all these tests show no evidence
for disagreement with the predictions of GR; detailed
investigations are still ongoing, and full results will be
presented at a later date.

VII. GRAVITATIONAL-WAVE POLARIZATIONS

One of the key predictions of GR is that metric
perturbations possess two tensor degrees of freedom
[151,152]. These two are only a subset of the six inde-
pendent modes allowed by generic metric theories of
gravity, which may in principle predict any combination
of tensor (spin-2), vector (spin-1), or scalar (spin-0) polar-
izations [11,12]. While it may be that any generic theory of
gravity will be composed of a potential mixture of
polarization modes, an investigation of this type is beyond
the scope of this Letter. However, a simplified first
investigation that serves to illustrate the potential power
of this new phenomenological test of gravity is to consider
models where the polarization states are pure tensor, pure
vector, or pure scalar only.
So far, some evidence that GWs are described by the

tensor (spin-2) metric perturbations of GR has been
obtained from measurements of the rate of orbital decay
of binary pulsars, in the context of specific beyond-GR
theories (see, e.g., [153,154] or [155,156] for reviews), and
from the rapidly changing GW phase of BBH mergers
observed by LIGO, in the framework of parametrized
models [2,4,10]. The addition of Advanced Virgo provides
us with another, more compelling, way of probing the
nature of polarizations by studying GW geometry directly
through the projection of the metric perturbation onto our
detector network [157–159].

FIG. 4. Posterior probability density for the source-frame masses
m1 andm2 (top) and the effective inspiral and precession spin para-
meters, χeff and χp (bottom) measured at a gravitational-wave freq-
uency of 20 Hz, well before the merger. The dashed lines mark the
90% credible interval for the one-dimensional marginalized dis-
tributions. The two-dimensional plots show the contours of the 50%
and 90% credible regions plotted over a color-coded posterior den-
sity function. For GW170814, both χeff and χp are influenced by
their respective prior distributions, shown in green. While the GW
observation provides additional constraints for the χeff posterior,
there is only a marginal information gain for χp. (Kullback–Leibler
divergence between the prior and posterior distribution of 0.08 nat
[4,129,130].)
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The coherent Bayesian analysis described in Sec. V is
repeated after replacing the standard tensor antenna
response functions with those appropriate for scalar or
vector polarizations [160]. In our analysis, we are interested
in the geometric projection of the GW onto the detector
network; therefore, the details of the phase model itself are
less relevant as long it is a faithful representation of the fit
to the data in Fig 1. Hence, we assume a GR phase model.
We find Bayes’ factors of more than 200 and 1000 in favor
of the purely tensor polarization against purely vector and
purely scalar, respectively. We also find that, as expected,
the reconstructed sky location and distance change signifi-
cantly depending on the polarization content of the source,
with nonoverlapping 90% credible regions for tensor,
vector, and scalar. The inferred masses and spins are
always the same, because that information is encoded in
the signal phasing. These are only the simplest possible
phenomenological models, but a more intensive study
involving mixed-polarization states, using both matched-
filter and generic GW transient models, is currently under
way. Similar tests were inconclusive for previous events
[10] because the two LIGO detectors are very nearly
coaligned, and record the same combination of
polarizations.

VIII. CONCLUSION

On August 1, 2017, Advanced Virgo joined the two
Advanced LIGO detectors in the second Advanced
Detector Observation Runs. On August 14, 2017, a GW
signal coming from the merger of two stellar mass black
holes was observed with the Virgo and LIGO detectors.
The three-detector detection of GW170814 allowed for a
significant reduction in the search volume for the source.
The black hole characteristics of GW170814 are similar to
GW150914 and GW170104, and are found to be consistent
with the astrophysical population and merger rate deter-
mined with previous detections. The addition of Virgo has
allowed us to probe the polarization content of the signal
for the first time; we find that the data strongly favor pure
tensor polarization of gravitational waves, over pure scalar
or pure vector polarizations. Data for this event are
available at the LIGO Open Science Center [161].
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