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We investigate the gravitational energy emission of an ultrarelativistic particle radially falling into a
D-dimensional black hole. We numerically integrate the equations describing black hole gravitational pertur-
bations and obtain the energy spectra, total energy, and angular distribution of the emitted gravitational radia-
tion. The black hole quasinormal modes for scalar, vector, and tensor perturbations are computed in the WKB
approximation. We discuss our results in the context of black hole production at the TeV scale.
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I. INTRODUCTION

Brane-world models describe the visible Universe as a
four-dimensional brane embedded in a higher-dimensional
bulk @1#. A generic consequence of the brane-world scenario
is that the fundamental gravitational scale is lower than the
observed Planck scale. In some models, the fundamental
scale is lowered to values that would be accessible to next-
generation particle colliders, thus enabling laboratory-based
studies of strong gravitational physics via perturbative@2#
and nonperturbative events@3#. Ultrahigh energy cosmic rays
could also probe trans-Planckian energies@4#. The possibility
that strong gravitational effects such as black hole~BH! and
brane formation could be observed in the near future has
sparked a lot of interest in the investigation of nonperturba-
tive gravitational phenomena in hard-scattering events@5#.
~For a review and more references, see Ref.@6#.!

Trans-Planckian BH formation at energy scales much
larger than the fundamental gravitational scale is a classical
process@3#. The event is dominated by thes channel and the
initial state is modeled by two classical shock waves with
given impact parameter. In this context, a major issue is the
estimate of the collisional energy loss. The hoop conjecture
states that the collision of two particlesij with center-of-
mass~c.m.! energyEcm and impact parameter smaller than
the Schwarzschild radiusr s(Ecm) forms a trapped surface
@7#. This event is formally described by the process

i j →BH1E(X), whereE(X) denotes the collisional ‘‘junk’’
energy which does not contribute to the BH mass. The junk
energy includes a bulk component of gravitational radiation
and other possible nonstandard model gauge fields, and a
brane component of standard model collisional by-products
carrying the charge of the initial particles. The newly formed
BH is expected to decay first by loss of gauge radiation into
the bulk and then by thermal Hawking emission. The Hawk-
ing evaporation ends when the mass of the BH approaches
the fundamental gravitational scale. At this stage the BH ei-
ther decays completely by emitting the residual Planckian
energy or leaves a stable remnant with mass about the Planck
mass@8#. Most of the observable signatures of BH formation
come from Hawking’s phase and strongly depend on the ini-
tial BH mass@9#. Hence, a precise calculation of the colli-
sional energy loss is essential to the phenomenology of BH
formation.

A numerical estimate of the total collisional energy loss
for spherically symmetric BHs inD>4 dimensions has been
given by Yoshino and Nambu~YN! @10# ~see also Ref.@11#!.
The YN approach evaluates the total junk energyE(X) by
investigating the formation of the BH apparent horizon@12#.
The colliding particles are assumed massless, uncharged, and
pointlike. Each particle is modeled by an infinitely boosted
Schwarzschild solution with fixed energy. This solution de-
scribes a plane-fronted gravitational shock wave correspond-
ing to the Lorentz-contracted longitudinal gravitational field
~Aichelburg-Sexl wave! @13#. The collision is simulated by
combining two shock waves traveling in opposite directions.
The apparent horizon arises in the union of the two shock
waves. The junk energy is estimated by comparing the initial
c.m. energy with the BH mass. The result is that the colli-
sional energy loss depends on the impact parameter and in-
creases as the number of spacetime dimensions increases.

The YN method allows estimation of the total junk energy
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in the classical uncharged point-particle approximation.
However, it cannot discriminate between different compo-
nents of E(X), which is theoretically and experimentally
most important. In a realistic BH event such as a proton-
proton collision at the Large Hadron Collider~LHC! @14#,
the BH is formed by the collision of two partons. The bulk
component of the junk energy is dominated by gravitational
radiation and is invisible to the detector. The gravitational
junk energy and the invisible component of Hawking emis-
sion ~neutrinos, gravitons, etc.! add to the total missing en-
ergy of the process. Therefore, the knowledge of collisional
energy loss in gravitational emission should provide a good
estimate of the different sources of energy loss and missing
energy.

An accurate estimate of the gravitational collisional en-
ergy loss would require the use of the full nonlinear Einstein
equations inD dimensions. This is a formidable task, even in
four dimensions. Recently, significant advances in numerical
relativity allowed stable numerical simulations of BH-BH
collisions for initial BH separation of a few Schwarzschild
radii in the nonlinear Einstein theory. The gravitational
waveforms predicted by these simulations are in excellent
agreement with analytical results from first and second order
perturbation theory@15#. Since the linearization of the Ein-
stein equations yields results that are surprisingly close to the
full theory ~see, e.g., Ref.@16#!, BH perturbation theory is
likely to provide accurate estimates of gravitational wave
emission in higher-dimensional spacetimes. Relying on this
result, we compute the gravitational wave emission in higher
dimensions via a perturbative approach. Our computation is
the first of this kind to our knowledge.

The formalism for the computation of gravitational wave
emission from perturbed BHs was developed by Regge and
Wheeler@17# and Zerilli @18#, who reduced the problem to
the solution of two Schro¨dinger-like equations. Daviset al.
@19# computed the energy radiated in the radial infall of a
particle of massm0 starting from rest at infinity into a four-
dimensional BH of massMBH@m0. This study was later
generalized to the radial infall of a particle with finite initial
velocity or starting at a finite distance from the BH@20#. ~For
a more comprehensive introduction to BH perturbation
theory see, e.g., Refs.@21#.! Cardoso and Lemos@22,23#
have recently investigated the plunge of ultrarelativistic test
particles into a four-dimensional static BH and along the
rotation axis of a Kerr BH, improving early estimates by
Smarr @24#. In this paper we generalize these results to
higher dimensions by computing the gravitational radiation
emitted by an ultrarelativistic particle falling into a
D-dimensional spherically symmetric BH. Since wave
propagation in odd-dimensional curved spacetimes is not yet
fully understood, we restrict our investigation to even dimen-
sions. ~Wave late-time behavior and propagation are very
different in odd- and even-dimensional spacetimes@25–27#.
Moreover, open issues in the definition of asymptotic flatness
@28# do not allow an unambiguous definition of ‘‘gravita-
tional waves radiated at infinity’’ in odd dimensions.!

We model the particle collision as a relativistic test par-
ticle plunging into a BH with massMBH5Ecm. We use re-
cent results ofD-dimensional gravitational-wave theory by

Cardosoet al. @25# and theD-dimensional extension of Zer-
illi’s formalism by Kodama and Ishibashi~KI ! @29–32#,
which reduces the problem to the solution of three
Schrödinger-like equations. Our method provides a simple
and relativistically consistent estimate of the collisional
gravitational emission in higher dimensions. We derive the
emitted energy in terms of the wave amplitude and study the
angular dependence of the radiation using the KI formalism.
We also present a systematic calculation of BH quasinormal
modes~QNMs! for the different perturbations in the WKB
approach, extending recent calculations by Konoplya
@33,34#. We show that there is a significant relation between
the QNM frequencies and the spectral content of the emitted
radiation.

The outline of the paper is as follows. In Sec. II we intro-
duce our notations and the basic equations. In Sec. III we
briefly describe our numerical approach to the computation
of gravitational wave emission~details are in the Appen-
dixes!. Section IV contains the main results of the paper.
Conclusions are presented in Sec. V.

II. PERTURBATION EQUATIONS AND QUASINORMAL
MODES

In the next subsection we introduce the background met-
ric and the KI perturbation equations@30#. In Sec. II B we
describe the method to compute the BH QNMs.

A. Background metric and perturbation equations

The spherically symmetric BH inD5n12 dimensions is
described by the Schwarzschild-Tangherlini metric@35#

ds252 f ~r !dt21
dr2

f ~r !
1r 2dVn

2 , ~1!

wheredVn is the metric of then-dimensional unit sphereSn,
and

f ~r !512
2M

r n21
. ~2!

The BH massMBH is given in terms of the parameterM by

MBH5
nMA n

8pc2Gn12

, ~3!

whereAn52p (n11)/2/G„(n11)/2… is the area ofSn, Gn12 is
the (n12)-dimensional Newton constant, andc is the speed
of light. We will setGn1251 andc51 in the following. The
(n12)-dimensional tortoise coordinater * is defined by

dr*
dr

5
1

f ~r !
. ~4!

Integrating Eq.~4! we find

r * 5r 1
2M

n21 (
j 50

n22
ln~r /a j21!

a j
n22

, ~5!
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where

a j5~2M !1/(n21)e2p i j /(n21) ~ j 50, . . . ,n22!, ~6!

and the integration constant has been chosen to make the
argument of the logarithm dimensionless. Here and through-
out the paper we use the notations of Refs.@29,30#; the in-
dices (m,n), (i , j ), and (a,b) denote the coordinates of the
D-dimensional spacetime, the coordinates ofSn, and the co-
ordinates of the two-dimensional spacetime (t,r ), respec-
tively.

Kodama and Ishibashi@30# showed that the gravitational
perturbation equations for this metric can be reduced to
Schrödinger-like wave equations:

S d2

dr
*
2

1v22VD F50, ~7!

where the potentialV depends on the kind of perturbation.
Settingx[2M /r n21, the potential for scalar perturbations is

VS5
f ~r !Q~r !

16r 2H2
, ~8!

where

k25 l ~ l 1n21!, l 50, 1, 2, . . . ,

m5k22n, H~r !5m1
n~n11!

2
x, ~9!

and

Q~r !5n4~n11!2x31n~n11!@4~2n223n14!m

1n~n22!~n24!~n11!#x2212n@~n24!m

1n~n11!~n22!#mx116m314n~n12!m2.

~10!

Equation~8! reduces to the Zerilli equation@18# for n52.
The potential for vector perturbations is

VV5
f

r 2 FkV
2111

n~n22!

4
2

3n2M

2r n21G , ~11!

where

kV
25 l ~ l 1n21!21, l 51, 2, . . . . ~12!

Equation~11! reduces to the Regge-Wheeler equation@17#
for n52. Finally, the potential for tensor perturbations is

VT5
f

r 2 FkT
2121

n~n22!

4
1

n2M

2r n21G , ~13!

where

kT
25 l ~ l 1n21!22, l 51, 2, . . . . ~14!

Equation~13! was derived by Gibbons and Hartnoll@36# in a
more general case~see also Ref.@37#, where a Gauss-Bonnet
term is included! and has no equivalent in four dimensions.

B. Quasinormal modes

The knowledge of the QNM frequencies of multidimen-
sional BHs enables a clear physical interpretation of their
gravitational emission. QNMs are free damped BH oscilla-
tions that are characterized by pure ingoing radiation at the
BH horizon and pure outgoing radiation at infinity. The no-
hair theorem implies that QNM frequencies depend only on
the BH mass, charge, and angular momentum. Numerical
simulations of BH collapse and BH-BH collision show that,
after a transient phase depending on the details of the pro-
cess, the newly formed BH has aringdown phase, i.e., it
undergoes damped oscillations that can be described as a
superposition of slowly damped QNMs~modes with a small
imaginary part!. Furthermore, the QNMs determine the late-
time evolution of perturbation fields in the BH exterior~for
comprehensive reviews on QNMs see Refs.@38#!.

Gravitational radiation from four-dimensional astrophysi-
cal BHs is dominated by slowly damped modes. In the fol-
lowing we show that these also dominate the emission of
gravitational radiation in higher dimensions and determine
important properties of the energy spectra. Recently, Kono-
plya computed slowly damped QNMs of higher-dimensional
BHs @33,34# using the WKB method. This method is known
to be inaccurate for large imaginary parts, but it is accurate
enough for the slowly damped modes that are relevant in our
context. Therefore, QNM frequencies for scalar, vector, and
tensor gravitational perturbations are computed here in the
WKB approximation. Our results are in good agreement with
those presented by Konoplya in Ref.@34# ~modulo a different
normalization!. At variance with Ref.@34#, we concentrated
on uncharged black holes in asymptotically flat, even-
dimensional spacetimes. We extended Konoplya’s calcula-
tion in two ways:~i! in addition to the fundamental QNM we
also computed the first two overtones;~ii ! we carried out our
calculations for a much larger range of values ofl ~Ref. @34#
only shows results forl 52 andl 53).

The method consists of applying the WKB approximation
to the potential in Eq.~7! with appropriate boundary condi-
tions. The result is a pair of connection formulas that relate
the amplitudes of the waves on either side of the potential
barrier, and ultimately yield an analytical formula for the
QNM frequencies~for details see Refs.@39,40#!. The WKB
QNM frequenciesv2 are given in terms of the potential
maximum V0 and of the potential derivatives at the maxi-
mum by

v25~V01A22V09L!2 i ~ j 1 1
2 !A22V09~11V!,

j 50,1,2, . . . , ~15!

where

L5
1

A22V09
F1

8

V0
(4)

V09
S 1

4
1a2D2

1

288 S V0-

V09
D 2

~7160a2!G ,

~16!
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V5
1

A22V09
F 5

6912S V0-

V09
D 4

~771188a2!2
1

384S V0-
2V0

(4)

V09
3 D

3~511100a2!1
1

2304S V0
(4)

V09
D 2

~67168a2!

1
1

288S V0-V0
(5)

V09
2 D ~19128a2!2

1

288S V0
(6)

V09
D ~514a2!G ,

~17!

a5 j 11/2 andj is the mode index. The QNM frequencies
for the scalar, vector, and tensor potentials of Sec. II and

various dimensions are shown in Tables I–IV and will be
discussed in Sec. IV. Let us stress that the application of the
WKB technique is questionable in a few higher-dimensional
cases; forl 52 and l 53 the vector and scalar potentials in
D.6 are not positive definite and/or display a second, small
scattering peak close to the BH horizon. An accurate analysis
of these potentials would require a refinement of the standard
WKB technique, which is not presented here. These special
cases are denoted by italic numbers in Tables III and IV.

We mention that highly damped QNMs of four- and
higher-dimensional BHs have recently become a subject of
great interest in a different context. A few years ago, Hod
proposed to use Bohr’s correspondence principle to deter-
mine the BH area quantum from highly damped BH QNMs
@41#. Hod’s proposal is quite general: the asymptotic QNM
frequency for scalar perturbations of a nonrotating BH inD
dimensions is the same as in four dimensions@42#. Quite
notably, this result holds also for scalar, vector, and tensor
gravitational perturbations@43,42#. Reference@44# contains a
partial list of references on recent developments in this field.

III. INTEGRATION METHOD

The computation of the gravitational wave emission of an
ultrarelativistic particle plunging into a BH requires the nu-
merical integration of the inhomogeneous wave equation for
scalar gravitational perturbations.~Vector and tensor gravita-
tional perturbations are not excited by a particle in radial
infall.! The source termS(n) for the corresponding wave
equation inn12 dimensions can be calculated from the
stress-energy tensor of the infalling particle. Details of the
derivation are in Appendix A.

The integration in (n12) dimensions proceeds as in four
dimensions@19,20#. A good summary of the integration pro-
cedure can be found in Ref.@22#. In this section we simply
stress the differences between the four- and the
(n12)-dimensional cases. For the sake of simplicity, in our

TABLE I. QNMs for n52. The first three quasinormal frequen-
cies for scalar and vector perturbations are listed from left to right.
The scalar modes and the vector modes are isospectral in four di-
mensions.

n52 Scalar and vector modes
l j 50 j 51 j 52

2 0.746-0.178i 0.692-0.550i 0.606-0.942i
3 1.199-0.185i 1.165-0.563i 1.106-0.953i
4 1.618-0.188i 1.593-0.569i 1.547-0.958i
5 2.025-0.190i 2.004-0.572i 1.967-0.960i
6 2.424-0.191i 2.407-0.573i 2.375-0.961i
7 2.819-0.191i 2.805-0.574i 2.777-0.961i
8 3.212-0.191i 3.200-0.575i 3.175-0.961i
9 3.604-0.192i 3.592-0.575i 3.570-0.962i
10 3.994-0.192i 3.983-0.576i 3.963-0.962i
11 4.383-0.192i 4.373-0.576i 4.355-0.962i
12 4.771-0.192i 4.762-0.576i 4.745-0.962i
13 5.159-0.192i 5.151-0.576i 5.135-0.962i
14 5.546-0.192i 5.539-0.577i 5.524-0.962i
15 5.934-0.192i 5.927-0.577i 5.913-0.962i

TABLE II. QNMs for n54. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from left to
right.

n54 Scalar modes Vector modes Tensor modes
l j 50 j 51 j 52 j 50 j 51 j 52 j 50 j 51 j 52

2 1.131-0.386i 0.922-1.186i 0.537-2.053i 1.543-0.476i 1.279-1.482i 0.825-2.583i 2.004-0.503i 1.764-1.568i 1.378-2.732i
3 1.915-0.399i 1.715-1.217i 1.336-2.103i 2.191-0.471i 1.988-1.445i 1.625-2.492i 2.576-0.499i 2.393-1.531i 2.075-2.632i
4 2.622-0.438i 2.476-1.331i 2.208-2.271i 2.824-0.474i 2.664-1.441i 2.369-2.460i 3.146-0.498i 2.998-1.514i 2.729-2.580i
5 3.279-0.457i 3.156-1.384i 2.924-2.347i 3.441-0.478i 3.310-1.447i 3.063-2.453i 3.716-0.497i 3.592-1.504i 3.359-2.549i
6 3.911-0.467i 3.803-1.412i 3.598-2.385i 4.046-0.481i 3.935-1.453i 3.723-2.454i 4.286-0.496i 4.179-1.498i 3.974-2.530i
7 4.527-0.474i 4.432-1.429i 4.249-2.408i 4.644-0.484i 4.547-1.458i 4.360-2.456i 4.856-0.496i 4.762-1.495i 4.580-2.517i
8 5.133-0.478i 5.048-1.441i 4.883-2.422i 5.236-0.485i 5.150-1.462i 4.983-2.458i 5.427-0.495i 5.342-1.492i 5.178-2.508i
9 5.732-0.481i 5.655-1.449i 5.505-2.432i 5.824-0.487i 5.747-1.466i 5.596-2.460i 5.997-0.495i 5.921-1.490i 5.772-2.501i
10 6.326-0.484i 6.256-1.455i 6.118-2.439i 6.409-0.488i 6.339-1.468i 6.201-2.462i 6.567-0.495i 6.498-1.489i 6.361-2.496i
11 6.916-0.485i 6.852-1.459i 6.725-2.444i 6.992-0.489i 6.928-1.470i 6.801-2.463i 7.138-0.495i 7.074-1.488i 6.948-2.492i
12 7.504-0.487i 7.444-1.463i 7.326-2.448i 7.574-0.490i 7.514-1.472i 7.396-2.464i 7.708-0.495i 7.649-1.487i 7.532-2.489i
13 8.088-0.488i 8.033-1.465i 7.923-2.452i 8.153-0.490i 8.098-1.473i 7.988-2.465i 8.279-0.495i 8.224-1.486i 8.115-2.487i
14 8.671-0.489i 8.619-1.468i 8.517-2.454i 8.732-0.491i 8.680-1.474i 8.577-2.465i 8.849-0.495i 8.798-1.486i 8.696-2.485i
15 9.253-0.489i 9.204-1.469i 9.108-2.456i 9.309-0.491i 9.261-1.475i 9.164-2.466i 9.420-0.495i 9.371-1.485i 9.275-2.483i
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numerical integrations we set the horizon radiusr h
5(2M )1/(n21)51. The equation for the scalar perturbations
is

S d2

dr
*
2

1v22VSD F5S(n). ~18!

The general solution of Eq.~18! is obtained via a Green
function technique as follows. Consider two independent
~left and right! solutions of the homogeneous equation with
boundary conditionsFL;e2 ivr

* for r * →2`, and FR
;eivr

* for r * →1`. For r * →1` the left solution is a
superposition of ingoing and outgoing waves of the form

FL;B~v!eivr
* 1C~v!e2 ivr

* . ~19!

The Wronskian is given byW52ivC(v). The wave ampli-
tude is obtained from a convolution of the left solution with
the source term

F5
1

WE
2`

1`

FLS(n)dr* . ~20!

The energy spectrum can be expressed in terms of the
wave amplitude as~details of the derivation are given in
Appendix B!

TABLE III. QNMs for n56. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from left to
right. The numbers in italic indicate that the potential at the givenl is not everywhere positive definite. The square brackets indicate that the
potential has two scattering peaks.

n54 Scalar modes Vector modes Tensor modes
l j 50 j 51 j 52 j 50 j 51 j 52 j 50 j 51 j 52

2 [1.778-0.571i] [1.289-1.770i] [0.395-3.201i] 2.388-0.720i 1.831-2.237i 0.825-4.001i 2.956-0.751i 2.365-2.357i 1.339-4.245i
3 2.604-0.628i 2.198-1.916i 1.403-3.355i 3.102-0.715i 2.660-2.191i 1.814-3.833i 3.623-0.747i 3.181-2.294i 2.351-4.012i
4 3.401-0.645i 3.050-1.958i 2.346-3.375i 3.815-0.712i 3.450-2.165i 2.730-3.731i 4.282-0.744i 3.926-2.264i 3.235-3.895i
5 4.174-0.660i 3.875-1.997i 3.270-3.403i 4.522-0.712i 4.213-2.156i 3.595-3.678i 4.940-0.741i 4.640-2.247i 4.047-3.830i
6 4.923-0.675i 4.665-2.037i 4.144-3.449i 5.222-0.714i 4.954-2.156i 4.418-3.654i 5.598-0.740i 5.337-2.236i 4.818-3.789i
7 5.653-0.687i 5.425-2.070i 4.967-3.492i 5.915-0.716i 5.679-2.160i 5.207-3.645i 6.255-0.739i 6.024-2.229i 5.563-3.763i
8 6.369-0.695i 6.164-2.095i 5.753-3.525i 6.602-0.719i 6.392-2.164i 5.969-3.643i 6.913-0.738i 6.705-2.224i 6.290-3.745i
9 7.075-0.702i 6.888-2.113i 6.515-3.550i 7.285-0.721i 7.094-2.169i 6.712-3.644i 7.570-0.738i 7.382-2.221i 7.004-3.732i
10 7.772-0.707i 7.602-2.128i 7.259-3.570i 7.964-0.722i 7.790-2.173i 7.441-3.646i 8.228-0.737i 8.055-2.218i 7.709-3.722i
11 8.464-0.711i 8.306-2.139i 7.989-3.585i 8.640-0.724i 8.480-2.177i 8.158-3.648i 8.885-0.737i 8.726-2.216i 8.406-3.715i
12 9.151-0.715i 9.004-2.148i 8.709-3.598i 9.314-0.725i 9.165-2.180i 8.867-3.650i 9.543-0.737i 9.395-2.215i 9.098-3.709i
13 9.834-0.717i 9.697-2.156i 9.421-3.607i 9.986-0.726i 9.847-2.183i 9.569-3.653i 10.200-0.737i 10.062-2.214i 9.785-3.705i
14 10.51-0.720i 10.39-2.162i 10.13-3.616i 10.66-0.727i 10.53-2.185i 10.27-3.655i 10.86-0.737i 10.73-2.213i 10.47-3.701i
15 11.19-0.721i 11.07-2.167i 10.83-3.622i 11.32-0.728i 11.20-2.187i 10.96-3.657i 11.52-0.736i 11.39-2.212i 11.15-3.698i

TABLE IV. QNMs for n58. The first three quasinormal frequencies for scalar, vector, and tensor perturbations are listed from left to
right. The numbers in italic indicate that the potential at the givenl is not everywhere positive definite. The square brackets indicate that the
potential has two scattering peaks.

n54 Scalar modes Vector modes Tensor modes
l j 50 j 51 j 52 j 50 j 51 j 52 j 50 j 51 j 52

l52 [2.513-0.744i] [1.686-2.299i] [0.159-4.345i] 3.261-0.924i 2.335-2.851i 0.598-5.287i 3.886-0.959i 2.765-2.988i 0.706-5.720i
l53 @3.388-0.812i# @2.696-2.461i# @1.277-4.431i# 4.017-0.923i 3.269-2.804i 1.747-5.016i 4.618-0.959i 3.806-2.917i 2.141-5.241i
l54 4.223-0.841i 3.631-2.532i 2.367-4.420i 4.775-0.920i 4.147-2.777i 2.824-4.840i 5.336-0.955i 4.691-2.885i 3.331-5.018i
l55 5.042-0.855i 4.524-2.568i 3.407-4.401i 5.531-0.918i 4.991-2.762i 3.840-4.734i 6.049-0.951i 5.507-2.866i 4.360-4.904i
l56 5.848-0.865i 5.390-2.595i 4.403-4.399i 6.283-0.917i 5.810-2.757i 4.802-4.676i 6.761-0.949i 6.291-2.854i 5.297-4.838i
l57 6.640-0.874i 6.231-2.622i 5.357-4.415i 7.030-0.918i 6.610-2.757i 5.719-4.646i 7.473-0.947i 7.056-2.846i 6.178-4.798i
l58 7.420-0.883i 7.052-2.647i 6.270-4.441i 7.774-0.920i 7.396-2.759i 6.599-4.634i 8.184-0.946i 7.808-2.841i 7.022-4.772i
l59 8.191-0.890i 7.855-2.669i 7.149-4.469i 8.514-0.921i 8.167-2.764i 7.450-4.630i 8.895-0.945i 8.553-2.837i 7.841-4.755i
l510 8.953-0.896i 8.645-2.688i 7.999-4.495i 9.250-0.923i 8.935-2.768i 8.278-4.630i 9.606-0.944i 9.292-2.834i 8.640-4.743i
l511 9.709-0.902i 9.423-2.705i 8.829-4.519i 9.984-0.924i 9.692-2.773i 9.088-4.633i 10.32-0.944i 10.03-2.832i 9.426-4.735i
l512 10.46-0.906i 10.19-2.718i 9.641-4.539i 10.71-0.926i 10.44-2.777i 9.884-4.637i 11.03-0.943i 10.76-2.831i 10.20-4.728i
l513 11.20-0.910i 10.95-2.730i 10.44-4.556i 11.44-0.927i 11.19-2.781i 10.67-4.642i 11.74-0.943i 11.49-2.829i 10.97-4.724i
l514 11.95-0.914i 11.71-2.740i 11.23-4.571i 12.17-0.928i 11.93-2.785i 11.44-4.646i 12.45-0.943i 12.21-2.828i 11.73-4.720i
l515 12.68-0.916i 12.46-2.748i 12.01-4.584i 12.90-0.929i 12.67-2.788i 12.21-4.650i 13.16-0.943i 12.94-2.828i 12.48-4.718i
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dE

dv
5

v2

16p

n21

n
k2~k22n!uFu2, ~21!

wherek2[ l ( l 1n21). The Wronskian for a given value of
v is obtained by integrating the homogeneous equation from

a point located as close as possible to the horizon, and ex-
pandingFL as

FL;e2 ivr
* @11an12~r 21!1 . . . #, ~22!

where

an125
2~ l 412l 32 l 222l 13!1~n22!@22l 31 l 21~n211!l 2~n314n21n16!/4#

~2iv21!~ l 21 l 11!1~n22!@2 l 21~2iv2n!l 1~n11!iv2~n211!/2#
. ~23!

C(v) ~and W) can be obtained with good accuracy by
matching the numerically integratedFL to the asymptotic
expansion

FL;eivr
* F11

an12~v!

r
1

bn12~v!

r 2
1 . . . G

1e2 ivr
* F11

an12~2v!

r
1

bn12~2v!

r 2
1 . . . G ,

~24!

where the leading-order coefficient is

an12~v!5
i@ l 21~n21!l 1n~n22!/4#

2v
. ~25!

For givenn, l, andv, the error on the Wronskian and on the
energy spectrum is typically of the order ofO(1024).

IV. RESULTS

The main results of our work are the computation of the
QNM frequencies in the WKB approximation, the computa-
tion of the energy spectra, and the estimate of the total en-
ergy and angular distribution of the radiation emitted during
the plunge. These results are discussed in detail below.

A. Quasinormal frequencies

The WKB QNM frequencies for different even values of
n are listed in Tables I–IV. Each line shows the first three
quasinormal frequencies (j 50,1,2) for scalar, vector, and
tensor perturbations at givenl. For n52 tensor perturbations
do not exist. In this case the scalar and vector entries corre-
spond to the QNMs of the Zerilli and Regge-Wheeler equa-
tions, which are known to be isospectral@21#. The isospec-
trality is broken forn.2. This has been shown analytically
by Kodama and Ishibashi@30# and later verified numerically
by Konoplya @34#. The real and imaginary parts of scalar
QNM frequencies at givenn, l, and j are smaller than those
of vector QNMs, which are in turn smaller than those of
tensor QNMs. Since scalar modes are the least damped, they
are likely to dominate the gravitational radiation emission.

As l grows, the isospectrality tends to be restored. In the
eikonal limit l→` the centrifugal term of the potential domi-
nates and is the same for scalar, vector, and tensor perturba-
tions. In this limit, the QNM frequencies for all perturbations
are

vR;
n12l 21

2 S 2

n11D 1/(n21)S n21

n11D 1/2

,

v I;
n21

2~n11!1/2S 2

n11D 1/(n21)

~2 j 11!. ~26!

The previous relation was derived in Ref.@33# for multidi-
mensional BH perturbations induced by a scalar field.~No-
tice that the normalization used in Ref.@33# is different from
ours.! Here we have shown that it also holds for gravitational
perturbations. Isospectrality of scalar and gravitational per-
turbations is a common feature of the eikonal limit and of the
large-damping limit@42,43# for any n.

B. Multipolar components of the energy spectra

The numerical integration described in Sec. III gives the
energy spectra of Figs. 1 and 2. The spectra forn52 ~top left
panel in Fig. 1! are in excellent agreement with those of Ref.
@22#. The spectra are flat in the region between the zero-
frequency limit and a ‘‘cutoff’’ frequencyvc , beyond that
they fall exponentially to zero. The cutoff frequencyvc is
given by the fundamental QNM frequency to a good level of
accuracy. This result can be understood in terms of
gravitational-wave scattering from the potential barrier that
surrounds the black hole.v2 plays the role of the energy in
the Schro¨dinger-like equation~7!. From Eq. ~15! it follows
thatv25V0 at first order in the WKB approximation. There-
fore, only the radiation with energy smaller than the peak of
the potential is backscattered to infinity; radiation with larger
frequency is exponentially suppressed.

The gravitational emission of a two-particle hard collision
in higher dimensions has been computed by Cardosoet al.
@25# using techniques developed in four dimensions by
Weinberg@45# and later used by Smarr@24#. The main result
of Ref. @25# is that the spectra inn12 dimensions grow as
vn22; thus the integrated spectra diverge asvn21. Physi-
cally meaningful results for the total energy can only be ob-
tained by imposing some cutoff on the integrated spectra.
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Smarr@24# first suggested to use the inverse horizon radius
as a cutoff. The relativistic perturbative calculation inn52
@22# shows that the cutoff frequency at fixedl is very close to
the fundamental BH QNM. Therefore, the cutoff frequency

should be given by some ‘‘weighted average’’ of the funda-
mental gravitational QNM frequencies@25#.

Our results for the spectra and the QNMs confirm the
above picture. Figure 1 shows that all spectra go to zero as

FIG. 1. Multipolar components of the energy spectra up tol 510 for n52, n54 ~top left and top right panels!, n56 andn58 ~bottom
left and bottom right panels! in units r h51. Open circles mark the real part of the fundamental scalar gravitational quasinormal frequency,
v ln , for the givenl andn.

FIG. 2. Multipolar components of the energy spectra at fixedl for different values ofn in units r h51. The left panel corresponds tol
52 and the right panel corresponds tol 53. Open circles mark the real part of the fundamental scalar gravitational quasinormal frequency,
v ln , for the givenl andn.
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v→0. Forv,vc the spectrum at fixedl is

dEl

dv
5 f n,lv

n22, ~27!

where f n,l is a constant that can be found by a fit of the
spectra. For largel f n,l decays as

f n,l5kn12l 23(n12)/4. ~28!

A fit of the numerical data givesk452.25, k650.832, k8
50.184, andk1050.040. Our result forn52 is consistent
with that of Ref.@22#.

As conjectured in Ref.@25#, all spectra have a maximum
at some cutoff frequencyvc . This cutoff frequency is very
close to the fundamental QNM frequencyv ln for ~scalar!
gravitational perturbations with givenl and n, which is
marked by open circles in Figs. 1 and 2. The deviation be-
tweenvc andv ln is of order 10% for lowl, and decreases
for large l ~compare Figs. 1 and 2 to the first column of
Tables I–IV!. The deviation is larger when the WKB method
is least reliable, namely forl 52 andn.4. In these cases,
the location of the peaks in the spectra can presumably be
used as a more reliable estimate of the QNM frequency. The
spectrum decays exponentially forv.vc with an
n-dependent slopean12 ~see Fig. 2!:

dEl

dv
;e2an12(v2vc). ~29!

Thus thev-integrated multipolar contributionsDEl at given
l are finite. With our choice of units, Cardoso and Lemos
@22# find a4513.5a ~herea is a constant of order unity that
cannot easily be determined because the spectra decay very
quickly!. Our numerical fits givea4.15, in good agreement
with their result. In higher dimensions the constantsan12 are
comparatively easier to determine. Their values area6
.5.5, a8.3.4, anda10.2.3. It is not clear if there is any
relation between thisn-dependent slope and the late-time tail
behavior predicted in Ref.@26#.

Figure 1 shows that higher multipoles contribute more as
n grows. This is evident when we look at thev-integrated
multipolar components of the energy spectra of Fig. 3. The
quadrupole (l 52) is dominant only forn52 andn54. For
n56 andn58 the dominant multipoles arel 54 andl 56,
respectively~see Table V!. This effect may be related to the
appearance of a negative well in the scalar potentials forl
52 andn.4. It would be interesting to understand better
the physical relation between the dominant multipole and the
spacetime dimension.

C. Total energy

The total emitted energy is obtained by numerically inte-
grating the results of the previous section overv and sum-
ming the multipolar components. For largel the integrated
energy in the multipolel can be fitted by

DEl5an12l 2bn12, ~30!

where (a650.110,b651.69), (a850.050,b851.64), and
(a1050.022,b1051.40) for n54, n56, andn58, respec-
tively. The coefficients (an12 ,bn12) have been obtained by
fitting the data froml 514 to l 520 and are weakly depen-
dent on the chosen range ofl. This variability affects our
final results on the total energy within less than a few per-
cent.

Restoring the dependence on the BH horizonr h and on
the conserved particle energyp0, the total emitted energy is

Eem5
p0

2

MBH

nAn

16p (
l 52

`

DEl[
p0

2

MBH

nAn

16p
Etot

(D)[
p0

2

MBH
Etot

(D) ,

~31!

whereEtot
(D) is the ‘‘dimensionless’’ total energy~expressed in

the unitsr h51 that we used in our numerical integrations!.

FIG. 3. The integrated energyDEl as a function ofl for different
values ofn. The dominant multipolar component isl 52 only for
n,6; this is probably related to the appearance of a negative well
in the scalar potentials forl 52 andn.4. The dominant multipole
is l 54 ~6! for n56 ~8! ~see Table V!.

TABLE V. Multipolar contributions to the total energy for dif-
ferentn in units r h51.

l n52 n54 n56 n58

2 0.1845 0.18931021 0.19431022 0.26931023

3 0.0855 0.12031021 0.23831022 0.65331023

4 0.0500 0.08631021 0.24131022 0.98331023

5 0.0329 0.06431021 0.22431022 1.18731023

6 0.0234 0.05031021 0.19931022 1.25831023

7 0.0175 0.03931021 0.17231022 1.22531023

8 0.0136 0.03231021 0.14931022 1.13031023

9 0.0109 0.02731021 0.12831022 1.00931023

10 0.0089 0.02231021 0.11131022 0.88831023

11 0.0074 0.01931021 0.09631022 0.78031023

12 0.0063 0.01631021 0.08431022 0.68831023

13 0.0054 0.01431021 0.07531022 0.61231023

14 0.0047 0.01331021 0.06631022 0.54931023

15 0.0041 0.01131021 0.05931022 0.49731023
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We obtained the integrated spectra numerically up tol 520
and extrapolated them for largerl using the fits in Eq.~30!.
Results are presented in Table VI.

Following Ref.@22# we estimate the gravitational energy
loss for a collision of two particles with equal massM by the
replacementp0→M , MBH→M tot52M . For n52 this ex-
trapolation gives results in good agreement with the pertur-
bative shock-wave calculation of Ref.@12#, which considers
two BHs of equal mass. An analogous extrapolation forn
52 gives results in close agreement with the fully relativistic
computation@16# for a particle starting from infinity at rest.
Therefore, we believe that our extrapolation should provide a
qualitative but realistic estimate. The results for different val-
ues ofn are given in the last column of Table VI. The gravi-
tational energy loss is;13%, ;10%, 7%, and 8% forn
52 to n58, respectively. The result forn52 is in good
agreement with previous estimates@12# ~see the discussion in
Ref. @22#!.

D. Angular dependence

The angular dependence of the radiation is obtained by
evaluating numerically Eqs.~B17! and ~B18!. Figure 4
shows the angular dependence of the total energy up tol
515 for n52, n54, andn56.

The angular distribution of the gravitational radiation in
the BH frame goes to zero along the axis of the collision
(u50,p) in any dimensions. Therefore, the gravitational
emission is never back- or forward scattered. In four dimen-
sions the angular spectrum of the gravitational radiation in-
creases rapidly at smallu and becomes approximately flat at
greater angles with a maximum in the direction orthogonal to
the axis of the collision, before falling rapidly to zero for
values of the angles close top. The angular distribution of
the gravitational radiation forn.2 is peaked atu and p
2u, whereu is a small angle. The difference between the
behavior of the angular distribution in four dimensions and
in higher dimensions has no evident physical reason. It
would be interesting to further explore this point.

V. CONCLUSION AND PERSPECTIVES

In this paper we have computed the gravitational emission
of a two-particle collision in an evenD-dimensional space-
time. We have presented the numerical results forD54 to
10. The collision has been modeled as a massless test par-
ticle plunging into a BH with mass equal to the c.m. energy
of the event.

According to our estimates, the total emitted energy in a
head-on collision with particles of equal mass ranges from
;13% (D54) to ;8% (D510). This shows that the loss
in gravitational radiation is quite stable under variation of the
spacetime dimension and slightly decreases for higherD.
The result forD54 confirms previous numerical and ana-
lytical calculations@12#.

Our result contrasts with the YN estimation for the initial
mass of a BH in head-on collisions@10#. A possible expla-
nation is that the junk emission is not wholly gravitational
emission. The YN method predicts the mass within the ap-
parent horizon to be;0.71Ecm in four dimensions. If all the
junk energy were gravitational radiation, this would amount
to a total loss of around 30%. The disagreement is likely not
due to numerical uncertainties or inaccurate approximations:
the YN mass decreases for higher spacetime dimensions
(;0.71Ecm to ;0.58Ecm for D54 to D511), whereas the
loss in gravitational radiation remains stable. Since both YN
and our methods are purely gravitational, this ‘‘dark compo-
nent’’ of the junk radiation should describe the by-products
of the collision. According to this picture,;60% of the c.m.
energy in ten dimensions is trapped inside the horizon,
;10% is emitted in gravitational radiation, and;30% goes
into particle by-products in the final state. These could be the
carriers of the initial charge in a collision between charged
particles. ForD.4 a fraction of the by-products may be
emitted into the bulk.

Let us conclude by briefly discussing the phenomenologi-
cal consequences of these results for BH formation at the
TeV scale. Although uncertainties may affect the numerical
estimates, different approaches now confirm that some of the
initial c.m. energy is not trapped inside the BH horizon. For
head-on collisions inD510, for example, this junk energy
ranges from;10% ~optimistic value—our result! to ;40%
~pessimistic value—YN result!. Hence, the initial mass of
the BH formed in the collision could be considerably smaller

TABLE VI. Total energy for different spacetime dimensions.
From left to right, the columns give the spacetime dimensionD
5n12, the factornAn/16p, the total energyEtot

(D) in units r h51,
the rescaled total energyEtot

(D)5nA nEtot
(D)/16p and the gravitational

energy loss~see text!.

D nAn/16p Etot
(D) Etot

(D) Energy loss

4 1/2 0.52 0.26 13%
6 2p/3 0.095 0.20 10%
8 2p2/5 0.034 0.13 7%
10 16p3/105 0.032 0.15 8%

FIG. 4. Angular dependence of the radiation forn52, 4, and 6,
summing all multipoles up tol 515 in units r h51. The angular
distribution forn58 is not shown. The latter is even more peaked
in a narrow region aroundu50 since also the multipoles withl
.15 contribute significantly to the radiation.
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than the c.m. energy. The experimental signatures of BH pro-
duction at particle colliders and in ultrahigh energy cosmic
ray events strongly depend on the initial BH mass. The total
multiplicity of the Hawking phase in ten dimensions could
be almost halved in the pessimistic case, leading to a greater
average energy of the emitted quanta.

A thorough investigation of the effects of energy loss in
TeV-scale BH production is undoubtedly worth pursuing. Fu-
ture research should focus on the extension of the above
results to spacetimes with odd dimensions and to gravita-
tional events with different geometries. BHs produced in col-
liders, for instance, possess nonvanishing angular momen-
tum. Rotating BHs are expected to lose more energy in
gravitational waves than Schwarzschild BHs of equal mass.
A larger gravitational emission is also expected for non-
spherically symmetric BHs. This is particularly relevant
when the compactified space is asymmetric, and some of the
extra dimensions have size of order of the fundamental
gravitational scale. It would be extremely important to quan-
tify these differences.
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APPENDIX A: THE SOURCE TERM

In this appendix we derive the source term of the KI equa-
tion that describes the radial plunge of a massless particle
into the (n12)-dimensional BH. The perturbation of the
stress-energy tensor is

dTmn52
p0

A2g
*dldn

„x2x~l!…
dxm

dl

dxn

dl
, ~A1!

wherep0 is the conserved energy of the particle. The only
nonvanishing components of the particle velocity areut and
ur . Thus the source excites only scalar perturbations. Fol-
lowing the notations of Ref.@29#, Eq.~A1! reads

~A2!

whereS are the scalar harmonics andtab are the nonvanish-
ing gauge-invariant perturbations of the stress-energy tensor.
The BH1source system is symmetric under rotation of the
(n21)-sphereSn21 @46#. Consequently, the harmonic de-
composition of the fields contains only harmonics invariant
underSn21. We can write the metric ofSn as

dVn~u,f1 , . . . ,fn21!5du21sin2udVn21~f1 , . . . ,fn21!
~A3!

and choose the trajectory of the test particle to beu50. The
harmonics which are invariant underSn21 do not depend on
f1 , . . . ,fn . The scalar harmonics onSn belong to the rep-
resentationsD ( l ) of SO(n11)

~A4!

Each harmonic is labeled by the indexl denoting its repre-
sentation and by additional indices in the representation. We
fix a particular element of each representationD ( l ) @the sin-
glet underSO(n21)] by requiring the harmonics to be in-
variant underSn21. Therefore, the harmonics in the expan-
sion of the perturbations depend only onl and on the
dimensionn of the sphere. A (n12)-dimensional scalar field
can then be expanded as@46#

f~ t,r ,u,f1 , . . . ,fn21!5(
l

f̃ l~ t,r !S (nl)~u!, ~A5!

whereS (nl)(u) satisfy

DiD
iS (nl)52k2S (nl), k2[ l ~ l 1n21!, ~A6!

and

E dVnS (nl)S * (nl8)5d l l 8 . ~A7!

The solution of Eq.~A6! is

S (nl)~u!5K (nl)Cl
(n21)/2~u!, ~A8!

where Cl
(n21)/2(u) are Gegenbauer polynomials@47# and

K (nl) are normalization factors. Using Eq.~A7! we have

K (nl)

5F232npn/211

G~n/2!

G~ l 1n21!

~ l 1n/221/2!G~n/221/2!2G~ l 11!
G21/2

.

~A9!

The scalar harmonics for the source are obtained settingu
50:

S(nl)~u50!5K (nl)
~ l 1n22!!

~n22!! l !
. ~A10!

For a massive particle in radial geodesic motion

dt

dr
52

1

f ~r !
. ~A11!

From Eqs.~A11! and ~4! it follows that
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r * ~r !52t~r !, ~A12!

where we have set to zero the integration constant. The
stress-energy tensor perturbations are

dTrr ~ t,r ,u,f1 , . . . !52p0f 22r 2nd~ t2t~r !!dn~Vn!,

dTtr~ t,r ,u,f1 , . . . !52p0f 21r 2nd~ t2t~r !!dn~Vn!.
~A13!

(dTtt does not contribute to the source of the KI equation.!
Integrating Eqs.~A13! on Sn and applying a Fourier trans-
form, the gauge-invariant perturbations are

t rr ~v,r !52p0f 22r 2n
eivt(r )

A2p
S(nl)~u50!,

t tr~v,r !52p0f 21r 2n
eivt(r )

A2p
S(nl)~u50!.

~A14!

The source termS(n) for scalar gravitational perturbations is
obtained in terms oftab by substituting Eqs.~A14! in
Eq. ~5.44! of Ref. @32#, where

Sab58pr n22tab , Sa5ST5A5 J̃a50. ~A15!

The result is

S(2)5e2 ivr
*

8A4l 12

ivr

~ l 21!~ l 12!~r 21!

@~ l 12!~ l 21!r 13#2
, ~A16!

S(4)5e2 ivr
*

16A~2l 13!l2

A2p ivr 3

3
@~ l 213l !~r 62r 3!1524r 62r 3#

@~ l 14!~ l 21!r 3110#2
, ~A17!

S(6)5e2 ivr
*

6A~2l 15!l4

p ivr 4

3
@~ l 215l !~r 102r 5!11426r 1028r 5#

@~ l 16!~ l 21!r 5121#2
,

~A18!

S(8)5e2 ivr
*

4A~2l 17!l6

A3p3ivr 5

3
@~ l 217l !~r 142r 7!12728r 14219r 7#

@~ l 18!~ l 21!r 7136#2
,

~A19!

where lk[@( l 1k)( l 1k21) . . . (l 11)#. The BH horizon
r h and the particle energyp0 have been set equal to one.
Equation~A16! coincides with Eq.~8! of Ref. @22#.

APPENDIX B: ENERGY AND ANGULAR DISTRIBUTION

We derive here the formulas for the energy and the angu-
lar dependence of the gravitational emission. Gravitational
waves in a (n12)-dimensional spacetime behave asymptoti-
cally as;r 2n/2 @25# and possessn(n11)/221 degrees of
freedom. The transverse-traceless~TT! gauge is defined by
dgab50, dgai50, anddgi j g

i j 50. These conditions can be
chosen by imposing the harmonic gauge in the wave zone
and using the remaining gauge freedom to constraindgtt
50, dgti50, andg i j dgi j 50.

We separate the angular part of the perturbations using
tensor spherical harmonics, following Ref.@30#. In the TT
gauge, the only nonvanishing term in the decomposition is
theHT component. Hence, the gauge invariant quantities for
scalar perturbations (F andFab) depend only onHT :

F5
1

n
HT1

1

r
~Dar !Xa , Fab5DaXb1DbXa , ~B1!

where

Xa5
r 2

k2
DaHT . ~B2!

The scalar perturbationF is written in terms of the gauge
invariant quantities as

F5
nZ̃2r ~X1Y!

r n/221@k22n1n~n11!x/2#
, ~B3!

where

X1Y522nrn22F, Z̃5
1

iv
r n22F t

r . ~B4!

Setting

HT→
A

r n/2
eivr

* , ~B5!

the asymptotic behavior ofF is

lim
r→`

F5
2A

k2
eivr

* . ~B6!

The asymptotic behavior ofhi j in the TT gauge is

hi j
TT52r 2HTS i j ;

k2F

r n/222
Si j 5

F

r n/222 S DiD jS1
k2

n
g i j SD .

~B7!

The energy-momentum pseudotensor does not depend on the
spacetime dimension and is given by@25#

dE

dSdt
5^t00&5

v2

32p
^hi j

TThTTi j&, ~B8!
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wherehi j
TT are metric perturbations in the time domain. Us-

ing Parseval’s theorem, the energy-momentum pseudotensor
in the frequency domain is

dE

dSdv
5

v2

32p
^h̃i j

TTh̃* TTi j&, ~B9!

whereh̃i j
TT are now the metric perturbations in the frequency

domain. Substituting Eq.~B7! in Eq. ~B9! we get

dE

dSdv
5

v2

32p

uFu2

r n S DiD jS1
k2

n
g i j SD

3S DkDlS* 1
k2

n
gklS* Dg ikg j l . ~B10!

Integrating on the spheredS5r ndVn and using the relations

DiD
iS52k2S, @D j ,Di #V

j5RkiV
k5~n21!Vi ,

~B11!

whereVi is a generic vector~here and in the following, in-
dices are raised and lowered withg i j ), we find the ‘‘two-
sided’’ power spectrum

dE

dv two-sided5E dS(n)
dE

dSdv
5

v2

32p

n21

n
k2~k22n!uFu2.

~B12!

The ‘‘one-sided’’ spectrum in Eq.~21! is obtained by multi-
plying Eq. ~B12! by two. In the four-dimensional limit the
one-sided spectrum is

dE

dv U
n52

5
v2

32p

~ l 12!!

~ l 22!!
uFu2. ~B13!

Equation ~B13! is Zerilli’s formula for the l th multipole
component of the energy spectrum in four dimensions. The
total energy spectrum is given by the sum over the multi-
poles.

For eachl the energy spectrum is

dEl

dVdv
5

v2

32p
uF l u2S DiD jS1

k2

n
g i j SD

3S DiD jS* 1
k2

n
g i j S* D . ~B14!

Substituting Eq.~B12! in the previous equation, we find

dEl

dVdv
5

dEl

dv

n

n21

1

k2~k22n!
S DiD jS1

k2

n
g i j SD

3S DiD jS* 1
k2

n
g i j S* D . ~B15!

The angular dependence for thel th multipole is obtained by
integrating over frequency@22#. The result is

dEl

dV
5DEl

n

n21

1

k2~k22n!
S DiD jS1

k2

n
g i j SD

3S DiD jS* 1
k2

n
g i j S* D[DElL l~u!, ~B16!

where

L l~u!5
1

k2~k22n!
S n

n21
S,uu1

k

n21
SD 2

. ~B17!

For n52 Eq. ~B17! reduces to the known result in four di-
mensions@22#. The angular dependence is obtained by sum-
ming over the multipoles:

dE

dV
~u!5(

l

dEl

dV
5(

l
DElL l~u!. ~B18!

The result truncated tol max515 is shown in the left panel of
Fig. 4. The curve corresponding ton52 shows good agree-
ment with Fig. 3 of Ref.@22#.
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