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Gravitational Larmor formula in higher dimensions
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The Larmor formula for scalar and gravitational radiation from a pointlike particle is derived in any
even higher-dimensional flat spacetime. General expressions for the field in the wave zone and the energy
flux are obtained in closed form. The explicit results in four and six dimensions are used to illustrate the
effect of extra dimensions on linear and uniform circular motion. Prospects for detection of bulk
gravitational radiation are briefly discussed.
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I. INTRODUCTION

The interest in higher-dimensional scenarios has in-
creased ever since the first attempts by Kaluza and Klein
to unify gravity and electromagnetism [1]. Recent pro-
posals include large extra-dimensional models [2] and
braneworlds [3,4], which have been advocated as a pos-
sible solution to the hierarchy problem of gauge couplings.
Moreover, higher-dimensional theories generally possess
more degrees of freedom, thus providing a richer arena to
describe physical phenomena.

Higher-dimensional models of gravity generally exhibit
two potentially testable characteristics: (i) Newton’s force
at short distances no longer scales as r�2 [2–5] and
(ii) generation and emission of gravitational radiation dif-
fer from the four-dimensional analogues, leading to ob-
servable effects [6–8]. Searches for deviations from
Newton’s inverse-squared law are currently in progress
[9]. Gravitational events in particle colliders and cosmic
ray extensive airshowers [10,11] may also provide indirect
evidence of large extra dimensions. The physics of gen-
eration and emission of gravitational waves in higher-
dimensional scenarios has hardly been explored at all.

The aim of this paper is to derive an exact formula for
the radiation field of a charge moving in an even higher-
dimensional spacetime. Here, charge will stand either for
scalar or gravitational charge. There are several motiva-
tions for this study. The most popular models of extra
dimensions allow for gravitational and scalar degrees of
freedom in the bulk (e.g. the radion [12]). Observable
effects of bulk gravitational and scalar radiation on the
visible brane could provide a valuable signature of the
existence of extra dimensions. Moreover, most radiation
phenomena can be analyzed in flat geometries by means of
scalar fields, provided that careful cutoffs are imposed.
(See for instance Mironov and Morozov [8].) A full tenso-
rial analysis of Einstein equations in higher dimensions
shows indeed that the gravitational degrees of freedom are
either equivalent to a massless scalar equation in flat space-

time with an appropriate source term [6,13], or to a mass-
less scalar field plus a massive field with source term
including brane contributions [5,14]. Therefore, scalar
fields can be used as a simple model mimicking the more
complex tensor field.

This paper is organized as follows. In Sec. II the field in
the radiation zone and the Larmor formula are derived.
Section III deals with some special cases (linear and uni-
form circular motion). Conclusions are presented in
Sec. IV. Unless explicitly stated, throughout the paper the
speed of light is set equal to unity.

II. COMPUTATION OF THE LARMOR FORMULA

A massless scalar field in D dimensions (x�0.. .D�1)
with source S�x� satisfies the wave equation

 �’D � S�x�: (1)

The source is a minimally-coupled pointlike particle with
nonzero mass

 S�x� �
�D���������
g�x�

p Z
d���D��x� � x�p ����; (2)

where the particle worldline is defined by x� � x�p ��� � 0,
� is the proper time along a geodesic, g�x� is the determi-
nant of the metric, and �D is the coupling constant. The
(retarded) solution of Eq. (1) is

 ’D�x� �
Z
dDx0GD�x; x

0�S�x0�; (3)

where GD�x; x0� is the retarded D-dimensional Green func-
tion of the wave operator, �GD�x; x

0� � ��D��x� x0�.
According to the discussion in the introduction, the metric
g�� is replaced with the Minkowski metric. The Green
functions in D � 2 and D � 3 are

 G 2�z� �
1
2��z�; (4)

and

 G 3�z� �
1

2�
��z�����������������������������������

�x0 � x0
p�

2 � R2
q ; (5)*Electronic address: vcardoso@phy.olemiss.edu
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respectively. Here z � x0 � x0
p�t
0� � jx� xp�t0�j, R �

jx� xp�t0�j, and ��z� is the Heaviside step function. The
Green function in D � 4 dimensions can be obtained from
the Green function in D� 2 dimensions through the re-
cursive relation [15,16]

 G D�z� �
1

2�R
d
dz

GD�2�z�; D � 4: (6)

Equations (4)–(6) show that the Green functions for even-
dimensional spacetimes (D> 2) have support on the past
light cone. The Green function for D � 2 and for odd-
dimensional spacetimes also have support inside the past
light cone, because of their dependence on ��z�. Therefore,
Huygens’ principle is not satisfied in these spacetimes [16].
(This is also the reason for the appearance of wakes behind
a boat sailing on the two-dimensional surface of a lake.)
Since the appearance of wake phenomena in odd dimen-
sions makes the problem very complex to handle [6], the
analysis below will be limited to even-dimensional space-
times. The leading term of the Green function in the far
zone is

 G 2k�z� �
�
�

1

2�R
@
@R

�
k�1

G2�z�; (7)

where k � D=2. From Eqs. (4) and (7), it follows that the
dominant term is of order R�k�1. The Green function in the
far zone is

 G 2k�z� �
��k�1��z�

2�2�R�k�1
�O�R�k�: (8)

The field in the far zone is found by substituting Eqs. (2)
and (8) in Eq. (3):

 ’2k�x� � �2k

Z �1
�1

d�
�
��k�2��z�

2�2�R�k�1
�O�R�k�

�
; (9)

where z and R are defined as below Eq. (5) with t0 ! �.
Integrating by parts, Eq. (9) reads

 ’2k�x� �
�2k

2�2�R�k�1

�
1

B
d
d�

�
k�2 1

B
�O�R�k�; (10)

where

 B�
def
�
dz
d�
� ��1� n 	 v�: (11)

The above result can be rewritten in the useful form

 ’2k�x� �
1

2�RB
d
d�
�’2k�2� �O�R�k�: (12)

The field in the wave zone can be computed recursively
with Eq. (12) in any even D � 4 dimension. The Larmor
formula can be easily derived from the stress energy-
momentum tensor of the field. In the asymptotic region,
the energy flux per unit time (Poynting vector) is

 T 2k � � _’2kr’2k: (13)

Substitution of Eq. (10) in Eq. (13) yields

 T 2k�
�2

2k

4�2�R�2k�2

��
1

B
d
d�

�
k�1 1

B

�
2
n�O�R�2k�1�; (14)

where n is the unit vector in the direction of x� xp. The
power emitted per unit of solid angle in the direction n is

 

dP2k

d�2k�2
�

�2
2k

4�2��2k�2

B
�

��
1

B
d
d�

�
k�1 1

B

�
2
: (15)

Equation (15) is an exact expression.

III. LINEAR AND CIRCULAR MOTION

It is instructive to consider some special cases of
Eq. (15). The power loss in four (k � 2) and six (k � 3)
dimensions are

 

dP4

d�2
�

�2
4

16�2

�a 	 ��2�1� v 	 n�v� n��2

�2�1� v 	 n�5
; (16)

 

dP6

d�4
�

�2
6

64�4

�CF� 3E2=F�2

�8�1� v 	 n�7
; (17)

respectively. In the above equations, a and v are the accel-
eration and velocity of the particle and

 C � �4�a 	 v�	 �
n 	 ��2a�	 � �4�n 	 a��a 	 v�

1� n 	 v
;

E � �2��2a 	 v�1� n 	 v� � n 	 a�;

F � ��1� n 	 v�;

(18)

where dot denotes differentiation w.r.t. x0. As is expected
from simple relativistic considerations, it is straightfor-
ward to check that there is no radiation for linear uniform
motion. This remains true if the bulk has finite volume and
its spatial boundary is flat, such as the simple ADD sce-
nario with a smooth brane. However, if the latter is inho-
mogeneous, radiation is generated [7]. This phenomenon is
analogous to electromagnetic diffraction of an electric
charge moving near a metal grating (Smith-Purcell effect).
It can be understood by replacing the brane with a set of
oscillating image charges. The image configuration is time
dependent because of the brane inhomogeneities and dif-
fraction radiation is generated by the reflection of the
boosted static field on the nearby wall.

The total power emitted from a particle in planar uni-
form circular motion with radius R0 and angular frequency
! is

 Pcirc;4 �
�2

4

12�
�4!4R2

0; (19)
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 Pcirc;6 �
�2

6

120�2 �
8!6R2

0�1� 4!2R2
0�: (20)

Equations (19) and (20) describe scalar synchrotron power
loss in four and six dimensions, respectively. Assuming
that the field coupling constant does not vary too much
with D, the synchrotron loss in six dimensions is larger
than in four dimensions for angular frequencies greater
than !
 L�1, where L is the fundamental length scale.
Thus a particle radiates more in higher dimensions.
Equations (19) and (20) can be used, at least in principle,
for indirect detection of extra dimensions by measuring the
increase in the power loss of a particle on the brane as
function of the Lorentz factor �. A power loss scaling as
�8!6 would signal the presence of two additional
dimensions.

The gravitational analogue of Eqs. (19) and (20) can be
estimated by setting �2k �

�������
GD
p

m�2 [13], where m is the
mass of the particle and GD is the Newton constant in D
dimensions. It should be stressed that this procedure is
strictly valid only for nonrelativistic geodesic motion,
where it agrees with previous results [6]. For ultrarelativ-
istic motion, effects due to the structure of the source and to
gravitational stresses should also be included. (See, for
instance, Ref. [17].) However, as shown by Price and
Sandberg [18], these effects can be safely neglected for a
point particle in ultrarelativistic circular orbit. With this
word of caution, let us discuss a scenario with D� 4 large
extra dimensions of size L [2]. In this model, GD is related
to the four-dimensional Newton constant G4 by GD 

LD�4G4. Restoring the speed of light c, the expressions
for the gravitational power loss in four and six dimensions
are

 Pcirc;4 

G4

12�c3 m
2�8!2�!R0�

2; (21)

 Pcirc;6 

G4

120�2c5
m2�12!2�L!�2�!R0�

2�1� 4!2R2
0=c

2�:

(22)

The energy loss for physical systems can be roughly esti-
mated by comparing the above results to the ordinary four-
dimensional synchrotron radiation, Psync, which is emitted
by a particle with electric charge e [19]

 

Pcirc;4

Psync


G4m

2

e2 �4 
 10�36�4

�
m

GeV

�
2
; (23)

 

Pcirc;6

Psync


G4m2

e2c2 �
8�L!�2


 10�59�8

�
m

GeV

�
2
�
L

mm

�
2
�
!
Hz

�
2
: (24)

For a proton, m
 1 GeV, thus the gravitational emission
becomes comparable to the synchrotron emission for �

109 (four dimensions) and �
 108�!=Hz��2 (six dimen-
sions). Thus the gravitational emission is negligible in any
current or near-future Earth-based experiment. For in-
stance, the Large Hadron Collider at CERN will collide
protons with �
 104 at a frequency of !
 104 Hz [20],
which yields Pcirc;4 
 10�20Psync and Pcirc;6 


10�20�L=mm�2Psync. However, gravitational emission
could become relevant in astrophysical processes.
Magnetic fields larger than 1012 G are thought to occur
in neutron stars, active galactic nuclei and other sources
[21]. This implies very high frequencies and large � fac-
tors. Therefore, indirect detection of extra dimensions by
gravitational synchrotron radiation could be possible.

IV. CONCLUSIONS

We derived a simple expression for scalar and gravita-
tional radiation by point particles in a generic (even)
number of spacetime dimensions. The power loss in scalar
and gravitational waves becomes significant for high fre-
quencies and large Lorentz factors. The enhancement of
radiation in extra-dimensional scenarios may lead to de-
tectable astrophysical effects, such as higher radiation
damping around neutron stars and active galactic nuclei.
These results are limited to flat spacetimes. An interesting
refinement of the above calculations would be to consider
gravitational backreaction and stresses, which could lead
to a modification of the gravitational power loss for ultra-
relativistic geodesic motion [17,18]. It would also be in-
teresting to consider gravitational radiation in warped
scenarios, including possible Kaluza-Klein mode
excitation.
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[7] V. Cardoso, M. Cavaglià, and M. Pimenta, Phys. Rev. D

74, 084011 (2006).
[8] D. V. Galtsov, Phys. Rev. D 66, 025016 (2002); P. O.

Kazinski, S. L. Lyakhovich, and A. A. Sharapov, Phys.
Rev. D 66, 025017 (2002); B. P. Kosyakov, hep-th/
0208170; A. O. Barvinsky and S. N. Solodukhin, Nucl.
Phys. B675, 159 (2003); B. Koch and M. Bleicher, hep-
th/0512353; S. Kinoshita, H. Kudoh, Y. Sendouda, and K.
Sato, Class. Quant. Grav. 22, 3911 (2005); A. Mironov and
A. Morozov, Pisma Zh. Eksp. Teor. Fiz. 85, 9 (2007)
[JETP Lett. 85, 6 (2007)]; I. Aharonovich and L. P.
Horwitz, J. Math. Phys. (N.Y.) 47, 122902 (2006).

[9] C. D. Hoyle et al., Phys. Rev. D 70, 042004 (2004).
[10] T. Banks and W. Fischler, hep-th/9906038; P. C. Argyres,

S. Dimopoulos and J. March-Russell, Phys. Lett. B 441,
96 (1998); S. Dimopoulos and G. Landsberg, Phys. Rev.
Lett. 87, 161602 (2001); S. B. Giddings and S. Thomas,
Phys. Rev. D 65, 056010 (2002); M. Cavaglià, Int. J. Mod.
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