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A B S T R A C T

Slopes are a crucial structures in open pit mines. Their design has implications on the economic, safety
and environmental operation of the mining industry. Designing stable slopes can be challenging due to the
complexities introduced by the stratigraphy and hydrology of the strata. With rising commodity costs and
inflation rates, mining operating costs are increasing. Reducing operational costs is necessary for mining
industries to remain competitive. While steepening the pit slope can decrease stripping materials and save
money, it also increases the risk associated with slope surges. Therefore, optimising slopes is crucial for both
financial and safety reasons. Numerical models such as the finite element method experience challenges in
mesh generation of heterogeneous systems characterised by varying material properties and stratigraphies.
Moreover, the need for repetitive geometry update necessitates recursive mesh regeneration that increases
the computational burden. Moreover, previous slope optimisation studies focus solely on dry conditions. To
consider the complex condition of hydrology along with heterogeneity in the soil stratigraphy, this study
develops an optimisation procedure by combining the particle swarm optimisation algorithm and the scaled
boundary finite element with an image-based meshing technique to optimise slopes with groundwater and
achieve the desired factor of safety (FoS). The method changes the slope design parameters and the phreatic
surface of groundwater simultaneously, considering user-defined parameters while iteratively re-meshing the
optimisation processes. Several cases are presented, demonstrating the optimisation of bench width, bench
angle, backfill parameters, and groundwater pumping levels.
1. Introduction

Recent growth in the manufacturing industry has increased the
demand for raw materials to meet production needs. As a result,
many open-pit mines have transitioned into deep mines to enhance
mineral extraction. With this shift comes a significant challenge: slope
instability. As the mines deepen, the risk of slope instability increases,
which could have severe consequences for the safety of miners, the
economy, and the environment.

One of the main goals of mining projects is to generate significant
economic returns. Several methods can be employed to achieve this.
These include minimising overburden removal, enhancing the stripping
ratio, and targeting high-grade mining blocks [1]. These techniques
are often utilised during the extraction and planning phases of mining
to maximise profits. However, such applications are constrained by
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certain limitations that impact their effectiveness. For example, weak
shear strength parameters of geomaterials and ground water existency
limit the improvement of stripping ratio and targeting high grade zones
is always not possible.

The overall slope angle is a crucial factor that can significantly affect
the operational costs of a mining site. Even minor improvements in the
slope angle can lead to a substantial reduction in overburden stripping
costs and a significant increase in ore recovery [2]. However, it is
important to keep in mind that there is also an increased risk associated
with such changes. Irrespective of economic gains, the primary concern
of slope design is safety and stability. Therefore, consideration of
economic together with safety factors and designing the optimum slope
is vital in any mining operation.

A variety of techniques have been developed to analyse the stability
of slopes. These methods can be broken down into two main categories:
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limit equilibrium methods (LEM) and numerical methods. Examples of
LEM include Bishop’s method [3] and Spencer’s method [4], whereas
numerical methods include finite difference method (FDM) [5], finite
element method (FEM) [6], and scaled boundary finite element method
(SBFEM) [7].

In early approaches, LEMs were extensively utilised for their ease
of application and for providing a fair approximation of slope stability.
However, due to their limitation of only being applicable to pre-
determined slip surfaces, the identification of the critical surface is
not a straightforward process. As a result, optimisation algorithms are
employed with LEMs to find the minimum factor of safety (FoS) and the
corresponding slip surface [8,9]. In addition, optimisation techniques
along with LEM have been used in optimising the slope geometry. The
popular optimisation techniques include particle swarm optimisation
(PSO) [10], genetic algorithm (GA) [11] and ant colony optimisation
(ACO) [12].

Similar classes of problems have also been attempted using a com-
bination of numerical methods and optimisation techniques. For in-
stance, Wijesinghe et al. [13] utilised the scaled boundary finite el-
ement method (SBFEM) together with genetic algorithm to optimise
slope geometries. Wang et al. [14] applied FEM techniques to optimise
the geometry of a retaining wall required for slope stability. Jurgens
and Henke [15] combined the FEM, the PSO and the differential
evolution method to optimise pit excavation process. Napa-García et al.
[16] applied the conjugated gradient method along with FLAC3D to
optimise room and pillar dimensions in a building.

The studies aforementioned considered only the impact of dry con-
ditions when optimising the geotechnical structure. Nevertheless, it is
important to note that groundwater is present within the geotechnical
system most of the time in real-life conditions. Therefore, it is crucial
to consider the presence of groundwater in the analysis. Incorporating
the phreatic surface into the geotechnical modelling increases the com-
plexity of the required analysis. As optimisation is an iterative process,
numerical methods such as FEM face challenges in automating the
updating of geotechnical structure parameters and meshing/remeshing
necessitating significant human interaction.

To address the challenges associated with slope parameter optimi-
sation, we developed an SBFEM-based optimisation method that incor-
porates an image-based meshing technique. This approach enables the
integration of static groundwater within the model. Mesh generation
and regeneration are fully automatic and are carried out using digital
images of slopes that are progressively updated using the optimisation
process. This also allows for easy integration of static groundwater pro-
file alterations based on the slope geometry. The image-based meshing
technique significantly minimise human involvement in the numerical
simulation.

This paper is divided into several sections, including a discussion on
the scaled boundary formulation for the elastoplastic model under static
conditions, overview of the image-based mesh generation used in this
study and implementation of particle swarm optimisation techniques in
Section 2, an analysis of five examples that demonstrate the proposed
approach’s capabilities in Section 3, and discussion and conclusion in
Section 4. The examples focus on optimising bench width, bench angle,
backfill height and width, while considering the phreatic groundwater
surface.

2. Scaled boundary formulation

2.1. Governing equations for poro-elasto-plastic media

In this study, the slope is assumed to be of a poro-elasto-plastic
material. The static fluid in the geology is assumed to represent the
ground water imbalance. Hence, the linear static balance for pore
pressure and the solid can be expressed as
𝑇
𝐋𝑢 𝝈 + 𝝆𝐠 = 𝟎 (1) a

2 
he total stress 𝝈 can be expressed in terms of effective stress 𝝈′ and
the pore fluid pressure, 𝑝 as

= 𝝈′ − 𝛼𝐦𝑝 (2)

where 𝝈′ = 𝐃𝝐, 𝛼 is Biot’s constant and 𝐦 =
[

1 1 0
]𝑇 . Here, 𝐠 is

he gravitational acceleration, 𝐃 is the elastic constitutive matrix and 𝝐
is the strain. We note here that the elasto-plasticity is modelled using
the initial stiffness approach. 𝐋𝑢 is a linear differential operator defined
as

𝐋𝑢 =
[ 𝜕

𝜕𝑥
𝜕
𝜕𝑦

𝜕
𝜕𝑦

𝜕
𝜕𝑥

]𝑇

(3a)

Using the method of weight residuals, the weak form of Eq. (1) is
expressed as

∫𝛺
𝛿𝝐𝑇 𝛥𝝈′𝑑𝛺 = ∫𝛤

𝛿𝐮𝑇 𝛥𝐭𝑑𝛤 + 𝜌∫𝛺
𝛿𝐮𝑇 𝐠𝑑𝛺 − ∫𝛺

𝛿𝝐𝑇 (𝝈′ + 𝛼𝐦𝑝)𝑑𝛺 (4)

ere, we decompose the total stress as

= 𝝈′ + 𝛥𝝈′ − 𝛼𝐦𝑝 (5)

here the symbol 𝛥 indicates an increment. The pore pressure at each
oint is assumed to be constant and is calculated from the unit weight
f the fluid with reference to a datum. During the analysis, the nodal
alues of the pore pressure is calculated and interpolated using scaled
oundary shape functions for the purpose of integration. 𝛿𝝐 and 𝛿𝐮 are
he virtual strains and the virtual displacements, respectively. 𝐭 is the
urface traction on the boundary. We note here that 𝛥𝝈 = 𝛥𝝈′ − 𝛼𝐦𝛥𝑝
nd that 𝛥𝝈′ = 𝐃𝑒𝑝𝛥𝝐. Eq. (4) is nonlinear and can be solved using
umerical methods e.g., FEM and its variants e.g., [6] or meshless
ethods [17]. In this study, the SBFEM is employed in view of its

dvantages in

• Flexible formulation over polygons with an arbitrary number of sides:
The restriction on the geometries that can be adopted for discreti-
sation is significantly relaxed in the SBFEM compared with the
FEM. Although the SBFEM is still conditional to star-convex ge-
ometries, this requirement can be easily met. This feature makes
the SBFEM naturally compliant when quadtree meshes are em-
ployed and leads to advantages in computational efficiency [18]
and mesh generation.

• Direct mesh generation from digital images using quadtree mesh: In
2D, the pixel information in digital images can be employed in
mesh generation. A straightforward approach to generate meshes
directly from digital images is to assign each pixel as an element
in the FEM sense. However, this leads to the requirement of using
very fine meshes in the analysis [19]. An alternative approach
is to use a quadtree mesh. Finer meshes are used in regions
that require more detail e.g., boundaries or interfaces whereas
coarser meshes can be used in regions that do not require a
detailed discretisation. Application of quadtree meshes, however,
introduces hanging nodes that cannot be automatically handled
by the FEM unless special constraints or methods are introduced.
The SBFEM enables direct use of quadtree meshes leading to an
efficient approach for mesh generation with digital images.

.2. Scaled boundary finite element discretisation

.2.1. Scaled boundary finite element formulation on polygons/quadtree
ells

Fig. 1 shows the representation of the SBFEM coordinate system
n a quadtree cell. A cell is composed of a collection of line elements
hat form a closed loop. In this study only two-node line elements are
mployed. Along each line element, a local coordinate 𝜂 is defined
imilar to that in the FEM. A point denoted here as the scaling centre

nd having coordinates (𝑥0, 𝑦0) is defined at the centre of the cell. A
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Fig. 1. Scaled boundary coordinate representation on a 6-node quadtree cell.
scaling coordinate 𝜉 is defined such that 𝜉 = 0 at the scaling centre and
𝜉 = 1 at the boundary.

The Cartesian coordinates (𝑥, 𝑦) of a point bounded by the scaling
centre and a line element on the cell boundary is expressed as

𝑥(𝜉, 𝜂) =𝑥0 + 𝜉𝐍𝑝(𝜂)𝐱𝑏 = 𝑥0 + 𝜉𝑥𝜂(𝜂) (6a)

𝑦(𝜉, 𝜂) =𝑦0 + 𝜉𝐍𝑝(𝜂)𝐲𝑏 = 𝑦0 + 𝜉𝑦𝜂(𝜂) (6b)

where 𝐱𝑏 and 𝐲𝑏 are the nodal 𝑥− and 𝑦− coordinates of the line element
and 𝐍𝑝(𝜂) is the shape function matrix of the line element

𝐍𝑝(𝜂) =
[

𝑁1(𝜂) 𝑁2(𝜂)
]

(7)

The Cartesian coordinates can also be written in vector form as
{

𝑥(𝜉, 𝜂)
𝑦(𝜉, 𝜂)

}

=
{

𝑥0
𝑦0

}

+ 𝜉𝐍𝑢(𝜂)𝐱𝑏 (8)

where 𝐱𝑏 is the vector of nodal 𝑥− and 𝑦− coordinates of the line
element arranged in Voigt notation and 𝐍𝑢(𝜂) is

𝐍𝑢(𝜂) =
[

𝑁1(𝜂)𝐈 𝑁2(𝜂)𝐈
]

(9)

with a 2 × 2 identity matrix 𝐈.
An infinitesimal line element 𝑑𝛤 and infinitesimal area 𝑑𝛺 is ex-

pressed as [20]

𝑑𝛺 = 𝐽 (𝜂)𝜉𝑑𝜉d𝜂 (10)

𝑑𝛤 = 𝜉
√

(𝑥𝜂,𝜂(𝜂))2 + (𝑦𝜂,𝜂(𝜂))2𝑑𝜂 = 𝜉𝐿(𝜂)𝑑𝜂 (11)

where 𝐽 (𝜂) is the determinant of the Jacobian matrix, given by:

𝐉(𝜂) =
[

𝑥𝜂(𝜂) 𝑦𝜂(𝜂)
𝑥𝜂,𝜂(𝜂) 𝑦𝜂,𝜂(𝜂)

]

(12)

2.2.2. Scaled boundary finite element shape functions
To discretise Eq. (4), scaled boundary shape functions Ooi et al. [21]

are employed. The virtual displacements 𝛿𝐮; and the 𝛥𝐮 expressed as

𝛿𝐮(𝜉, 𝜂) =𝐍𝑢(𝜉, 𝜂)𝛿𝐮𝑏 (13a)

𝛥𝐮(𝜉, 𝜂) =𝐍𝑢(𝜉, 𝜂)𝛥𝐮𝑏 (13b)

where 𝐍𝑢(𝜉, 𝜂) are the shape function matrices for displacement field,
respectively. 𝛥𝐮𝑏 is the incremental nodal displacements and 𝛿𝐮𝑏 is
an arbitrary vector representing the virtual displacements. The shape
functions are

𝐍𝑢(𝜉, 𝜂) = 𝐍𝑢(𝜂)𝐕(𝑒)
𝑢 𝜉

−𝜦𝑢𝐕−1
𝑢 (14)

where 𝜦𝑢 is a diagonal matrix containing the eigenvalues obtained from
the solution of the equilibrium equation. 𝐕𝑢 is a square matrix contain-
ing the eigenvectors corresponding to 𝜦𝑢. We do not aim to derive the
solution for 𝜦 and 𝐕 ; and direct instead the reader to standard SBFEM
𝑢 𝑢

3 
literature e.g., Song [20], Ooi et al. [21]. The superscript ∗(𝑒) indicates
that only the rows of 𝐕𝑢 corresponding to the degrees-of-freedom of a
line element on the cell boundary are used in the calculation.

The incremental (and virtual) strains are obtained by applying the
linear differential operators 𝐋𝑢 to 𝛥𝐮 and 𝛿𝐮 leading to

𝛥𝝐(𝜉, 𝜂) =𝐋𝑢𝛥𝐮(𝜉, 𝜂) = 𝐁𝑢(𝜉, 𝜂)𝛥𝐮𝑏 (15a)

𝛿𝝐(𝜉, 𝜂) =𝐋𝑢𝛿𝐮(𝜉, 𝜂) = 𝐁𝑢(𝜉, 𝜂)𝛿𝐮𝑏 (15b)

Here, 𝐁𝑢(𝜉, 𝜂) is the strain–displacement matrix calculated as

𝐁𝑢(𝜉, 𝜂) = 𝜳 𝑢(𝜂)𝜉−𝜦𝑢−𝐈𝐕−1
𝑢 (16)

where

𝜳 𝑢(𝜂) =

𝐽−1(𝜂)

⎛

⎜

⎜

⎜

⎝

−

⎡

⎢

⎢

⎢

⎣

𝑦𝜂,𝜂 (𝜂)
− 𝑥𝜂,𝜂 (𝜂)

−𝑥𝜂,𝜂 (𝜂) 𝑦𝜂,𝜂 (𝜂)

⎤

⎥

⎥

⎥

⎦

𝐍𝑢(𝜂)𝐕(𝑒)
𝑢 𝜦𝑢 +

⎡

⎢

⎢

⎢

⎣

−𝑦𝜂 (𝜂)
𝑥𝜂 (𝜂)

𝑥𝜂 (𝜂) −𝑦𝜂 (𝜂)

⎤

⎥

⎥

⎥

⎦

𝐍𝑢,𝜂 (𝜂)𝐕(𝑒)
𝑢

⎞

⎟

⎟

⎟

⎠

(17)

The pore pressure in Eq. (4) is interpolated from the nodal values
𝐩𝑏 as

𝑝(𝜉, 𝜂) = 𝐍𝑝(𝜉, 𝜂)𝐩𝑏 (18)

where the shape function 𝐍𝑝(𝜉, 𝜂) is Song [20], Ooi et al. [21]

𝐍𝑝(𝜉, 𝜂) = 𝐍𝑝(𝜂)𝐕(𝑒)
𝑝 𝜉

−𝜦𝑝𝐕−1
𝑝 (19)

where 𝜦𝑝 is a diagonal matrix containing the eigenvalues obtained
from the solution of the Laplace equation. 𝐕𝑝 contains the eigenvectors
corresponding to 𝜦𝑝 and 𝐍𝑝(𝜂) =

[

𝑁1(𝜂) 𝑁2(𝜂)
]

.

2.2.3. Discretisation of governing equations
Substituting Eqs. (13b) and (15b) into Eq. (4) results in

∫𝛺 𝐁𝑇𝑢 𝐃𝐁𝑢𝑑𝛺𝛥𝐮𝑏 = ∫𝛤
𝐍𝑇
𝑢 𝛥𝒕̄𝑑𝛤 +∫𝛺

𝐍𝑇
𝑢 𝝆𝐠𝑑𝛺−

(

∫𝛺
𝐁𝑇𝑢 𝝈

′𝑑𝛺 − ∫𝛺
𝐁𝑇𝑢 𝛼𝐦𝐍𝑝𝑑𝛺𝐩𝑏

)

(20)

where the dependence of the shape functions and derivatives on (𝜉, 𝜂)
have been removed for brevity. Eq. (20) can be simplified as

𝐊𝛥𝐮𝑏 = 𝐅𝑢 − 𝐑𝑢 (21)

with

𝐊 =∫𝛺
𝐁𝑇𝑢 𝐂𝑢𝐁𝑢𝑑𝛺 (22a)

𝐅𝑢 =∫𝛤
𝐍𝑇𝑢 𝛥𝒕̄𝑑𝛤 + ∫𝛺

𝐍𝑇𝑢 𝝆𝐠𝑑𝛺 (22b)

𝐑𝑢 = 𝐁𝑇 𝝈′𝑑𝛺 − 𝐁𝑇 𝛼𝐦𝐍𝑝𝑑𝛺𝐩𝑏 (22c)
∫𝛺 𝑢 ∫𝛺 𝑢
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Fig. 2. Movement of a particle according to PSO.
Eqs. (22a) and (22c) can be integrated using standard approaches
adopted in the SBFEM. We detail the integration of the coefficient
matrix and vectors in Appendix.

The Mohr–Coulomb yield criteria is considered as failure criteria in
this study. The return mapping algorithm [22] is implemented to return
the stresses at the gauss points to the surface 𝑓

𝑓 =
(
√

3cos𝛾0 − sin𝛾0sin𝜙
)

𝑞 − 3𝑝sin𝜙 − 3𝑐 cos𝜙 = 0 (23)

where 𝑝, 𝑞 and 𝛾0 are stress invariants while 𝜙 and 𝑐 are friction angle
and cohesion, respectively. In this study, the convergence tolerance
value and the iteration ceiling limit of 1×10−4 and 500, respectively, are
considered. The model can handle associative

(

𝜕𝑓
𝜕𝜙

)

and non associative
(

𝜕𝑓
𝜕𝜓

)

plastic potential, where 𝜓 is the dilation angle.

2.2.4. Shear strength reduction technique
In this study, the Factor of Safety (FoS) of slopes is used as a con-

straint in the slope design. The shear strength reduction technique [6]
is adopted for this purpose. For the Mohr–Coulomb failure adopted in
this study, the soil shear strength is [3]

𝜏 = 𝑐0 + (𝜎 − 𝑝)tan𝜙0 (24)

where 𝜏 is shear strength, 𝑐0 is initial cohesion, 𝜙0 is initial friction
angle, 𝑝 is pore pressure, and 𝜎 is total stress (compression designated
as positive).

The shear strength reduction method iteratively reduces the co-
hesion and friction angle by a strength reduction (SRF) according to

𝑐 =
𝑐0
SRF

(25)

𝜙 = tan−1
tan𝜙0
SRF

(26)

Here 𝑐 and 𝜙 are the reduced effective cohesion and effective friction
angle, respectively. The SRF is progressively increased in steps of
0.01 until non-convergence of the poro-elasto-plastic analysis is ob-
served [7]. During this process, while the pore pressure is constrained
at a constant value, ensuring fully drained conditions [23]. During
each time step where the FoS is required to be calculated, the stress,
strains and pore pressure are taken as the initial condition for the
FoS calculation. The FoS is then calculated from the SRF during the
consolidation as an independent process.
4 
2.3. Particle swarm optimisation of slope geometry with scaled boundary
finite element method

2.3.1. Particle Swarm Optimisation (PSO)
Particle swarm optimisation (PSO) [10] is a population-based search

algorithm. Each candidate solution in the population is termed a par-
ticle. Each particle has its own personal best solution whereby its
motion defined by a position and a velocity is tracked within the
search space through simple mathematical formula. The population as
a whole has a global best solution that is derived from the motion of
all the particles in the search space. Improvements of a trial solution is
achieved iteratively within a search-space.

Particles in motion are inclined to move together until they lose
their momentum. The particle’s movement is a result of its own expe-
rience and that of its neighbours. Two essential components determine
the particle’s movement i.e., personal best solution and global best
solution. The particle’s personal best solution (pbest) indicates the best
position it has achieved so far, while the global best solution (gbest)
denotes the best position among all particles in the swarm.

The velocity and position of each particle undergo iterative updates
utilising the following formulas:

𝑋𝑖𝑗 (𝑡 + 1) = 𝑋𝑖𝑗 (𝑡) + 𝑉𝑖𝑗 (𝑡 + 1) (27)

𝑉𝑖𝑗 (𝑡 + 1) = 𝑊 .𝑉𝑖𝑗 (𝑡) + 𝑟1.𝐶1
[

𝑃𝑖𝑗 (𝑡) −𝑋𝑖𝑗 (𝑡)
]

+ 𝑟2.𝐶2
[

𝑔𝑗 (𝑡) −𝑋𝑖𝑗 (𝑡)
]

(28)

where, 𝑊 .𝑉𝑖𝑗 (𝑡) is inertia term, 𝑟1.𝐶1
[

𝑃𝑖𝑗 (𝑡) −𝑋𝑖𝑗 (𝑡)
]

is cognitive com-
ponent and 𝑟2.𝐶2

[

𝑔𝑗 (𝑡) −𝑋𝑖𝑗 (𝑡)
]

is social component while 𝑊 is inertia
coefficient, 𝑖 is velocity of particle, 𝑗 is component of velocity, 𝑡 is
number of iteration, 𝑟1 and 𝑟2 are random numbers and 𝐶1 and 𝐶2 are
acceleration coefficients. Both pbest and gbest solutions are improved
iteratively until the pbest and gbest converges into an optimal solution,
which is commonly known as the Particle Swarm Optimisation as
shown in Fig. 2.

2.3.2. A PSO-SBFEM algorithm for optimisation of open pit slopes
In open pit slopes, design parameters such as the bench angle, the

bench width, the backfill height and the backfill width (as shown in
Fig. 3) affect their stability. Depending on the application, various
optimisation problems of slope design parameters can be constructed.

The PSO is applied in tandem with the SBFEM to optimise these

design parameters as is shown in Fig. 4. The SBFEM carries out the
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Fig. 3. Slope geometry.
Fig. 4. PSO slope design parameters optimisation flow chart.
slope stability analysis based on the target FoS. The resulting open pit
slope design is used to inform the PSO if a further optimisation of the
slope geometry is required.

To start the analysis, the algorithm require as inputs digital images
representing the information of the soil stratigraphy (and material
property variation if any), the phreatic surface and the initial slope
geometry. The slope geometry can be defined using simple mathemati-
cal operators as a function of the slope design parameters e.g., number
of benches, bench width and bench angle that need to be optimised.
For the optimisation algorithm, the upper and lower bounds of the
slope design parameters, the size of the initial population, the number
of iterations are required as input. The required FoS, which is an
5 
additional constraint in the optimisation problem is also prescribed
during this step.

The digital images are then used to generate the computational
mesh. The quadtree decomposition is employed given its compatibility
with the SBFEM and ability to directly generate a mesh from digital
images. Some considerations were made when generating the phreatic
surface to compensate for instances where the domain of the water
body is located outside of the soil. We describe these in Section 2.3.3.
Section 2.3.4 outlines the mesh generation process.

A poro-elasto-plastic analysis is then carried out to identify the FoS
of the current slope geometry. The fitness function of the PSO is then
computed. The computations will exit when an optimal solution subject
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Fig. 5. Phreatic angle consideration with bench angle.
to the prescribed constraints is obtained. Otherwise, current solution is
used to update the pbest and gbest solution the population. This result
also defines the updated geometry of the slope in the digital images for
the next analysis. The process then repeats until an optimal solution is
finally obtained.

In this study, the maximum number of iterations is set as the
stopping criterion. The number of iterations is set to 25 and the total
number of population used for the optimisation is 15. The fitness
function is determined by considering the slope angle as a whole
when optimising slope parameters, or the backfill area when optimising
backfill parameters, or the pumping depth when optimising pumping
depth. If a failure occurs during the iteration, a penalty value is factored
in to the fitness function, causing the value for that iteration to deviate
from the optimum value. In this study, the weight constants for the
current search direction, local best search direction, and global best
search direction were 0.5, 1, and 1, respectively.

2.3.3. Automatic slope profile generation
The PSO is adopted in this study to optimise the design parameters

of a slope such as bench angle, bench width, backfill height and backfill
width. The existing slope geometric parameters or initial parameters
such as bench width, bench height, number of benches and phreatic
line are introduced into PSO along with the PSO initial parameters.

The groundwater profile image is generated according to the
phreatic line. Generation of the phreatic surface depends on the bench
angle and falls under two cases i.e., (a) Bench angle 𝜃 greater than
phreatic angle 𝛼 and (b) Bench angle 𝜃 less than phreatic angle 𝛼 as
shown in Fig. 5. When 𝜃 > 𝛼, the phreatic line is located entirely within
the slope. The digital image generated from the phreatic surface can
be used directly for mesh generation. When 𝜃 < 𝛼, the phreatic surface
angle adjusted to bench angle as shown in Fig. 5 and a constant gradient
is assumed from the toe of the bench to the next.

These conditions are considered during automatic slope profile
generations. We note here that different profiles of the groundwater
can be defined by making use of the two principles in the above. If
required, the depth of the phreatic line or the angle of the phreatic line
can also be used as input as in an optimisation problem.

2.3.4. Image-based quadtree mesh generation
During optimisation, the geometry of the slope (and groundwater

profile) change during each iteration and necessitates repetitive mesh
generation. To facilitate automation of mesh generation, digital images
are employed. Because the analysis considers the coupled behaviour
between the solid and the pore fluid pressure two digital images are
required as input. The first image informs the stratigraphy of the slope.
The second image informs the groundwater profile.

The digital images are initially of size 𝑀 ×𝑁 pixels. In the image
that contains the stratigraphy information, the colour code in each pixel
is used to identify the different material types in the slope. In the image
that contains the groundwater profile information, only two colours are
required to distinguish between wet and dry regions.
6 
Fig. 6. Automatic image-based slope profile generation.

For a given slope geometry (irrespective of whether it is an initial
condition or an interim output during the optimisation process), the
outer boundary of the slope is completely defined by the bench width,
the bench height, the number of benches. During optimisation, informa-
tion on these variables are continuously updated. After each iteration,
the outer boundary is then overlapped on the images containing the
stratigraphic and groundwater profiles as shown in Fig. 6. The images
are then trimmed to generate two separate images defined by the
boundary of the slope. To facilitate rapid mesh generation from digital
images, quadtree decomposition is employed.

Quadtree decomposition is a technique used to divide a two-
dimensional space into four quadrants or children. It is an iterative
method used to partition regions based on numerical values. In the
initial decomposition, the original image divides into four quadrants,
and each quadrant is divided into another four quadrants in subsequent
iterations. This process continues until a single quadrant contains data
with the same numerical value.

When adopting quadtree decomposition, it is important to consider
the size of the quadrants in the final mesh. The mesh resolution
is usually determined by the fine details in the stratigraphy or the
groundwater profile. The smallest size of a quadtree cell in this study
is adjusted so that it is sufficient to represent the stratigraphy and the
ground water profile at a desired accuracy.

The image-based quadtree mesh generation is fully computer-driven,
reducing the need for human involvement during mesh generation. The
relevant data can be fed as digital images to a computer. The quadtree
decomposition can easily be implemented using MATLAB R2020 inbuilt
function ‘qtdecomp’.

To generate the mesh, separate digital images containing informa-
tion on the stratigraphy, spatial variation of material properties and
groundwater distribution, respectively are used as inputs. The mesh
generation method proposed by Wijesinghe et al. [7] is augmented for
use in this study to consider the ground water profile. All images are
considered simultaneously in the quadtree decomposition.
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Fig. 7. Computational mesh generation combining, Stratigraphy and groundwater distribution images.
Table 1
Geomaterial parameters.

Represent
colour

Elastic
modulus
(kPa)

Poisson’s
ratio

Cohesion
(kPa)

Friction
Angle (◦)

Saturated
weight
(kN/m3)

Unsaturated
weight
(kN/m3)

Coal Red 40 000 0.2 150.72 27.28 11.5 11
Soil Blue 52 000 0.3 31.81 23.67 20.2 20
Table 2
Optimised bench widths for phreatic parameter changes.

(a) 𝑑 = 10 m

𝛼 𝑥(m) 𝜃 No. Iterations

19◦ 8.8 41.6◦ 496
20◦ 9.3 40.6◦ 495
21◦ 10.4 38.7◦ 489
22◦ 11.5 37.0◦ 499

(b) 𝑑 = 13 m

𝛼 𝑥(m) 𝜃 No. Iterations

19◦ 8.8 41.6◦ 490
20◦ 9.2 40.8◦ 492
21◦ 10.1 39.2◦ 488
22◦ 11.0 37.8◦ 496

The colour information of the pixels in the digital image containing
the stratigraphy (and/or material parameters) are assigned to corre-
sponding quadtree cells, as shown in Fig. 7. The image containing
groundwater profile is used to identify the cells below the phreatic
line. Only two colours are required to distinguish between wet and
dry regions. In this study, the groundwater profile is assumed to be
static during the entire poro-elasto-plastic analysis. The quadtree is
particularly appropriate to generate meshes of this kind as it is able
to effectively bridge the transition between regions of finer to coarser
element sizes in the mesh due to changes in the stratigraphy and
groundwater profile within the domain [7].

3. Numerical examples

In this section, four examples are illustrated to demonstrate the
optimisation ability of different slope geometries, considering the effect
of groundwater and phreatic surface variation along the slope geometry
variation. The considered examples are

I Slope angle and bench width optimisation considering constant
phreatic surface in a simplified slope

II Bench width optimisation in simplified slope considering
phreatic surface changes along with the overall slope angle

III Backfilling optimisation at the slope toe to enhance the FoS
while considering the inclined phreatic surface within the back-
filling.

IV Pumping the water to lower the phreatic surface and enhance
the FoS of slope.
7 
The convergence tolerance value and the iteration ceiling value for
the elastoplastic model are 0.0001 and 500, respectively. This study
presents the slope geometries to an accuracy of 0.1 m. The right and left
edges of the mesh are constrained for horizontal displacement, while
the bottom edge is fixed during the elastoplastic analysis.

3.1. Bench width optimisation

In this example, bench width 𝑥 of a 3-bench open pit slope is
optimised under the condition of static groundwater. All other param-
eters of the slope are considered to be constant. The stratigraphy is
defined by horizontal layers of coal and soil. The material parameters
of the coal and soil are given in the Table 1. The digital image of the
stratigraphy is of size 512 × 128 pixels as shown in Fig. 8a.

The target FoS value of the slope is 1.5 and an optimal value of 𝑥
is sought to meet this target value. The water table is considered at 𝑑
m below the top surface which extends from the bottom of the pit as a
curve surface shown in Fig. 8b. The phreatic line is formed considering
a circle with radius 𝑅 for given natural water table angle at toe of the
slope. From the geometry, the centre of the circle is calculated and
phreatic surface image is generated.

In this example, two values of phreatic surface depth 𝑑 = 10m
and 13m are considered. The influence of the water table angle is
considered in the optimisation by considering the natural phreatic
surface gradient at toe of the slope of 19◦, 20◦, 21◦ and 22◦. The upper
boundary and the lower boundary for the bench width optimisation
range is 6 m and 16 m respectively. The fitness function considered is:

𝐹𝑓𝑖𝑡 =
1

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑙𝑜𝑝𝑒 𝑎𝑛𝑔𝑙𝑒
+ {𝑁𝑜𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ (𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑦)} (29)

𝑤ℎ𝑒𝑟𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑦 =

{

1,
0,

𝑚𝑜𝑑𝑒𝑙 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑
𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

Fig. 9 shows the convergence of the global fitness value, X position
and velocity variation during the particle swarn optimisation process
when 𝑑 = 10m and 𝛼 = 220. Initially, huge changes in the position, ve-
locity and global fitness is observed. After the 12th iteration, subsequent
changes are observed to decline. The optimimum value for bench width
is reached after 20 iterations. Fig. 10 shows the bench width variation
for each iteration in the PSO for the case when 𝑑 = 10m and 𝛼 = 22◦.

The optimised bench widths for different phreatic conditions are
shown in Table 2. It is apparent that as the phreatic angle increases, the
bench width also increases while the overall slope angle 𝜃 decreases.
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Fig. 8. Bench parameters, stratigraphy and phreatic surface.
Fig. 9. Global fitness, best X and X variation for all iterations.
The ’overall slope angle’ refers to the angle between the highest crest
and the lowest toe of a slope.

With the exception of 𝛼 = 19◦, a shorter bench width is required
to achieve the target FoS when 𝑑 is increased. It is noted that for the
case of 𝛼 = 19◦, the optimal bench width is almost similar for both
8 
𝑑 = 10m and 𝑑 = 13m. This can be explained by the location of the
failure surface in either case, which falls above the phreatic surface
and there is no effect of pore pressure on slope failure.

To verify the optimised solution, a separate poro-elasto-plastic anal-
ysis is conducted using final parameters and material properties scaled
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Fig. 10. Bench variation width each iterations.

Fig. 11. Deformation of the optimised slope.

by a factor safety value of 1.5. The analysis converged after 499
iterations which is almost equal to the maximum ceiling iteration
number. This indicates an observed failure condition at the target factor
of safety. The deformation contour map are shown in Fig. 11 clearly
outlines the boundary of the failure surface at this state.

3.2. Slope angle and bench width optimisation

This example demonstrates a problem with multi-parameter optimi-
sation on an open pit slope. The bench width (𝑥) and bench angle (𝜃) of
the slope are to be optimised. The material parameters given in Table 1
are considered.

The phreatic surface is considered similar to example 3.1. Two
depths of the groundwater profile 𝑑 = 10m and 𝑑 = 13m are
considered. The optimization problem was undertaken by considering
phreatic angles 𝛼 of 20◦, 21◦, 22◦ and 24◦ for both values of 𝑑. See Fig. 12
for the definition of the parameters and the geoemtry. The target FoS
value for all cases is 1.5 and the lower and upper bounds for 𝑥 and 𝜃
are 8m ≤ 𝑥 ≤ 19m and 60◦ ≤ 𝜃 ≤ 80◦, respectively. The identical fitness
function utilised in Section 3.1 was taken into account in this instance.

Fig. 13 shows the convergence of the global fitness, position and
velocity when 𝑑 = 10m and 𝛼 = 20◦ for both 𝑥 and 𝜃. We note that for
other cases, a similar trend is observed. An indication of convergence
is observed after 10 iterations. Fig. 14 shows how the bench width and
bench angle varies along with each PSO instances.

The optimised bench width and bench angles along with the final
overall optimised slope angles are shown in the Table 3. It is clear that
9 
Table 3
Optimised bench width and bench angle for different phreatic
angles.

(a) 𝑑 = 10 m

𝛼 𝑥(m) 𝜃 𝜃 No. Iterations

20◦ 11.8 77.5◦ 42.1◦ 491
21◦ 12.4 76.1◦ 40.3◦ 494
22◦ 13.4 77.1◦ 38.6◦ 489
24◦ 17.4 80.0◦ 34.0◦ 497

(b) 𝑑 = 13 m

𝛼 𝑥(m) 𝜃 𝜃 No. Iterations

20◦ 10.5 71.5◦ 41.6◦ 494
21◦ 11.8 74.3◦ 40.6◦ 492
22◦ 12.8 75.2◦ 39.2◦ 495
24◦ 15.1 75.2◦ 35.6◦ 493

the overall slope angle 𝜃 decreases and bench width increases when
the phreatic angle at the slope toe increases. This is consistent with
physical observations whereby a slope is less stable with increasing
water content. This necessitates a stronger structure to achieve the
same safety factor as a slope that has less water content.

Increasing the depth of the groundwater profile 𝑑 is observed to
generate a more stable slope. This is evident by the decrease in the
bench width and bench angle when 𝑑 = 13m compared with 𝑑 = 10m.
This observation again is related to the water content within the slope.

To confirm the optimised outcome, a distinct elastoplastic analysis
is performed by utilising the ultimate optimised parameter and a factor
of safety of 1.5. The deformation contour map is depicted in Fig. 15.
The final optimised slope reaches a convergence point of 491, which is
almost the highest iteration number possible.

3.3. Backfilling optimisation

Backfilling at the toe of a slope is a common precaution taken by
engineers to increase the factor of safety of a slope. However, the
volume of material required for this process governs the operational
costs involve. Hence, identifying the minimum backfilling required
helps to avoid unwanted operational costs. This example demonstrate
the optimisation of backfilling parameters (backfill width and height)
to increase the slope FoS value until a target is reached.

The target FoS value considered is 2.0 and the natural phreatic
surface angles of 12◦, 14◦ and 16◦ are considered as different scenarios
for the optimisation. The depth of the water table is assumed to be 10
meters below the surface and the rise of the phreatic surface in the
backfilling material is taken into account by assuming that a rise in the
water table angle starting from the toe of the backfill. The material
parameters for coal and soil shown in Table 1 is adopted and the
backfilling material parameters are shown in Table 4.

The initial parameters of the slope are shown in Fig. 16a. The back-
fill angle is considered as to have a gradient of 3H:1V and horizontal
backfill width is measured from slope toe to backfill crest. The lower
and upper limits are 42 m and 52 m for backfill width while 10 m and
20 m are for backfill height considered. The fitness function used is,

𝐹𝑓𝑖𝑡 = 𝐵𝑎𝑐𝑘𝑓𝑖𝑙𝑙 𝐴𝑟𝑒𝑎 + {𝑁𝑜𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ (𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑦)} (30)

𝑤ℎ𝑒𝑟𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑦 =

{

1,
0,

𝑚𝑜𝑑𝑒𝑙 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑
𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

Fig. 17 shows the global fitness, backfill height and width variation
for each PSO iteration when 𝑑 = 10m and 𝛼 = 120. The best value for
the backfill width initially increases while best value for backfill height
decreases. Fig. 18 illustrated the backfill profile variation during the
optimisation process for each PSO instances.

The optimised backfill geometries and the volume of the material

are shown in the Table 5 respect to each phreatic angle. When the
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Fig. 12. Bench geometry and Phreatic surface.

Fig. 13. Fitness value, best value and velocity value variation with iterations.
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Table 4
Backfill material parameters.

Represent
colour

Elastic
modulus
(kPa)

Poisson’s
ratio

Cohesion
(kPa)

Friction
Angle ◦

Saturated
weight
(kN/m3)

Unsaturated
weight
(kN/m3)

Backfill Yellow 45 000 0.3 40 3 19.5 19
.

Fig. 14. Bench width and bench angle variation for each iteration.

Fig. 15. Deformation contour map for the optimised slope of bench width and bench
angle optimisation.

Table 5
Optimised backfill parameters for different phreatic angles.
𝛼 𝑥1(m) 𝑥2(m) Volume of material (m3) No. iterations

12◦ 46.3 12.1 912 497
14◦ 44.5 15.0 1202 489
16◦ 42.6 18.0 1528 489

phreatic angle increases, it can have an impact on the stability of a
slope. This is because the pore pressure within the slope can increase,
causing the strength of the material to decrease. As a result, more
backfilling may be required at the toe of the slope. Table 5 provides
more information on the specific requirements based on the phreatic
angle increase.

To verify the optimised result, a separate elastoplastic analysis is
conducted using the optimised parameters and a safety factor of 2. The
11 
Table 6
Optimised pumping depths for different phreatic angles at different water table depths
𝛼 𝑑 = 10 m 𝑑 = 13 m

Pumping
depth (m)

No. Iterations Pumping depth (m) No. Iterations

20◦ 20.38 495 15.34 491
21◦ 22.10 492 19.76 496
22◦ 24.85 490 22.05 493

deformation contour map at the end of the analysis is illustrated in
Fig. 19. The ultimate optimised slope achieves a convergence point of
497 which is nearly the maximum iteration value indicating that the
optimised parameters achieves the targeted factor of safety.

3.4. Pumping depth optimisation

Dewatering and lower the phreatic surface is another common
technique use to increase the FoS of a slope in open pit mine. However,
the extent to which the depth of the phreatic surface is lowered is
directly proportional to the cost of pumping and maintenance of the
pumps. It is essential to understand the required minimum phreatic
surface depth that enhances the FoS to the target value.

To demonstrate such an application, a dewatering pump measured
30 m from the crest of the slope is considered. We assume the ground-
water profile to be prismatic around the pumping well. When the
phreatic line reaches a steady-state, it is assumed that phreatic surface
gradient around the pumping well 𝜑 = 30◦. The slope geometries and
the phreatic surface around the well is shown in Fig. 20. As depicted
in Fig. 20, the water table is situated 𝑑 meters below the top surface
and is represented as a straight line extending from the bottom of the
pit. The lower and upper bound limits for the pumping depth is 20 m
and 30 m, respectively. The target FoS for the slope is 1.5. The fitness
function used is

𝐹𝑓𝑖𝑡 =
1

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑙𝑜𝑝𝑒 𝑎𝑛𝑔𝑙𝑒
+ {𝑁𝑜𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 ∗ (𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑦)}

+ {𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑐𝑒𝑖𝑙𝑖𝑛𝑔 𝑙𝑖𝑚𝑖𝑡 −𝑁𝑜𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠} (31)

𝑤ℎ𝑒𝑟𝑒𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑦 =

{

1,
0,

𝑚𝑜𝑑𝑒𝑙 𝑛𝑜𝑡 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑
𝑚𝑜𝑑𝑒𝑙 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑑

Fig. 21 shows the convergence of the global fitness, pumping height
variation for each PSO iteration when 𝑑 = 10m and 𝛼 = 220 and Fig. 22
illustrates the phreatic surface variation for difference pumping depths
of each PSO instances and the deformation contour map at the end of
the analysis is illustrated in Fig. 23.

Table 6 shows the optimal pumping depths for the different values
of phreatic angles considered. It is observed that lowering the water
table and maintaining a steady level is an effective way to minimise
the impact of pore pressure on the strength of materials. The higher
the phreatic angle, the deeper the pumping depth required. This obser-
vation is related to the increased pore water pressure under a higher
phreatic angle. However, when the depth of the phreatic surface from
the top surface increases, the corresponding pumping depth for each
phreatic angle decreases as the pressure head decreases.
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Fig. 16. Backfill and bench parameters and Phreatic surface.

Fig. 17. Fitness, best value and velocities of backfill width and height variation with iterations.
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Fig. 18. Backfill width and height variation with each iterations.
Fig. 19. Deformation contour map for the optimised backfilled geometry.

4. Discussion and conclusion

This paper introduces a numerical framework that aims to optimise
slope profiles based on a specified FoS value when ground water is
present within the slope. The proposed technique combines several
methods, including image-based meshing using quadtree decomposi-
tion, elasto-plastic analysis utilising the SBFEM, and slope geometry
optimisation using a particle swarm optimisation (PSO). The stability
assessment of the slope is conducted based on the Mohr–Coulomb
failure criterion.

The use of quadtree decomposition enables fully automatic mesh
generation, reducing the need for human interaction in creating the
mesh for analysis. This feature proves particularly advantageous in
scenarios requiring frequent updates of the computational mesh, as
demonstrated in the presented applications. The image-based quadtree
meshing technique allows for capturing intricate details and material
property distributions based on pixel colour intensity. Consequently,
the automation of the PSO optimisation process is facilitated.

The paper showcases four applications of slope geometry opti-
misation. The first method optimises the bench width for a slope
excavation, considering the widths for all benches. The second method
optimises both the bench width and angle, maintaining the same values
for all benches. The third method focuses on optimising a surcharge
backfilling scenario. The fourth application deals with a pumping sta-
tion and phreatic surface lowering scenario. The optimisation process
involves iterations, with the slope geometry evolving at each itera-
tion. Therefore, mesh generation is required at the beginning of each
iteration.

Automating the mesh generation process is crucial to facilitate this
repetitive optimisation procedure, which can be challenging with other
numerical methods like FEM. Including hydrology along with stratigra-
phy and generating a single mesh capturing both is more complicated,
and hence, previous research only focuses on dry conditions. However,
13 
the proposed method is capable of generating a mesh considering
hydrology variation along with stratigraphy in a single mesh and
assigning material parameters to each cell in a fully automatic manner.
This reduces computational expenses and human interaction while
engaging with optimisation algorithms to optimise the slope geometries
when groundwater is present. The presented converged iterations for all
final results were very close to the maximum ceiling iteration value,
indicating that the results are well optimised. Each optimisation case
includes 15 populations and 25 generations, resulting in a total of 375
models. The average optimisation runtime is approximately 12.5 h.

In summary, the image-based SBFEM technique presents several
advantages for slope design optimisation. The results emphasise the
effectiveness of combining PSO with image-based SBFEM in generating
stable and optimised slope geometries with minimal user intervention.
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Appendix

The integration of the stiffness matrix 𝐊 in Eq. (22a) is first consid-
ered. Substituting Eqs. (10) and (16) results in

𝐊 = 𝐕−𝑇
𝑢 ∫𝜉

𝜉−𝜦𝑢−𝐈 ∫𝜂
𝜳 𝑇
𝑢 (𝜂)𝐂𝑢𝜳 𝑢(𝜂)𝐽 (𝜂)𝑑𝜂𝜉−𝜦𝑢𝑑𝜉𝐕−1

𝑢 (A.1)

Introducing

𝐘 = 𝐕−𝑇
𝑢 𝜳 𝑇

𝑢 (𝜂)𝐂𝑢𝜳 𝑢(𝜂)𝐽 (𝜂)𝑑𝜂𝐕−1
𝑢 (A.2)
∫𝜂
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Fig. 20. Geometry of the slope and Phreatic surface around the pumping well.
Fig. 21. Fitness, best value and velocities of pumping depth variation with iteration.
Fig. 22. Phreatic surface variation with pumping depth.
Fig. 23. Deformation contour map for the optimised backfilled geometry.
14 
and making use of the diagonal structure of 𝜦𝑢, each element in the
stiffness matrix 𝐾𝑖𝑗 can be integrated analytically as

𝐾𝑖𝑗 =
𝑌𝑖𝑗

−𝜆𝑢𝑖 − 𝜆𝑢𝑗
(A.3)

where 𝑌𝑖𝑗 is an element in the matrix 𝐘, 𝜆𝑢𝑖 and 𝜆𝑢𝑗 are the eigenvalues
of 𝜦𝑢. The integration of the matrix 𝐘 is performed numerically.

The integration of the external load vector 𝐅𝑢 in Eq. (22b) is
considered next. Substituting Eq. (14), Eq. (10) and (11) leads to

𝐅𝑢 = ∫𝜂
𝐍
𝑇
𝑢 (𝜂)𝛥𝒕̄𝐿(𝜂)𝑑𝜂 + 𝜌𝐕

−𝑇
𝑢 ∫𝜉

𝜉−𝜦𝑢+𝐈(𝐕(𝑒)
𝑢 )𝑇 ∫𝜂

𝐍
𝑇
𝑢 (𝜂)𝐠𝐽 (𝜂)𝑑𝜂𝑑𝜉 (A.4)

We note here that the first term on the right hand side of Eq. (A.4) is a
boundary integral evaluated at 𝜉 = 1. The term 𝐠 in the second term on
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the right hand side of Eq. (A.4) is a constant in a slope stability analysis.
Integrating analytically results in

𝐅𝑢 = ∫𝜂
𝐍
𝑇
𝑢 (𝜂)𝛥𝒕̄𝐿(𝜂)𝑑𝜂 + 𝜌𝐕

−𝑇
𝑢 (−𝜦𝑢 +2𝐈)−1(𝐕(𝑒)

𝑢 )𝑇 ∫𝜂
𝐍
𝑇
𝑢 (𝜂)𝐽 (𝜂)𝑑𝜂𝐠 (A.5)

The integration of the internal load vector 𝐑𝑢 in Eq. (22c) is con-
sidered next. Substituting Eqs. (14), (16), (10) and (11)

𝐑𝑢 = 𝐕−𝑇
𝑢 ∫𝜉

𝜉−𝜦𝑢 ∫𝜂
𝜳 𝑇
𝑢 (𝜂)𝝈

′𝐽 (𝜂)𝑑𝜂𝑑𝜉

− 𝛼𝐕−𝑇
𝑢 ∫𝜉

𝜉−𝜦𝑢 ∫𝜂
𝜳 𝑇
𝑢 (𝜂)𝐦𝐍𝑝(𝜂)𝐕(𝑒)

𝑝 𝐽 (𝜂)𝑑𝜂𝜉
−𝜦𝑝𝐕−1

𝑝 𝑑𝜉𝐩𝑏 (A.6)

The internal force contribution from the first term of Eq. (A.6) is due
to the stress vector 𝝈′. Representing this term by 𝐑𝜎 and expressing 𝝈′

as a power function in 𝜉 as

𝝈′(𝜉, 𝜂) =
∑

𝑟=0
𝝈𝑟(𝜂)𝜉𝑟 (A.7)

leads to

𝐑𝜎 = 𝐕−𝑇
𝑢

∑

𝑟=0
∫𝜉
𝜉−𝜦𝑢+𝑟𝐈 ∫𝜂

𝜳 𝑇
𝑢 (𝜂)𝝈𝑟(𝜂)𝐽 (𝜂)𝑑𝜂𝑑𝜉 (A.8)

Integrating numerically along 𝜂 and analytically along 𝜉 results in

𝐑𝜎 = 𝐕−𝑇
𝑢

∑

𝑟=0
(−𝜦𝑢 + (𝑟 + 1)𝐈)−1 ∫𝜂

𝜳 𝑇
𝑢 (𝜂)𝝈𝑟(𝜂)𝐽 (𝜂)𝑑𝜂 (A.9)

The internal force contribution from the second term of Eq. (A.6) is
ue to the pore fluid pressure 𝐩. Representing this term by 𝐑𝑝 = 𝐂𝐩𝑏,

with the matrix 𝐂 expressed as

𝐂 = 𝛼𝐕−𝑇
𝑢 ∫𝜉

𝜉−𝜦𝑢 ∫𝜂
𝜳 𝑇
𝑢 (𝜂)𝐦𝐍𝑝(𝜂)𝐕(𝑒)

𝑝 𝐽 (𝜂)𝑑𝜂𝜉
−𝜦𝑝𝐕−1

𝑝 𝑑𝜉 (A.10)

Introducing

𝐗 = ∫𝜂
𝜳 𝑇
𝑢 (𝜂)𝐦𝐍𝑝(𝜂)𝐕(𝑒)

𝑝 𝐽 (𝜂)𝑑𝜂 (A.11)

and making use of the diagonal structure of 𝜦𝑢 and 𝜦𝑝, each element
in the matrix 𝐶𝑖𝑗 can be integrated analytically as

𝐶𝑖𝑗 =
𝑋𝑖𝑗

−𝜆𝑢𝑖 − 𝜆𝑝𝑗 + 1
(A.12)

where 𝜆𝑝𝑗 is an eigenvalue of 𝜦𝑝 and 𝑋𝑖𝑗 is an element of 𝐗.

References

[1] Chaves LS, Carvalho LA, Souza FR, Nader B, Ortiz CEA, Torres VFN, et al.
Analysis of the impacts of slope angle variation on slope stability and NPV via
two different final pit definition techniques. REM-Int Eng J 2019;73:119–26.

[2] Stacey P. Pit slope design process. In: International symposium on rock slope
stability in open pit and civil engineering, Santiago de Chile. 2009.
15 
[3] Bishop AW. The use of the slip circle in the stability analysis of slopes.
Geotechnique 1955;5(1):7–17. http://dx.doi.org/10.1680/geot.1955.5.1.7.

[4] Spencer E. A method of analysis of the stability of embankments assuming
parallel inter-slice forces. Geotechnique 1967;17(1):11–26. http://dx.doi.org/10.
1680/geot.1967.17.1.11.

[5] Lorig L, Varona P. Practical slope-stability analysis using finite-difference codes.
In: W. A. Hustrulid M. K. McCarter DJAVZ, editor. Slope stability in surface
mining. 2000, p. 115–24.

[6] Griffiths DV, Lane PA. Slope stability analysis by finite elements. Géotechnique
1999;49(3):387–403. http://dx.doi.org/10.1680/geot.1999.49.3.387.

[7] Wijesinghe DR, Dyson AP, You G, Khandelwal M, Song C, Ooi ET. Devel-
opment of the scaled boundary finite element method for image-based slope
stability analysis. Comput Geotech 2022;143:104586. http://dx.doi.org/10.1016/
j.compgeo.2021.104586.

[8] Khajehzadeh MRT, Mohammad RT, Mohd ES, Mahdiyeh EA. Locating the general
failure surface of earth slope using particle swarm optimisation. Civ Eng Environ
Syst 2012;29(1):41–57. http://dx.doi.org/10.1080/10286608.2012.663356.

[9] Mishra M, Maity GVRD. Multiverse optimisation algorithm for capturing the
critical slip surface in slope stability analysis. Geotech Geol Eng 2020;38:459–74.
http://dx.doi.org/10.1007/s10706-019-01037-2.

[10] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN'95
- international conference on neural networks. IEEE; 1995, p. 1942–8. http:
//dx.doi.org/10.1109/icnn.1995.488968.

[11] Holland JH. Adaptation in Natural and Artificial Systems. Ann Arbor, MI, USA:
University of Michigan Press; 1975.

[12] Dorigo M. Optimization, learning and natural algorithms. Politecnico di Milano;
1992.

[13] Wijesinghe DR, Dyson AP, You G, Manoj M, Song C, Ooi ET. Simultaneous
slope design optimisation and stability assessment using a genetic algorithm and
a fully automatic image-based analysis. Int J Numer Anal Methods Geomech
2022;46(15):2868–92. http://dx.doi.org/10.1002/nag.3431.

[14] Wang Y, Smith JV, Nazem M. Optimisation of a slope-stabilisation system
combining gabion-faced geogrid-reinforced retaining wall with embedded piles.
KSCE J Civ Eng 2021;25(12):4535–51. http://dx.doi.org/10.1007/s12205-021-
1300-6.

[15] Jurgens H, Henke S. Numerical optimisation of excavation pit design using finite
element analyses. Geotech Geol. Eng. 2023. http://dx.doi.org/10.1007/s10706-
023-02639-7.

[16] Napa-García GF, Câmara TR, Navarro Torres VF. Optimization of room-and-
pillar dimensions using automated numerical models. Int J Mining Sci Technol
2019;29(5):797–801. http://dx.doi.org/10.1016/j.ijmst.2019.02.003.

[17] Ullah Z, Augarde CE. Finite deformation elasto-plastic modelling using an
adaptive meshless method. Comput Struct 2013;118:39–52. http://dx.doi.org/
10.1016/j.compstruc.2012.04.001.

[18] Talebi H, Saputra A, Song C. Stress analysis of 3D complex geometry using the
scaled boundary polyhedral finite elements. Comput Mech 2016;58:697–715.

[19] Lopes PCF, Pereira AMB, Clua EWG, Leiderman R. A GPU implementaion of
the PCG method for large-scale-based finite element analysis in heterogeneous
periodic media. Comput Methods Appl Mech Eng 2022;399:115276.

[20] Song C. The scaled boundary finite element method: Introduction to theory and
implementation. Wiley; 2018, http://dx.doi.org/10.1002/9781119388487.

[21] Ooi ET, Song C, Natarajan S. A scaled boundary finite element formulation
for poroelasticity. Internat J Numer Methods Engrg 2018;114(8):905–29. http:
//dx.doi.org/10.1002/nme.5770.

[22] Neto EAd, Peric D, Owen DRJ. Computational methods for plasticity: Theory and
applications. John Wiley and Sons Ltd; 2008.

[23] Le TMH, Gallipoli D, Sanchez M, Wheeler S. Characteristics of failure mass and
safety factor during rainfall of an unsaturated slope. In: E3S web of conferences,
vol. 9, 2016, p. 15011.

http://refhub.elsevier.com/S0955-7997(24)00449-1/sb1
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb1
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb1
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb1
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb1
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb2
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb2
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb2
http://dx.doi.org/10.1680/geot.1955.5.1.7
http://dx.doi.org/10.1680/geot.1967.17.1.11
http://dx.doi.org/10.1680/geot.1967.17.1.11
http://dx.doi.org/10.1680/geot.1967.17.1.11
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb5
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb5
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb5
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb5
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb5
http://dx.doi.org/10.1680/geot.1999.49.3.387
http://dx.doi.org/10.1016/j.compgeo.2021.104586
http://dx.doi.org/10.1016/j.compgeo.2021.104586
http://dx.doi.org/10.1016/j.compgeo.2021.104586
http://dx.doi.org/10.1080/10286608.2012.663356
http://dx.doi.org/10.1007/s10706-019-01037-2
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://dx.doi.org/10.1109/icnn.1995.488968
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb11
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb11
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb11
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb12
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb12
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb12
http://dx.doi.org/10.1002/nag.3431
http://dx.doi.org/10.1007/s12205-021-1300-6
http://dx.doi.org/10.1007/s12205-021-1300-6
http://dx.doi.org/10.1007/s12205-021-1300-6
http://dx.doi.org/10.1007/s10706-023-02639-7
http://dx.doi.org/10.1007/s10706-023-02639-7
http://dx.doi.org/10.1007/s10706-023-02639-7
http://dx.doi.org/10.1016/j.ijmst.2019.02.003
http://dx.doi.org/10.1016/j.compstruc.2012.04.001
http://dx.doi.org/10.1016/j.compstruc.2012.04.001
http://dx.doi.org/10.1016/j.compstruc.2012.04.001
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb18
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb18
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb18
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb19
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb19
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb19
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb19
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb19
http://dx.doi.org/10.1002/9781119388487
http://dx.doi.org/10.1002/nme.5770
http://dx.doi.org/10.1002/nme.5770
http://dx.doi.org/10.1002/nme.5770
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb22
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb22
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb22
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb23
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb23
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb23
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb23
http://refhub.elsevier.com/S0955-7997(24)00449-1/sb23

	Optimisation of open pit slope design considering groundwater effects using particle swarm optimisation and scaled boundary finite element method
	Introduction
	Scaled Boundary Formulation
	Governing equations for poro-elasto-plastic media
	Scaled boundary finite element discretisation
	Scaled boundary finite element formulation on polygons/quadtree cells
	Scaled boundary finite element shape functions
	Discretisation of Governing Equations
	Shear strength reduction technique

	Particle swarm optimisation of slope geometry with scaled boundary finite element method
	Particle Swarm Optimisation (PSO)
	A PSO-SBFEM algorithm for optimisation of open pit slopes
	Automatic slope profile generation 
	Image-based quadtree mesh generation 


	Numerical examples
	Bench width optimisation 
	Slope angle and bench width optimisation
	Backfilling optimisation
	Pumping depth optimisation

	Discussion and Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Appendix
	References


