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GW150914: The Advanced LIGO Detectors in the Era of First Discoveries
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(LIGO Scientific Collaboration and Virgo Collaboration)
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Following a major upgrade, the two advanced detectors of the Laser Interferometer Gravitational-wave
Observatory (LIGO) held their first observation run between September 2015 and January 2016. With a
strain sensitivity of 10−23=

ffiffiffiffiffiffi

Hz
p

at 100 Hz, the product of observable volume and measurement time
exceeded that of all previous runs within the first 16 days of coincident observation. On September 14,
2015, the Advanced LIGO detectors observed a transient gravitational-wave signal determined to be the
coalescence of two black holes [B. P. Abbott et al., Phys. Rev. Lett. 116, 061102 (2016)], launching the era
of gravitational-wave astronomy. The event, GW150914, was observed with a combined signal-to-noise
ratio of 24 in coincidence by the two detectors. Here, we present the main features of the detectors that
enabled this observation. At full sensitivity, the Advanced LIGO detectors are designed to deliver another
factor of 3 improvement in the signal-to-noise ratio for binary black hole systems similar in mass to
GW150914.

DOI: 10.1103/PhysRevLett.116.131103

Introduction.—On September 14, 2015, both Advanced
LIGO detectors in the USA, H1 in Hanford, Washington
and L1 in Livingston, Lousiana, made the first direct
measurement of gravitational waves [1]. The event,
GW150914, was determined to be the merger of two black
holes, with masses of 36 and 29M⊙, into a black hole of
approximately 62M⊙ [2]. 3.0 solar masses of energy
(≃5.4 × 1047 J) were radiated in gravitational waves.
The gravitational waves from this event, which occurred
at a distance of ≃410 Mpc≃ 1.3 × 109 light years,
changed the separation between the test masses by
≃4 × 10−18 m, about one 200th of a proton radius.
The Advanced LIGO detectors, multikilometer

Michelson-based interferometers [3], came online in
September 2015, after a major upgrade targeting a factor
of 10 sensitivity improvement over initial detectors [4,5].
While not yet at design sensitivity during their first
observation run, they have already exceeded the strain
sensitivity of the initial detectors across the entire fre-
quency band, significantly surpassing the past discovery
potential. This Letter describes the Advanced LIGO detec-
tors, as well as their current and final design sensitivity, at
the inception of gravitational-wave astronomy [6–10].
Astrophysical reach.—In general relativity, a gravita-

tional wave far from the source can be approximated as a
time-dependent perturbation of the space-time metric,
expressed as a pair of dimensionless strain polarizations,
hþ and h× [11]. An interferometric gravitational-wave
detector acts as a transducer to convert these space-time
perturbations into a measurable signal [12]. The interfer-
ometer mirrors act as “freely falling” test masses. Advanced
LIGO measures linear differential displacement along
the arms which is proportional to the gravitational-wave

strain amplitude. We define the differential displacement
as ΔL ¼ δLx − δLy, where Lx ¼ Ly ¼ L are the lengths
of two orthogonal interferometer arms. The gravitational-
wave strain and the interferometer displacement are related
through the simple equation ΔL ¼ hL, where h is a linear
combination of hþ and h×.
The tiny displacements induced by astrophysical events

demand that the interferometer mirrors be free from
environmental disturbances and require a highly sensitive
interferometric transducer—designed to be limited only by
disturbances arising from fundamental physics consider-
ations. Since the interferometer response to displacement,
or equivalently gravitational-wave strain, is frequency
dependent, it is necessary to represent the limiting detector
noises as functions of frequency normalized by the inter-
ferometer response.
The left panel of Fig. 1 shows the amplitude spectral

density of the total strain noise in units of strain per
ffiffiffiffiffiffi

Hz
p

during the first observation run (O1 run) and, for com-
parison, during the final science run of the initial LIGO
detectors (S6 run). In the detectors’ most sensitive fre-
quency band between 100 and 300 Hz, the O1 strain noise
is 3 to 4 times lower than that achieved in the S6 run. At
50 Hz, the improvement is about a factor of 30.
The right panel of Fig. 1 shows the single detector signal-

to-noise ratio (SNR) for an optimally oriented compact
binary system consisting of two 30M⊙ black holes as a
function of redshift z and for different interferometer
configurations. The observed strain amplitude is largest
for a source whose orbital plane is parallel to the plane of
the detector and is located straight above or below; we refer
to such a source as optimally oriented. The SNR is computed
in the frequency domain [14] using standard cosmology [15]
and phenomenological waveforms which account for inspi-
ral, merger, and ringdown, but not spins [16].*Full author list given at the end of the article.
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A Michelson interferometer lacks good directional
sensitivity to gravitational waves. The antenna pattern
covers approximately half the sky, both above and beneath
the plane of the detector. Moreover, the antenna patterns of
the two LIGO detectors are aligned to maximize the coin-
cident detection of gravitational-wave signals, constrained
to the 10 ms intersite propagation time. The coincidence
constraint substantially rejects non-Gaussian noise and
vetoes local transients.
The observed strain amplitude is inversely proportional

to the luminosity distance. For small redshifts, z < 1, the
observable volume, and, thus, the detection rate, grows as
the cube of the detector sensitivity. The number of detected
events is expected to scale with the product of observing
volume and observing time. Between September 12, 2015
and October 20, 2015, the H1 and L1 detectors had a duty
cycle of 70% and 55%, respectively, while the observing
time in coincidence was 48%. After data quality processing
[17], 16 days of data were analyzed around GW150914,
resulting in a time-volume product of 0.1 Gpc3 yr for binary
black hole systems with masses similar to GW150914 [18].
The displacement measurement.—The current genera-

tion of advanced detectors uses two pairs of test masses as
coordinate reference points to precisely measure the dis-
tortion of the space-time between them. A pair of input
and end test masses is located in each of the two arms
of a Michelson laser interferometer, as shown in Fig. 2.
The Advanced LIGO test masses are very pure and
homogeneous fused silica mirrors of 34 cm diameter,
20 cm thickness, and 40 kg mass.
It is critical that the test masses be free from sources

of displacement noise, such as environmental disturbances
from seismic noise, or thermally driven motion. These
noise sources are most relevant at frequencies below
100 Hz, while shot noise of the optical readout is dominant
at high frequencies. Figure 3 shows the measured displace-
ment noise of Advanced LIGO during the first observing

run, together with the major individual contributions, as
discussed below.
To reduce the effects of ground vibrations, the test

masses are suspended by multistage pendulums [20], thus,

FIG. 1. The left plot shows the strain sensitivity during the first observation run (O1) of the Advanced LIGO detectors and during the
last science run (S6) of the initial LIGO detectors. The O1 strain noise curve is shown for H1 (dark red) and L1 (light red); the two
detectors have similar performance. The Advanced LIGO design sensitivity, as well as a possible future upgrade [13], are shown to
highlight the discovery potential in the coming years. The right plot shows the single detector signal-to-noise ratio (SNR) under optimal
orientation as a function of redshift z—for two merging black holes with mass 30M⊙ each. GW150914 was not optimally orientated and
was detected with a single detector SNR of 13 to 20 at z ¼ 0.09; this event would not have been seen in S6.
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FIG. 2. Interferometer configuration and test mass setup. Each
arm of the Michelson interferometer includes two suspended test
masses. The two test masses are placed 4 km apart and form an
optical resonator with a gain of 300. The suspension system is
shown on the right, each test mass is at the bottom of a quadruple
pendulum. It provides high isolation above the resonance
frequencies which range from 0.4 to 13 Hz. The test mass is
attached to the penultimate mass through fused silica fibers
providing a high mechanical quality factor which lowers the
thermal noise. The other stages use steel wire. The attachment
point to the seismic isolation system as well as stages 1 and 2
implement cantilever springs for vertical isolation. Each test
mass is accompanied by its own reaction chain to minimize
actuation noise. Coil actuators are mounted to the upper stages of
the reaction chain, and an electrostatic actuator is implemented
at the bottom stage. Shown on the left are the other optics of
the Michelson interferometer with the beam splitter and the
perpendicular arm. The two optics at the interferometer input
and output port comprise the coupled resonator system which
amplifies the response of the optical transducer.
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acting as free masses well above the lowest pendulum
resonance frequency of 0.4 Hz. Monolithic fused silica
fibers [21] are incorporated at the bottom stage to decrease
suspension thermal noise [22], which limits the useful
frequencies to 10 Hz and above. The Advanced LIGO test
masses require about 10 orders of magnitude suppression
of ground motion above 10 Hz. The multistage pendulum
system attenuates the ground motion by 7 orders of
magnitude. It is mounted on an actively controlled seismic
isolation platform which provides 3 orders of magnitude
of isolation of its own [23,24]. Moreover, these platforms
are used to reduce the very large displacements produced
by tidal motion and microseismic activity. Tidal forces
can produce displacements up to several hundred μm over
a multikilometer baseline on time scales of hours. The
dominant microseismic activity is driven by ocean waves.
The resulting ground motion can be as large as several μm
at frequencies around 0.15 Hz—even far inland.
The entire test mass assembly including the suspension

system and part of the seismic isolation system resides
inside an ultrahigh vacuum system, with pressures typically

below 1 μPa over the 10 000 m3 volume, to prevent
acoustic shorting of the seismic isolation systems and to
reduce Rayleigh scattering in the optical readout.
The test masses are also susceptible to changes in the

local gravitational field caused by changing mass distribu-
tions in their vicinity. While not limiting presently, at
design sensitivity, this time-dependent Newtonian noise
source possibly becomes relevant below 20 Hz, and might
require active cancellation [25,26].
Thermally driven motion is another important source of

displacement noise. It includes the Brownian motion of
the suspension system [27] as well as the test masses [28]
and mechanical loss in the mirror optical coatings [29].
The mirror coatings, a dielectric multilayer of silica and
titania-doped tantala [30,31], were developed to provide
the required high reflectivity while minimizing coating
thermal noise [32–34]; at design, it will eventually limit the
sensitivity around 60 Hz [3].
The predicted levels for seismic, thermal, and Newtonian

noise sources are summarized in Fig. 3 and compared to
the total measured displacement noise. They are currently
not limiting the sensitivity due to the presence of other
technical noise sources, summarized in the next section and
detailed in Ref. [19].
Quantum noise in the interferometer arises from the

discrete nature of photons and their Poisson-distributed
arrival rate [35–37]. The momentum transfer of individual
photons hitting a test mass gives rise to radiation pressure
noise. Quantum radiation pressure noise scales as 1=mf2,
where m is the mass of the mirror and f the frequency, and
therefore, it is most significant at lower frequencies.
Photon shot noise arises from statistical fluctuations in

the photon arrival time at the interferometer output, and
it is a fundamental limit of the transducer in sensing
changes of the differential arm length. The importance
of shot noise decreases as the inverse square root of the
laser power circulating in the interferometer arms. During
the first observing run, Advanced LIGO was operating with
100 kW of circulating laser power. The corresponding
quantum noise curve, comprising both low frequency
radiation pressure noise and high frequency shot noise,
is shown in Fig. 3; it is limiting at frequencies above 70 Hz.
In the upcoming years, we plan to increase the circulating
laser power up to 750 kW and, thus, reduce the shot noise
contribution.
Coincident detection between the two LIGO observato-

ries is used to reject transient environmental disturbances.
Both observatory sites deploy seismometers, accelerome-
ters, microphones, magnetometers, radio receivers, weather
sensors, ac-power line monitors, and a cosmic ray detector
for vetoes and characterization of couplings [38].
Interferometric transducer.—The Advanced LIGO

detector uses a modified Michelson laser interferometer
to translate strain into an optical phase shift [3]. Similar to
an electromagnetic receiver, the optimal antenna length for

FIG. 3. The displacement sensitivity of the Advanced LIGO
detector in Hanford during the first observation run O1; the
Livingston detector has a similar sensitivity, as shown in Fig. 1.
The sum of all known noise sources accounts for most of the
observed noise with the exception of the frequency band between
20 and 100 Hz. This will be the focus of future commissioning to
full sensitivity. The quantum noise includes both shot noise and
radiation pressure noise. Thermal noise includes terms due to the
suspensions, the test masses, and the coatings. Seismic noise is
the ground displacement attenuated through the seismic isolation
system and the suspensions. Cross couplings from the autoalign-
ment system and from the auxiliary lengths are combined into
the trace labeled “other DOF” (degrees of freedom). Newtonian
gravitational noise is estimated from density perturbations due
to surface ground motion. The strong line features are due to the
violin modes of the suspension wires, the roll and bounce modes
of the suspensions, the AC power line and its harmonics, and the
calibration lines. Not shown are numerous noise sources that do
not contribute significantly—such as laser frequency, intensity
and beam jitter noise, sensor and actuation noise, and Rayleigh
scattering by the residual gas [19].
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a gravitational-wave detector is a quarter wavelength. For a
gravitational wave at 100 Hz, this is 750 km. The Advanced
LIGO interferometer arms are 4 km long and employ
an optical resonator between the input and end test masses
that multiplies the physical length by the effective number
of round-trips of the light. However, the physical length
cannot be arbitrarily short because test mass displacement
noises are multiplied by the same factor.
The output port of the Michelson interferometer is held

at an offset from a dark fringe, resulting in a small amount
of light leaving the output port [39]. A differential optical
phase shift will then decrease or increase the amount of
light, depending on which interferometer arm is momen-
tarily stretched or squeezed by a passing gravitational
wave. This light signal is measured by a photodetector,
digitized, and calibrated [40] before being sent to the
analysis pipelines [41,42].
The calibration factor that converts detected laser light

power to mirror displacement is measured by applying
a known force to a test mass [43]. An auxiliary 1047-nm
wavelength laser is reflected off the end test mass and
modulated in intensity to generate a varying force. The
response of the optical transducer is measured by sweeping
the modulation frequency through the entire detection band.
It is also tracked by a set of fixed frequency lines. This
way, the calibrated strain readout is computed in real time
with less than 10% uncertainty in amplitude. The overall
variability of the sensitivity of the detector was about�10%.
The main light source is a prestabilized 1064-nm wave-

length Nd:YAG laser. It is followed by a high power
amplifier stage, capable of generating a maximum output
power of 180 W [44]. During the first observation run, only
20 W were injected into the interferometer. A triangular
optical resonator of 32.9 m round-trip length is placed
between the laser source and the interferometer to reject
higher order transverse optical modes and to stabilize the
laser frequency further [45]. At the output port, a bow-tie
optical resonator of 1.3 m round-trip length is used to reject
unwanted spatial and frequency components on the light.
Optical curvature mismatch of the interferometer mirrors is
caused by manufacturing imperfections and by thermal
lensing due to heating from the main laser beam. A thermal
compensation system provides active correction by means
of ring heaters arranged around the test masses and a set of
CO2 lasers for central heating [46].
The Advanced LIGO detector uses coupled optical

resonators to maximize the sensitivity of the interferometric
transducer. These optical resonators enhance the light
power circulating in each arm while simultaneously opti-
mizing the effective antenna length and the gravitational-
wave signal bandwidth [47–51]. As the interferometer is
held near a dark fringe, most of the light is reflected back to
the laser source. Adding a partially transmissive mirror at
the interferometer input forms an optical resonator, leading
to a power gain of 35 to 40 at the beam splitter. The optical

resonator in the interferometer arms enhances the circulat-
ing power by another factor of 300. Thus, 20 W of laser
power entering the interferometer results in nearly 100 kW
circulating in each arm. A partially reflective mirror is also
placed at the output port to enhance the signal extraction
and to increase the detector bandwidth. The resulting
differential pole frequency or detector bandwidth is
≃335 Hz (H1) and ≃390 Hz (L1) [19]. The optical mode
matching in the output resonator is worse for H1.
All of these coupled optical resonators require servo

controls to be brought and held on resonance [52]. The
lengths of the optical resonators in the interferometer arms
are stabilized to less than 100 fm, whereas the lengths of the
other coupled resonators are kept within 1 to 10 pm [19].
Similarly, the interferometer test masses are aligned within
tens of nanoradians relative to the optical axis for optimal
performance. The noise arising from sensing and control of
these extra degrees of freedom are combined together in the
curve labeled other DOF in Fig. 3. The Pound-Drever-Hall
reflection locking technique is used to sense the auxiliary
longitudinal degrees of freedom [53,54], while an inter-
ferometric wavefront sensing scheme is deployed for the
alignment system [55,56]. The differential arm length is
controlled by the same technique during lock acquisition,
but switched to the offset locking technique described
above when observing. Digital servo systems are used to
feed control signals back to actuators which steer the
relative longitudinal positions and orientations of the
interferometer mirrors. To prevent reintroducing ground
motion onto the test masses, electrostatic actuators [57] are
mounted to a second quadruple pendulum known as the
reaction chain. Only test masses use reaction chains; all
other interferometer mirrors use coil actuators mounted on
a rigid structure surrounding the suspensions.
Servo controls are also necessary for damping the

plethora of normal modes of the pendular suspensions
and for stabilizing the seismic isolation system to an inertial
reference frame. Moreover, at high laser power, optical
springs introduce angular instabilities due to photon
radiation pressure-induced torques acting on the mirrors
[58,59], while the mirror acoustic modes introduce para-
metric instabilities [60,61]. At the current laser power, only
one acoustic mode is unstable which can be tuned away
by the ring heaters. Together with thermal heating, angular
optical springs and multiple parametric instabilities are the
main challenges that need to be overcome to increase the
circulating laser power; both will require active damping
for stable operations.
Overall, more than 300 digital control loops with

bandwidths spanning from sub-Hz to hundreds of kHz
are employed to keep each Advanced LIGO interferometer
operating optimally during observation. The digital control
computers also serve as the data acquisition system that
continuously writes on the order of 105 channels of time
series data to disk, at a rate of ≃12 Mbytes=s. It is
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synchronized to GPS to better than 10 μs [40]. A state-
based automation controller provides hands-free running
during operations.
Outlook.—The global gravitational-wave network will

be significantly enhanced in the upcoming years. In 2016,
Advanced LIGO will be joined by Advanced Virgo, the
3 km detector located near Pisa, Italy [62]. The Japanese
KAGRA interferometer [63] and a possible third LIGO
detector in India [64] will provide a global network that
allows for improved parameter estimation and sky locali-
zation [65]. Achieving design sensitivity with the network
of current detectors will define earthbound gravitational-
wave astrophysics in the near future. Looking further
ahead, we can envision current technologies leading to a
factor of 2 improvement over the Advanced LIGO design
sensitivity [13], so that events such as GW150914 could be
detected with SNRs up to 200. More dramatic improve-
ments will require significant technology development and
new facilities.
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