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First low-frequency Einstein@Home all-sky search for continuous
gravitational waves in Advanced LIGO data

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 29 June 2017; revised manuscript received 14 September 2017; published 8 December 2017)

We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in
data from the first Advanced LIGO observing run. This search investigates the low frequency range of
Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search
was made possible by the computing power provided by the volunteers of the Einstein@Home project.
We find no significant signal candidate and set the most stringent upper limits to date on the amplitude
of gravitational wave signals from the target population, corresponding to a sensitivity depth of

48.7 ½1= ffiffiffiffiffiffi
Hz

p �. At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper
limits of 1.8 × 10−25. At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 × 10−24.
At 55 Hz we can exclude sources with ellipticities greater than 10−5 within 100 pc of Earth with fiducial
value of the principal moment of inertia of 1038 kgm2.

DOI: 10.1103/PhysRevD.96.122004

I. INTRODUCTION

In this paper we report the results of a deep all-sky
Einstein@Home [1] search for continuous, nearly mono-
chromatic gravitational waves (GWs) in data from the first
Advanced LIGO observing run (O1). A number of all-sky
searches have been carried out on initial LIGO data, [2–15],
of which [2,3,7,9,14] also ran on Einstein@Home.
Einstein@Home is a distributed computing project which
uses the idle time of computers volunteered by the general
public to search for GWs.
The search presented here covers frequencies from 20 Hz

through 100 Hz and frequency derivatives from −2.65 ×
10−9 Hz=s through 2.64 × 10−10 Hz=s. A large portion of
this frequency range was not explored in initial LIGO due
to lack of sensitivity. By focusing the available computing
power on a subset of the detector frequency range, this
search achieves higher sensitivity at these low frequencies
than would be possible in a search over the full range of
LIGO frequencies. In this low-frequency range we establish
the most constraining gravitational wave amplitude upper
limits to date for the target signal population.

II. LIGO INTERFEROMETERS
AND THE DATA USED

The LIGO gravitational wave network consists of two
observatories, one in Hanford (Washington) and the other

in Livingston (Louisiana) separated by a 3000-km baseline
[16]. The first observing run (O1) [17] of this network after
the upgrade towards the Advanced LIGO configuration
[18] took place between September 2015 and January
2016. The Advanced LIGO detectors are significantly more
sensitive than the initial LIGO detectors. This increase in
sensitivity is especially significant in the low-frequency
range of 20 Hz through 100 Hz covered by this search: at
100 Hz the O1 Advanced LIGO detectors are about a factor
5 more sensitive than the Initial LIGO detectors during their
last run (S6 [19]), and this factor becomes ≈20 at 50 Hz.
For this reason all-sky searches did not include frequencies
below 50 Hz on initial LIGO data.
Since interferometers sporadically fall out of operation

(“lose lock”) due to environmental or instrumental disturb-
ances or for scheduled maintenance periods, the data set is
not contiguous and each detector has a duty factor of about
50%. To remove the effects of instrumental and environ-
mental spectral disturbances from the analysis, the data in
frequency bins known to contain such disturbances have
been substituted with Gaussian noise with the same average
power as that in the neighboring and undisturbed bands.
This is the same procedure as used in [3]. These bands are
identified in the Appendix.

III. THE SEARCH

The search described in this paper targets nearly mono-
chromatic gravitational wave signals as described for
example by Eqs. (1)–(4) of [9]. Various emission mech-
anisms could generate such a signal, as reviewed in
Sec. IIA of [15]. In interpreting our results we will consider
a spinning compact object with a fixed, nonaxisymmetric
l ¼ m ¼ 2 mass quadrupole, described by an equatorial
ellipticity ε.

*Full author list given at the end of the Letter.
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We perform a stack-slide type of search using the global
correlation transform (GCT) method [20–22]. In a stack-
slide search the data is partitioned in segments, and each
segment is searched with a matched-filter method [23]. The
results from these coherent searches are combined by
summing the detection statistic values from the different
segments, one per segment (F i), and this determines the
value of the core detection statistic:

F̄ ≔
1

Nseg

XNseg

i¼1

F i: ð1Þ

The “stacking” part of the procedure is the summing, and
the “sliding” (in parameter space) refers to the fact that the
F i that are summed do not all come from the same
template.
Summing the detection statistic values is not the only

way to combine the results from the coherent searches; see
for instance [4,24,25]. Independently of the way that this is
done, this type of search is usually referred to as a
“semicoherent search.” Important variables for this type
of search are the coherent time baseline of the segments
Tcoh, the number of segments used Nseg, the total time
spanned by the data Tobs, the grids in parameter space, and
the detection statistic used to rank the parameter space
cells. For a stack-slide search in Gaussian noise, Nseg × 2F̄
follows a chi-squared distribution with 4Nseg degrees of
freedom, χ24Nseg

. These parameters are summarized in

Table I. The grids in frequency and spin-down are each
described by a single parameter, the grid spacing, which is
constant over the search range. The same frequency grid
spacings are used for the coherent searches over the
segments and for the incoherent summing. The spin-down
spacing for the incoherent summing, δ _f, is finer than that
used for the coherent searches, δ _fc, by a factor γ. The
notation used here is consistent with that used in previous
observational papers [2,3].
The sky grid is approximately uniform on the celestial

sphere projected on the ecliptic plane. The tiling is a
hexagonal covering of the unit circle with hexagons’ edge
length d:

dðmskyÞ ¼
1

f

ffiffiffiffiffiffiffiffiffimsky
p
πτE

; ð2Þ

with τE ≃ 0.021 s being half of the light travel time across
the Earth and msky a constant which controls the resolution
of the sky grid. The sky grids are constant over 5 Hz bands
and the spacings are the ones associated through Eq. (2) to
the highest frequency in each 5 Hz. The resulting number of
templates used to search 50 mHz bands as a function of
frequency is shown in Fig. 1.
This search leverages the computing power of the

Einstein@Home project, which is built upon the BOINC
(Berkeley Open Infrastructure for Network Computing)
architecture [26–28]: a system that exploits the idle time on
volunteer computers to solve scientific problems that
require large amounts of computer power. The search is
split into work units (WUs) sized to keep the average
Einstein@Home volunteer computer busy for about
8 CPU hours. Each WU performs 1.5 × 1011 semicoherent
searches, one for each of the templates in 50 mHz band, the
entire spin-down range and 118 points in the sky. Out of
the semicoherent detection statistic values computed for
the 1.5 × 1011 templates, it returns to the Einstein@Home
server only the highest 10000 values. A total of 1.9×106

WUs are necessary to cover the entire parameter space. The
total number of templates searched is 3 × 1017.

A. The ranking statistic

Two detection statistics are used in the search: β̂S=GLtL
and 2F̄ . β̂S=GLtL is the ranking statistic which defines the

TABLE I. Search parameters rounded to the first decimal
figure. Tref is the reference time that defines the frequency
and frequency derivative values.

Parameter Value

Tcoh 210 hr
Tref 1132729647.5 GPS s
Nseg 12
δf 8.3 × 10−7 Hz
δ _fc 1.3 × 10−11 Hz=s
γ 100
msky 1 × 10−3

FIG. 1. Number of searched templates in 50 mHz band as a
function of frequency. The sky resolution increases with fre-
quency causing the variation in the number of templates.
Nf × N _f ∼ 1.3 × 109, where Nf and N _f are the number of f

and _f templates searched in 50 mHz bands. The total number of
templates searched between 20 and 100 Hz is 3 × 1017.
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top-candidate list; it is a line- and transient-robust statistic
that tests the signal hypothesis against a noise model which,
in addition to Gaussian noise, also includes single-detector
continuous or transient spectral lines. Since the distribution
of β̂S=GLtL is not known in closed form even in Gaussian
noise, when assessing the significance of a candidate
against Gaussian noise, we use the average 2F statistic
over the segments, 2F̄ [23]; see Eq. (1). This is in essence,
at every template point, the log-likelihood of having a
signal with the shape given by the template versus having
Gaussian noise.
Built from the multi- and single-detector F̂ statistics,

β̂S=GLtL is the log10 of B̂S=GLtL, the full definition of which is
given by Eq. (23) of [29]. This statistic depends on a few
tuning parameters that we describe in the remainder of the
paragraph for the reader interested in the technical details:

A transition-scale parameter F̂ ð0Þ
� is used to tune the

behavior of the β̂S=GLtL statistic to match the performance
of the standard average 2F̄ statistic in Gaussian noise while
still statistically outperforming it in the presence of con-
tinuous or transient single-detector spectral disturbances.
Based on injection studies of fake signals in Gaussian-noise

data, we set an average 2F̄ transition scale of F̂ ð0Þ
� ¼

65.826. According to Eq. (67) of [30], with Nseg ¼ 12 this
2F̄ value corresponds to a Gaussian false-alarm probability
of 10−9. Furthermore, we assume equal-odds priors
between the various noise hypotheses (“L” for line, “G”
for Gaussian, “tL” for transient line).

B. Identification of undisturbed bands

Even after the removal of disturbed data caused by
spectral artifacts of known origin, the statistical properties
of the results are not uniform across the search band. In
what follows we concentrate on the subset of the signal-
frequency bands having reasonably uniform statistical
properties, or containing features that are not immediately
identifiable as detector artifacts. This comprises the large
majority of the search parameter space.
Our classification of “clean” versus “disturbed” bands

has no pretense of being strictly rigorous, because strict
rigor here is neither useful nor practical. The classification
serves the practical purpose of discarding from the analysis
regions in parameter space with evident disturbances and
must not dismiss detectable real signals. The classification
is carried out in two steps: an automated identification
of undisturbed bands and a visual inspection of the
remaining bands.
An automatic procedure, described in Sec. II F of [31],

identifies as undisturbed the 50-mHz bands whose maxi-
mum density of outliers in the f − _f plane and average 2F̄
are well within the bulk distribution of the values for
these quantities in the neighboring frequency bands. This
procedure identifies 1233 of the 1600 50-mHz bands as

undisturbed. The remaining 367 bands are marked as
potentially disturbed, and in need of visual inspection.
A scientist performs the visual inspection by looking at

various distributions of the β̂S=GLtL statistic over the entire
sky and spin-down parameter space in the 367 potentially
disturbed 50-mHz bands. She ranks each band with an
integer score 0,1,2 ranging from “undisturbed” (0) to
“disturbed” (2). A band is considered “undisturbed” if
the distribution of detection statistic values does not show a
visible trend affecting a large portion of the f − _f plane. A
band is considered “mildly disturbed” if there are outliers in
the band that are localized in a small region of the f − _f
plane. A band is considered “disturbed” if there are outliers
that are not well localized in the f − _f plane.
Figure 2 shows the β̂S=GLtL for each type of band.

Figure 3 shows the β̂S=GLtL for a band that harbors a fake
signal injected in the data to verify the detection pipelines.
In the latter case, the detection statistic is elevated in a small
region around the signal parameters.
Based on this visual inspection, 1% of the bands between

20 and 100 Hz are marked as “disturbed” and excluded
from the current analysis. A further 6% of the bands are
marked as “mildly disturbed.” These bands contain features
that cannot be classified as detector disturbances without
further study; therefore, these are included in the analysis.
Figure 4 shows the highest values of the detection

statistic in half-Hz signal-frequency bands compared to
the expectations. The set of candidates from which the
highest detection statistic values are picked does not
include the 50-mHz signal-frequency bands that stem
entirely from fake data, from the cleaning procedure, or
that were marked as disturbed. Two 50-mHz bands that
contained a hardware injection [32] were also excluded, as
the high amplitude of the injected signal caused it to
dominate the list of candidates recovered in those bands. In
this paper we refer to the candidates with the highest value
of the detection statistic as the loudest candidates.
The highest expected value from Gaussian noise over

Ntrials independent trials of 2F̄ is determined1 by numerical
integration of the probability density function given, for
example, by Eq. (7) of [33]. Fitting to the distribution of the
highest 2F̄ values suggests that Ntrials ≃ Ntempl, with Ntempl

being the number of templates searched.
The p value for the highest 2F̄ measured in any half-Hz

band searched with Ntrials independent trials is obtained by
integrating the expected noise distribution (χ24Nseg

given in

Sec. III) between the observed value and infinity, as done in
Eq. (6) of [33]. The distribution of these p values is shown
in Fig. 5 and it is not consistent with what we expect from
Gaussian noise across the measured range. Therefore, we
cannot exclude the presence of a signal in this data based on
this distribution alone, as was done in [3].

1After a simple change of variable from 2F̄ to Nseg × 2F̄ .
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IV. HIERARCHICAL FOLLOW UP

Since the significance of candidates is not consistent
with what we expect from Gaussian noise only, we must
investigate “significant” candidates to determine if they are

FIG. 2. On the vertical axis and color-coded is the β̂S=GLtL in
three 50-mHz bands. The top band was marked as “undisturbed.”
The middle band is an example of a “mildly disturbed band.” The
bottom band is an example of a “disturbed band.”

FIG. 3. This is an example of an “undisturbed band” but
containing a fake signal. On the z axis and color coded is the
β̂S=GLtL.

FIG. 4. Highest 2F̄ value (also referred to as the 2F̄ of the
loudest candidate) in every half-Hz band as a function of band
frequency. Since the number of templates increases with fre-
quency, so does the highest 2F̄ . The highest expected 2F̄ �
1σð2σÞ over Ntrials independent trials is indicated by the darker
(faded) band. Two half-mHz bands have2F̄ values greater than the
axes boundaries. The half-Hz bands beginning at 33.05 Hz and
35.55 Hz have loudest 2F̄ values of 159 and 500, respectively, due
to features in the 33.3 Hz and 35.75 Hz 50-mHz bands which were
marked “mildly disturbed” in the visual inspection.
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produced by a signal or by a detector disturbance. This is
done using a hierarchical approach similar to what was
used for the hierarchical follow-up of subthreshold candi-
dates from the Einstein@Home S6 all-sky search [2].
At each stage of the hierarchical follow-up a semi-

coherent search is performed, the top ranking candidates
are marked and then searched in the next stage. If the data
harbors a real signal, the significance of the recovered
candidate will increase with respect to the significance that
it had in the previous stage. On the other hand, if the
candidate is not produced by a continuous-wave signal, the
significance is not expected to increase consistently over
the successive stages.
The hierarchical approach used in this search consists of

four stages. This is the smallest number of stages within
which we could achieve a fully coherent search, given the
available computing resources. Directly performing a fully
coherent follow-up of all significant candidates from the
all-sky search would have been computationally unfeasible.

A. Stage 0

We bundle together candidates from the all-sky search
that can be ascribed to the same root cause. This clustering
step is a standard step in a multistage approach [2]: Both a
loud signal and a loud disturbance produce high values of
the detection statistic at a number of different template grid
points, and it is a waste of compute cycles to follow up each
of these independently.
We apply a clustering procedure that associates together

multiple candidates close to each other in parameter space,
and assigns them the parameters of the loudest among
them, the seed. We use a new procedure with respect to [2]

that adapts the cluster size to the data and checks for
consistency of the cluster volume with what is expected
from a signal [34]. A candidate must have a β̂S=GLtL > 5.5
to be a cluster seed. This threshold is chosen such that only
a handful of candidates per 50 mHz would be selected if the
data were consistent with Gaussian noise. In this search,
there are 15 × 106 candidates with β̂S=GLtL > 5.5. A lower

threshold of β̂S=GLtL > 4.0 is applied to candidates that can
be included in a cluster. If a cluster has at least two
occupants (including the seed), the seed is marked for
follow-up. In total, 35963 seeds are marked for follow-up.
The β̂S=GLtL values of these candidates are shown in Fig. 6
as well as their distribution in frequency.
Monte Carlo studies, using simulated signals added into

the data, are conducted to determine how far from the signal
parameters a signal candidate is recovered. These signals
are simulated at a fixed strain amplitude for which most
have β̂S=GLtL ⪆ 10.0. We find that 1282 of 1294 signal
candidates recovered after clustering (99%) are recovered
within

8<
:

Δf ¼ �9.25 × 10−5 Hz

Δ _f ¼ �4.25 × 10−11 Hz=s

Δsky≃ 4.5 sky grid points

ð3Þ

of the signal parameters. This confidence region2 defines
the parameter space around each candidate which will be
searched in the first stage of the hierarchical follow-up. For
weaker signals the confidence associated with this uncer-
tainty region decreases. For signals close to the threshold
used here, namely with β̂S=GLtL between 5.5 and 10, the

FIG. 5. Distribution of p values, with binomial uncertainties,
for the highest detection statistic values measured in half-Hz
bands (circles) and expected from pure Gaussian noise (line). We
note that the measured p values for the highest 2F̄ in the
33.05 Hz and 35.55 Hz bands are not shown because they are
outside of the x axis boundaries.

FIG. 6. Candidates that are followed up in stage 1: the
distribution of their detection statistic values β̂S=GLtL (left) and
their distribution as a function of frequency (right).

2We pick 99% confidence rather than, say, 100%, because to
reach the 100% confidence level would require an increase in
a containment region too large for the available computing
resources.
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detection confidence only drops by a few percent (see
bottom panel of Fig. 7 and last row of Table II in [34]).

B. Stage 1

In this stage we search a volume of parameter space
[Eqs. (3)] around each cluster seed. We fix the run time per
candidate to be 4 hr on an average CPU of the ATLAS
computing cluster [35]. This yields an optimal search setup
having a coherent baseline of 500 hr, with 5 segments and
the grid spacings shown in Table II. We use the same
ranking statistic as the original search, β̂S=GLtL, with tunings
updated for Nseg ¼ 5.
For the population of simulated signals that passed the

previous stage, stage 0, 1268 of 1282 (99%) are recovered
within the uncertainty region

8<
:

Δf ¼ �1.76 × 10−5 Hz

Δ _f ¼ �9.6 × 10−12 Hz=s

Δsky≃ 0.23 Δskystage 0:

ð4Þ

From each of the 35963 follow-up searches we record
the most significant candidate in β̂S=GLtL. The distribution
of these is shown in Fig. 7. A threshold at β̂S=GLtL ¼ 6.0,
derived from Monte Carlo studies, is applied to select the
candidates to consider in the next stage. There are 14456
candidates above this threshold.

C. Stage 2

In this stage we search a volume of parameter space
[Eqs. (4)] around each candidate from stage 1. We fix the
run time per candidate to be 4 hr on an average CPU of the
ATLAS computing cluster [35]. This yields an optimal
search setup having a coherent baseline of 1260 hr, with 2
segments and the grid spacings shown in Table II. We use a
different ranking statistic from the original search, because
with 2 segments the transient line veto is not useful. Instead
we use the ranking statistic β̂S=GL ≔ log10 B̂S=GL, intro-
duced in [30] and previously used in [3], with tunings
updated for Nseg ¼ 2.
For the population of signals that passed the previous

stage, 1265 of 1268 (>99%) are recovered within the
uncertainty region

8<
:

Δf ¼ �8.65 × 10−6 Hz

Δ _f ¼ �7.8 × 10−12 Hz=s

Δsky≃ 0.81 Δskystage 1:

ð5Þ

From each of the follow-up searches we record the most
significant candidate in β̂S=GL. The distribution of these is
shown in Fig. 8. A threshold at β̂S=GL ¼ 6.0 is applied to
determine what candidates to consider in the next stage.
There are 8486 candidates above threshold.

TABLE II. Search parameters for each stage. The follow-up
stages are stages 1, 2, and 3. Also shown are the parameters for
stage 0, taken from Table I.

Tcoh hr Nseg δf Hz δ _fc Hz=s γ msky

Stage 0 210 12 8.3 × 10−7 1.3 × 10−11 100 1 × 10−3

Stage 1 500 5 6.7 × 10−7 2.9 × 10−12 80 8 × 10−6

Stage 2 1260 2 1.9 × 10−7 9.3 × 10−13 30 1 × 10−6

Stage 3 2512 1 6.7 × 10−8 9.3 × 10−14 1 4 × 10−7

FIG. 7. Detection statistic of the loudest candidate from each
stage 1 search: the distribution of their detection statistic values
β̂S=GLtL (left) and their distribution as a function of frequency

(right). 411 candidates have β̂S=GLtL values lower than the axes

boundaries on the right plot. The red line marks β̂S=GLtL ¼ 6.0
which is the threshold at and above which candidates are passed
on to stage 2.

FIG. 8. Detection statistic of the loudest candidate from each
stage 2 search: the distribution of their detection statistic values
β̂S=GL (left) and their distribution as a function of frequency

(right). The red line marks β̂S=GL ¼ 6.0 which is the threshold at
and above which candidates are passed on to stage 3.
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D. Stage 3

In this stage we search a volume of parameter space
[Eqs. (5)] around each candidate. We perform a fully
coherent search, with a coherent baseline of 2512 hr.
The grid spacings are shown in Table II. We use the same
ranking statistic as the previous stage, β̂S=GL, with tunings
updated for Nseg ¼ 1.
For the population of signals that passed the previous

stage, 1265 of 1265 (>99%) are recovered within the
uncertainty region

8<
:

Δf ¼ �7.5 × 10−6 Hz

Δ _f ¼ �7 × 10−12 Hz=s

Δsky≃ 0.99 Δskystage 2:

ð6Þ

This uncertainty region assumes candidates are within
the uncertainty regions shown in Eqs. (3), (4), and (5) for
each of the corresponding follow-up stages. It is possible
that a strong candidate which is outside these uncertainty
regions would be significant enough to pass through all
follow-up stages. In this case the uncertainty on the signal
parameters would be larger than the uncertainty region
defined in Eq. (6).
From each of the follow-up searches we record the

most significant candidate in β̂S=GL. The distribution of
these is shown in Fig. 9. A threshold at β̂S=GL ¼ 6.0 is
applied to determine what candidates require further
study. There are 6349 candidates above threshold. Many
candidates appear to be from the same feature at a
specific frequency. There are 57 distinct narrow frequency
regions at which these 6349 candidates have been
recovered.

E. Doppler modulation off veto

We employ a newly developed Doppler modulation off
(DM-off) veto [36] to determine if the surviving candidates
are of terrestrial origin. When searching for CW signals, the
frequency of the signal template at any point in time is
demodulated for the Doppler effect from the motion of the
detectors around the Earth and around the Sun. If this
demodulation is disabled, a candidate of astrophysical origin
would not be recovered with the same significance. In
contrast, a candidate of terrestrial origin could potentially
becomemore significant. This is the basis of theDM-off veto.
For each candidate, the search range of the DM-off

searches includes all detector frequencies that could have
contributed to the original candidate, accounting for _f and
Doppler corrections. The _f range includes the original
all-sky search range, and extends into large positive values
of _f to allow for a wider range of detector artifact behavior.
For a candidate to pass the DM-off veto it must be that its

2FDM-off ≤ 2F thr
DM-off . The 2F thr

DM-off is picked to be safe,
i.e. to not veto any signal candidate with 2FDM-on in the
range of the candidates under consideration. In particular
we find that for candidates with 2FDM-on < 500, after the
third follow-up, 2F thr

DM-off ¼ 62. The threshold increases for
candidates with 2FDM-on > 500, scaling linearly with the
candidates 2FDM-on (see Fig. 4 of [36]).
As described in [36], the DM-off search is first run using

data from both detectors and a search grid which is ten
times coarser in f and _f than the stage 3 search. The coarser
search grid is used to minimize computational cost. 653 of
the 6349 candidates pass the 2F thr

DM-off threshold. These
surviving candidates undergo another similar search,
except that the search is performed separately on the data
from each of the LIGO detectors. We search each detector
separately because a detector artifact present only in one
detector may still pass the previous, multidetector search, as
its significance is “diluted” by the clean data of the other
detector. 101 candidates survive, and undergo a final DM-
off search stage. This search uses the fine grid parameters of
the stage 3 search (Table II), covers the parameter space
which resulted in the largest 2FDM-off from the previous
DM-off steps, and is performed three times, once using
both detectors jointly and once for each of the two LIGO
detectors. For a candidate to survive this stage it has to pass
all three stage 3 searches.
Four candidates survive the full DM-off veto. Such veto

is designed to be safe, i.e. not falsely dismiss real signals.
However, its false alarm rate for noise disturbances is not
fully characterized because very little is known about such
weak and rare spectral disturbances, which this type of deep
search unveils. This means that we cannot exclude that the
four surviving candidates are in fact noise disturbances.
The parameters of the candidates, after the third follow-up,
are given in Table III. The 2FDM-off values are also given in
this table.

FIG. 9. Detection statistic of the loudest candidate from each
stage 3 search: the distribution of their detection statistic values
β̂S=GL (left) and their distribution as a function of frequency

(right). The red line marks β̂S=GL ¼ 6.0 which is the threshold
below which candidates are discarded.
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F. Follow-up in LIGO O2 data

If the signal candidates surviving the O1 search are
standard continuous wave signals, i.e. continuous wave
signals arising from sources that radiate steadily over many
years, they should be present in data from the Advanced
LIGO’s second observing run (O2) with the same param-
eters. We perform a follow-up search using three months of
O2 data, collected from November 30, 2016 to February
28, 2017.
The candidate parameters in Table III are translated to the

O2 midtime, which is the reference time of the new search.
The parameter space covered by the search is determined by
the uncertainty on the candidate parameters in Eq. (5). The
frequency region is widened to account for the spin-down
uncertainty. The O2 follow-up covers a frequency range of
�5.15 × 10−4 Hz around the candidates.
The search parameters of the O2 follow-up are given in

Table IV. The expected loudest 2F̄ per follow-up search
due to Gaussian noise alone is 52� 3, assuming indepen-
dent search templates.
If a candidate in Table III were due to a signal, the

loudest 2F̄ expected after the follow-up would be the value
given in the second column of Table V. This expected value
is obtained by scaling the 2F̄ in Table III according to the
different duration and the different noise levels between the
data set used for the third follow-up and the O2 data set.
The expected 2F̄ also folds in a conservative factor of 0.9
due to a different mismatch of the O2 template grid with

respect to the template grid used for the third follow-up.
Thus the expected 2F̄ in Table V is a conservative estimate
for the minimum 2F̄ that we would expect from a signal
candidate.
The loudest 2F̄ after the follow-up in O2 data is also

given in Table V. The loudest 2F̄ recovered for each
candidate are ≈2σ below the expected 2F̄ for a signal
candidate. The recovered 2F̄ are consistent with what is
expected from Gaussian data. We conclude that it is
unlikely that any of the candidates in Table III arises from
a long-lived astronomical source of continuous gravita-
tional waves.

V. RESULTS

A. Upper limits on the gravitational wave amplitude

The search did not reveal any continuous gravitational
wave signal in the parameter volume that was searched. We
hence set frequentist 90% confidence upper limits on the
maximum gravitational wave amplitude consistent with this
null result in 0.5 Hz bands of the O1 data, h90%0 ðfÞ.
Specifically, h90%0 ðfÞ is the GW amplitude such that
90% of a population of signals with parameter values in
our search range would have been detected by our search.
We determined the upper limits in bands that were marked
as undisturbed in Sec. III B. These upper limits may not
hold for frequency bands that were marked as mildly
disturbed, which we now consider disturbed as they were
excluded by the analysis. These bands, as well as bands
which were excluded from further analysis, are identified in
Appendix A 3, Table VIII.

TABLE III. Stage 3 follow-up results for each of the 4 candidates that survive the DM-off veto. For illustration purposes, in the 7th and
8th column we show the values of the average single-detector detection statistics. Typically, for signals, the single-detector values do not
exceed the multidetector 2F̄.

ID f [Hz] α [rad] δ [rad] _f [Hz=s] 2F̄ 2F̄H1 2F̄L1 2FDM-off

1 58.970435900 1.87245 −0.51971 −1.081102 × 10−9 81.4 48.5 33.4 55
2 62.081409292 4.98020 0.58542 −2.326246 × 10−9 81.9 45.5 39.0 52
3 97.197674733 5.88374 −0.76773 2.28614 × 10−10 86.5 55.0 31.8 58
4 99.220728369 2.842702 −0.469603 −2.498113 × 10−9 80.2 41.4 45.8 55

TABLE IV. Search parameters, rounded to the first decimal
place, for the follow-up of surviving LIGO O1 candidates in
LIGO O2 data. Tref is the reference time that defines the
frequency and frequency derivative values.

Parameter Value

Tcoh 2160 hrs
Tref 1168447494.5 GPS sec
Nseg 1
δf 9.0 × 10−8 Hz
δ _fc 1.1 × 10−13 Hz=s
γ 1
msky 4 × 10−7

TABLE V. Highest 2F̄ expected after the follow-up in O2 data,
if the candidates were due to a signal, compared with the highest
2F̄ recovered from the follow-up. The 2F̄ expected in Gaussian
noise data is 52� 3.

Candidate Expected 2F̄ � 1σ Loudest 2F̄ recovered

1 85� 18 44
2 90� 19 52
3 84� 18 49
4 77� 17 47
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Since an actual full-scale fake-signal injection-and-
recovery Monte Carlo for the entire set of follow-ups in
every 0.5 Hz band is prohibitive, in the same spirit as
[2,5,31], we perform such a study in a limited set of trial
bands. We choose 20 half-Hz bands to measure the upper
limits. If these half-Hz bands include 50 mHz bands which
were not marked undisturbed, no upper limit injections are
made in those 50 mHz bands.
The amplitudes of the fake signals bracket the 90% con-

fidence region typically between 70% and 100%. The h0
versus confidence data is fit in this region with a sigmoid of
the form

Cðh0Þ ¼
1

1þ expða−h0b Þ ð7Þ

and the h90%0 value is read off of this curve. The fitting pro-
cedure3 yields the best-fit a and b values and the covariance
matrix. Given the binomial confidence values uncertainties,

using the covariance matrix we estimate the h90%0

uncertainty.
For each of these frequency bands we determine the

sensitivity depth D90% [37] of the search corresponding to
h90%0 ðfÞ:

D90% ≔
ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
h90%0 ðfÞ ½1=

ffiffiffiffiffiffi
Hz

p
�; ð8Þ

where
ffiffiffiffiffiffiffiffiffiffiffi
ShðfÞ

p
is the noise level of the data as a function of

frequency.
As representative of the sensitivity depth of this hierar-

chical search, we take the average of the measured depths at
different frequencies: 48.7 ½1= ffiffiffiffiffiffi

Hz
p �. We then determine

the 90% upper limits by substituting this value in Eq. (8)
for D90%.
The upper limit that we get with this procedure, in

general, yields a different number compared to the upper
limit directly measured as done in the 20 test bands. An
11% relative error bracket comprises the range of variation
observed on the measured sensitivity depths, including the

FIG. 10. 90% confidence upper limits on the gravitational wave amplitude of continuous gravitational wave signals with frequency in
0.5 Hz bands and with spin-down values within the searched range. The lowest set of points (black circles) are the results of this search.
The empty circles denote half-Hz bands where the upper limit value does not hold for all frequencies in that interval. A list of the
excluded frequencies is given in the Appendix. The lighter grey region around the upper limit points shows the 11% relative difference
bracket between upper limits inferred with the procedure described in Sec. V and upper limits that would have been derived (at great
computational expense) with direct measurements in all half-Hz bands. We estimate that less than ∼0.5% of the upper limit points would
fall outside of this bracket if they were derived with the direct-measurement method in Gaussian noise. For comparison we also plot the
most recent upper limits results in this frequency range from O1 data obtained with various search pipelines [38]. The better sensitivity
of this search is due to the long coherent observation time used. We note also that the searches of [38] cover a broader frequency and
spin-down range than the search presented here. All upper limits presented here are population-averaged limits over the full sky and
source polarization.

3We used the linfit Matlab routine.
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uncertainties on the single measurements. So we take this
as a generous estimate of the range of variability of the
upper limit values introduced by the estimation procedure.
If the data were Gaussian this bracket would yield a ∼0.5%
probability of a measured upper limit falling outside of this
bracket.
As a sanity check we measure the upper limits in five

half-Hz bands which were not used to determine the
average sensitivity depth. In each case we find that
the measured sensitivity depth falls well within 11% of
the average: 48.7 ½1= ffiffiffiffiffiffi

Hz
p �.

Figure 10 shows the upper limits as a function of
frequency. They are also presented in tabular form in
the Appendix with the uncertainties indicating the range
of variability introduced by the estimation procedure. The
associated uncertainties amount to ∼20% when also
including 10% amplitude calibration uncertainty. The most
constraining upper limit in the band 98.5–99 Hz, close to
the highest frequency, where the detector is most sensitive,
is 1.8 × 10−25. At the lowest end of the frequency range, at
20 Hz, the upper limit rises to 3.9 × 10−24.

B. Upper limits on the source ellipticity

In general not all the rotational kinetic energy lost is due
to GW emission. Following [39], we define x to be the
fraction of the spin-down rotational energy emitted in
gravitational waves. The star’s ellipticity necessary to
sustain such emission is

εðf; x _fÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5c5

32π4G
xj _fj
If5

s
; ð9Þ

where c is the speed of light,G is the gravitational constant,
f is the GW frequency, and I is the principal moment of
inertia of the star. Correspondingly, x _f is the spin-down rate
that accounts for the emission of GWs and this is why we
refer to it as the GW spin-down. The gravitational wave
amplitude h0 at the detector coming from a GW source at a
distance D from Earth is

h0ðf;DÞ ¼ 4GIπ2

c4
εf2

D
: ð10Þ

Based on this last equation, we can use the GW
amplitude upper limits to bound the minimum distance
for compact objects emitting continuous gravitational
waves under different assumptions on the ellipticity of
the objects. This is shown in Fig. 11. Above 55 Hz we can
exclude sources with ellipticities larger than 10−5 (corre-

sponding to x values larger than 3.2 × 10−5 2.6×10−9 Hz=s
j _fj )

within 100 pc of Earth. Rough estimates are that there
should be of order 104 neutron stars within this volume.
The dashed line in Fig. 11 is the spin-down ellipticity

[x ¼ 1 in Eq. (9)] for an object spinning down at half the

maximum searched gravitational wave signal spin-down
value (j _fj ¼ 2.6 × 10−9 Hz=s). This is the maximum ellip-
ticity that this search probes; we can make no claim on
sources with ellipticities greater than this. For a normal
neutron star one might expect the majority of the spin-down
to be due to non gravitational-wave emission. If, for
instance, one believes that only 1% of the spin-down is
due to gravitational wave emission (x ¼ 0.01) then, from
Eq. (9), the maximum ellipticity needs to be divided by ten
and the dashed line in Fig. 11 drops by the same factor.
The results in Fig. 11 assume a fiducial value of the

principal moment of inertia of 1038 kgm2. The upper limits
can be scaled to any assumption for I using Eq. (10).

VI. CONCLUSIONS

This search concentrates the computing power of
Einstein@Home in a relatively small frequency range at
low frequencies where all-sky searches are significantly
“cheaper” than at higher frequencies. For this reason, the
initial search could be set up with a very long coherent
observation time of 210 hr and this yields a record
sensitivity depth of 48.7 ½1= ffiffiffiffiffiffi

Hz
p �.

The O1 data set in the low frequency range investigated
with this search is significantly more polluted by coherent

FIG. 11. Ellipticity ε of a source at a distance D emitting
continuous gravitational waves that would have been detected by
this search, assuming a source _f within the range covered by this
search. The dashed line shows the spin-down ellipticity for
the highest magnitude spin-down parameter value searched,
2.6 × 10−9 Hz=s. The spin-down ellipticity is the ellipticity
necessary for all the lost rotational kinetic energy to be emitted
in gravitational waves. If we assume that the observed spin-down
is all actual spin-down of the object, then no ellipticities could be
possible above the dashed curve. In reality the observed and
actual spin-down could differ due to radial acceleration of the
source. In this case the actual spin-down of the object may even
be larger than the apparent one. In this case our search would be
sensitive to objects with ellipticities above the dashed line.
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spectral artifacts than most of the data sets from the Initial-
LIGO science runs. Because of this, even a relatively high
threshold on the detection statistic of the first search yields
tens of thousands of candidates, rather than just Oð100Þ.
We follow each of them up through a hierarchy of three
further stages at the end of which Oð7000Þ survive. After
the application of a newly developed Doppler-modulation-
off veto, four survive.
Due to the presence of coherent spectral artifacts,

no assumption can be made about the noise background
of the search. On the other hand, we cannot run an
Einstein@Home search many times to estimate such back-
ground.4 Because of this, measuring the significance of the
four candidates at the end of the third follow-up stage is not
trivial. However, the parameter uncertainty around the four
candidates after the third follow-up stage is small [Eq. (6)],
so with an independent data set we can verify the findings
of the third stage and estimate its background. This means
that we could assign a measure of confidence to any
candidate that might survive the search on the new data set.
The four candidates which survive the Doppler-

modulation-off veto are followed up with a fully coherent
search using threemonths ofO2data,whichproduces results
completely consistent with Gaussian noise and falls short of
the predictions under the signal hypothesis. We hence
proceed to set upper limits on the intrinsic GW amplitude
h0. The hierarchical follow-up procedure presented here has
also been used to follow-up outliers from other all-sky
searches in O1 data with various search pipelines [38].
The smallest value of the GW amplitude upper limit is

1.8 × 10−25 in the band 98.5–99 Hz. Figure 10 shows the
upper limit values as a function of search frequency. Our
upper limits are the tightest ever placed for this population
of signals, and are a factor 1.5–2 smaller than the most
recent upper limits [38]. We note that [38] presents results
from four different all-sky search pipelines covering a
broader frequency and spin-down range than the one
explored here. The coherent time baseline for all these
pipelines is significantly shorter than the 210 hr used by the
very first stage of this search. This limits the sensitivity of
those searches but it makes them more robust to deviations
in the signal waveform from the target waveform, com-
pared to this search. We finally note that because the data is
plagued in this low frequency region by coherent disturb-
ances, the two procedures [34,36] are essential to reach the
final sensitivity: without them a much higher detection
threshold would have been needed, ultimately resulting in a
degraded sensitivity/astrophysical reach.
Translating the upper limits on the GW amplitude to

upper limits on the ellipticity of the GW source, we find
that for frequencies above 55 Hz our results exclude
isolated compact objects with spin-down ellipticities of

10−5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1038 kgm2=I

p
(corresponding to GW spin-downs

between 10−14 Hz=s and 10−13 Hz=s) or higher, within
100 pc of Earth. For the population of known pulsars we
know that the spin-down ellipticity is generally an over-
estimate of the actual ellipticity. However, for other objects,
belonging to the population of possible continuous wave
emitters that we do not see, this might not be the case. Sowe
present the bounds on our results (the dashed line in Fig. 11)
in terms of the spin-down ellipticity and leave it to the
reader to derive the reach for the ellipticity value that best
represents the class of sources in which they are interested.
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APPENDIX: TABULAR DATA

1. Upper limit values

See Table VI.

TABLE VI. First frequency of each half-Hz signal frequency band in which we set upper limits and upper limit value for that band.
The uncertainties correspond to the 11% relative difference bracket discussed in Sec. V.

f (Hz) h90%0 × 1025 f (Hz) h90%0 × 1025 f (Hz) h90%0 × 1025 f (Hz) h90%0 × 1025

20.00 38.8� 4.9 20.55 32.2� 4.1 21.05 28.2� 3.6 21.55 25.5� 3.3
22.05 23.3� 3.0 22.55 21.6� 2.8 23.05 20.7� 2.6 23.55 19.9� 2.5
24.05 18.9� 2.4 24.55 18.4� 2.3 25.05 18.7� 2.4 25.55 14.6� 1.9
26.05 13.3� 1.7 26.55 12.8� 1.6 27.05 12.2� 1.6 27.55 11.1� 1.4
28.05 10.2� 1.3 28.55 9.0� 1.2 29.05 8.7� 1.1 29.55 8.2� 1.0
30.05 7.8� 1.0 30.55 7.6� 1.0 31.05 7.8� 1.0 31.55 6.9� 0.9
32.05 6.5� 0.8 32.55 6.4� 0.8 33.05 6.3� 0.8 33.55 6.2� 0.8
34.05 5.8� 0.7 34.55 5.9� 0.8 35.05 5.8� 0.7 35.55 5.8� 0.7
36.05 5.6� 0.7 36.55 5.6� 0.7 37.05 5.2� 0.7 37.55 4.8� 0.6
38.05 4.7� 0.6 38.55 4.6� 0.6 39.05 4.3� 0.6 39.55 4.3� 0.5
40.05 4.2� 0.5 40.55 4.3� 0.6 41.05 4.2� 0.5 41.55 3.9� 0.5
42.05 3.8� 0.5 42.55 3.7� 0.5 43.05 3.7� 0.5 43.55 3.6� 0.5
44.05 3.6� 0.5 44.55 3.9� 0.5 45.05 3.5� 0.4 45.55 3.3� 0.4
46.05 3.2� 0.4 46.55 3.1� 0.4 47.05 3.0� 0.4 47.55 3.0� 0.4
48.05 3.0� 0.4 48.55 3.0� 0.4 49.05 2.9� 0.4 49.55 2.9� 0.4
50.05 2.9� 0.4 50.55 2.8� 0.4 51.05 2.8� 0.4 51.55 2.8� 0.4
52.05 2.8� 0.4 52.55 2.8� 0.4 53.05 2.7� 0.3 53.55 2.7� 0.3
54.05 2.7� 0.3 54.55 2.8� 0.4 55.05 2.8� 0.4 55.55 2.7� 0.3
56.05 2.7� 0.3 56.55 2.7� 0.3 57.05 2.8� 0.4 57.55 2.8� 0.4
58.05 2.9� 0.4 58.55 3.0� 0.4 59.05 2.9� 0.4 59.55 3.3� 0.4
60.05 3.2� 0.4 60.55 2.7� 0.3 61.05 2.7� 0.3 61.55 2.6� 0.3
62.05 2.6� 0.3 62.55 2.6� 0.3 63.05 2.6� 0.3 63.55 2.7� 0.3
64.05 2.7� 0.3 64.55 2.7� 0.3 65.05 2.7� 0.3 65.55 2.6� 0.3
66.05 2.5� 0.3 66.55 2.5� 0.3 67.05 2.5� 0.3 67.55 2.5� 0.3
68.05 2.5� 0.3 68.55 2.5� 0.3 69.05 2.5� 0.3 69.55 2.6� 0.3
70.05 2.5� 0.3 70.55 2.5� 0.3 71.05 2.5� 0.3 71.55 2.4� 0.3
72.05 2.4� 0.3 72.55 2.4� 0.3 73.05 2.4� 0.3 73.55 2.4� 0.3
74.05 2.4� 0.3 74.55 2.4� 0.3 75.05 2.4� 0.3 75.55 2.3� 0.3
76.05 2.2� 0.3 76.55 2.2� 0.3 77.05 2.2� 0.3 77.55 2.2� 0.3
78.05 2.2� 0.3 78.55 2.2� 0.3 79.05 2.2� 0.3 79.55 2.2� 0.3
80.05 2.2� 0.3 80.55 2.2� 0.3 81.05 2.2� 0.3 81.55 2.2� 0.3
82.05 2.2� 0.3 82.55 2.2� 0.3 83.05 2.2� 0.3 83.55 2.2� 0.3
84.05 2.1� 0.3 84.55 2.1� 0.3 85.05 2.1� 0.3 85.55 2.1� 0.3
86.05 2.1� 0.3 86.55 2.2� 0.3 87.05 2.2� 0.3 87.55 2.1� 0.3
88.05 2.0� 0.3 88.55 2.0� 0.3 89.05 2.0� 0.3 89.55 2.0� 0.2
90.05 1.9� 0.2 90.55 1.9� 0.2 91.05 2.0� 0.2 91.55 1.9� 0.2
92.05 1.9� 0.2 92.55 1.9� 0.2 93.05 1.9� 0.2 93.55 1.9� 0.2
94.05 1.8� 0.2 94.55 1.8� 0.2 95.05 1.8� 0.2 95.55 1.8� 0.2
96.05 1.8� 0.2 96.55 1.8� 0.2 97.05 1.8� 0.2 97.55 1.8� 0.2
98.05 1.8� 0.2 98.55 1.8� 0.2 99.05 1.8� 0.2 99.55 1.8� 0.2
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2. Cleaned-out frequency bins

See Table VII

TABLE VII. Instrumental lines identified and cleaned before
the Einstein@Home runs. The different columns represent (I) the
central frequency of the instrumental line; (II) low-frequency side
(LFS) of the knockout band; (III) high-frequency side (HFS) of
the knockout band; (IV) the interferometer in which the instru-
mental lines were identified.

fL (Hz) LFS (Hz) HFS (Hz) IFO

19.9995 0.001 0.001 L
20.0 0.001 0.001 H
20.24999 0.001 0.001 H
20.25014 0.001 0.001 L
20.5 0.001 0.001 H
20.5 0.001 0.001 L
20.7163 0.002 0.002 L
20.73 0.002 0.002 L
20.74121875 0.001 0.001 H
20.7423125 0.001 0.001 H
20.9995 0.001 0.001 L
21.0 0.001 0.001 H
21.24998 0.001 0.001 H
21.25011 0.001 0.001 L
21.3575 0.001 0.001 L
21.3842 0.001 0.001 L
21.41043 0.001 0.001 L
21.41043 0.001 0.001 L
21.4374 0.001 0.001 L
21.4639 0.001 0.001 L
21.499987 0.001 0.001 L
21.5 0.001 0.001 H
21.7028 0.002 0.002 L
21.7165 0.002 0.002 L
21.7344 0.001 0.001 L
21.9995 0.001 0.001 L
22.0 0.001 0.001 H
22.24997 0.001 0.001 H
22.25008 0.001 0.001 L
22.499974 0.001 0.001 L
22.5 0.001 0.001 H
22.6893 0.002 0.002 L
22.7 0.0005 0.0005 L
22.703 0.002 0.002 L
22.72233 0.001 0.001 L
22.815340625 0.001 0.001 H
22.81654375 0.001 0.001 H
22.9995 0.001 0.001 L
23.0 0.001 0.001 H
23.24996 0.001 0.001 H
23.25005 0.001 0.001 L
23.3039 0.001 0.001 L
23.3306 0.001 0.001 L
23.35683 0.001 0.001 L

(Table continued)

TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

23.35683 0.001 0.001 L
23.3838 0.001 0.001 L
23.4103 0.001 0.001 L
23.499961 0.001 0.001 L
23.5 0.001 0.001 H
23.6758 0.002 0.002 L
23.6895 0.002 0.002 L
23.71026 0.001 0.001 L
23.97079 0.0016 0.0008 L
23.9995 0.001 0.001 L
24.0 0.0005 0.0005 H
24.0 0.001 0.001 H
24.24995 0.001 0.001 H
24.25002 0.001 0.001 L
24.499948 0.001 0.001 L
24.5 0.001 0.001 H
24.6623 0.002 0.002 L
24.676 0.002 0.002 L
24.69819 0.001 0.001 L
24.8894625 0.001 0.001 H
24.890775 0.001 0.001 H
24.9995 0.001 0.001 L
25.0 0.001 0.001 H
25.24994 0.001 0.001 H
25.24999 0.001 0.001 L
25.2503 0.001 0.001 L
25.277 0.001 0.001 L
25.30323 0.001 0.001 L
25.30323 0.001 0.001 L
25.3302 0.001 0.001 L
25.3567 0.001 0.001 L
25.499935 0.001 0.001 L
25.5 0.001 0.001 H
25.6 0.0005 0.0005 L
25.6488 0.002 0.002 L
25.6625 0.002 0.002 L
25.68612 0.001 0.001 L
25.9995 0.001 0.001 L
26.0 0.001 0.001 H
26.24993 0.001 0.001 H
26.24996 0.001 0.001 L
26.499922 0.001 0.001 L
26.5 0.001 0.001 H
26.6353 0.002 0.002 L
26.649 0.002 0.002 L
26.67405 0.001 0.001 L
26.963584375 0.001 0.001 H
26.96500625 0.001 0.001 H
26.9995 0.001 0.001 L
27.0 0.001 0.001 H
27.1967 0.001 0.001 L
27.2234 0.001 0.001 L
27.24963 0.001 0.001 L
27.24963 0.001 0.001 L
27.24992 0.001 0.001 H

(Table continued)
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TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

27.24993 0.001 0.001 L
27.2766 0.001 0.001 L
27.3031 0.001 0.001 L
27.499909 0.001 0.001 L
27.5 0.001 0.001 H
27.6218 0.002 0.002 L
27.6355 0.002 0.002 L
27.66198 0.001 0.001 L
27.9995 0.001 0.001 L
28.0 0.001 0.001 H
28.2499 0.001 0.001 L
28.24991 0.001 0.001 H
28.499896 0.001 0.001 L
28.5 0.001 0.001 H
28.5 0.0005 0.0005 L
28.6083 0.002 0.002 L
28.622 0.002 0.002 L
28.64991 0.001 0.001 L
28.9995 0.001 0.001 L
29.0 0.001 0.001 H
29.03770625 0.001 0.001 H
29.0392375 0.001 0.001 H
29.1431 0.001 0.001 L
29.1698 0.001 0.001 L
29.19603 0.001 0.001 L
29.19603 0.001 0.001 L
29.223 0.001 0.001 L
29.2495 0.001 0.001 L
29.24987 0.001 0.001 L
29.2499 0.001 0.001 H
29.2767 0.001 0.001 L
29.3031 0.001 0.001 L
29.499883 0.001 0.001 L
29.5 0.001 0.001 H
29.5948 0.002 0.002 L
29.6085 0.002 0.002 L
29.63784 0.001 0.001 L
29.9995 0.001 0.001 L
30.0 0.001 0.001 H
30.24984 0.001 0.001 L
30.24989 0.001 0.001 H
30.49987 0.001 0.001 L
30.5 0.001 0.001 H
30.5813 0.002 0.002 L
30.595 0.002 0.002 L
30.62577 0.001 0.001 L
30.943 0.001 0.001 H
30.9738 0.001 0.001 H
30.9995 0.001 0.001 L
31.0 0.001 0.001 H
31.0895 0.001 0.001 L
31.111828125 0.001 0.001 H
31.11346875 0.001 0.001 H
31.1162 0.001 0.001 L
31.14243 0.001 0.001 L

(Table continued)

TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

31.14243 0.001 0.001 L
31.1694 0.001 0.001 L
31.1959 0.001 0.001 L
31.2231 0.001 0.001 L
31.2495 0.001 0.001 L
31.24981 0.001 0.001 L
31.24988 0.001 0.001 H
31.4 0.0005 0.0005 L
31.4127 0.003 0.003 H
31.4149 0.003 0.003 H
31.499857 0.001 0.001 L
31.5 0.001 0.001 H
31.5678 0.002 0.002 L
31.5815 0.002 0.002 L
31.6137 0.001 0.001 L
31.94116 0.001 0.001 H
31.973 0.001 0.001 H
31.9995 0.001 0.001 L
32.0 0.0005 0.0005 H
32.0 0.001 0.001 H
32.24978 0.001 0.001 L
32.24987 0.001 0.001 H
32.499844 0.001 0.001 L
32.5 0.001 0.001 H
33.7 0.01556 0.01556 L
33.8 0.0005 0.0005 L
34.3 0.0005 0.0005 L
34.7 0.02778 0.02778 H
34.7 0.13 0.13 L
35.3 0.02778 0.02778 H
35.3 0.13 0.13 L
35.706385 0.003055 0.003055 L
35.7095265 0.01222 0.01222 H
35.9 0.10222 0.10222 H
35.958055 0.009165 0.009165 L
36.7 0.10722 0.10722 H
36.7 0.0005 0.0005 L
37.3 0.01 0.01 H
38.955 0.001 0.001 L
38.9674 0.001 0.001 H
38.9815 0.001 0.001 L
38.9995 0.001 0.001 L
39.0 0.001 0.001 H
39.0087 0.001 0.001 L
39.0351 0.001 0.001 L
39.24957 0.001 0.001 L
39.2498 0.001 0.001 H
39.408315625 0.001 0.001 H
39.41039375 0.001 0.001 H
39.4598 0.002 0.002 L
39.4735 0.002 0.002 L
39.499753 0.001 0.001 L
39.5 0.001 0.001 H
39.51714 0.001 0.001 L
39.6 0.0005 0.0005 L

(Table continued)

B. P. ABBOTT et al. PHYSICAL REVIEW D 96, 122004 (2017)

122004-14



TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

39.92644 0.001 0.001 H
39.9666 0.001 0.001 H
39.9995 0.001 0.001 L
40.0 0.0005 0.0005 H
40.0 0.001 0.001 H
40.24954 0.001 0.001 L
40.24979 0.001 0.001 H
40.4463 0.002 0.002 L
40.46 0.002 0.002 L
40.49974 0.001 0.001 L
40.5 0.001 0.001 H
40.50507 0.001 0.001 L
40.8215 0.001 0.001 L
40.8482 0.001 0.001 L
40.87443 0.001 0.001 L
40.87443 0.001 0.001 L
40.9014 0.001 0.001 L
40.9246 0.001 0.001 H
40.9279 0.001 0.001 L
40.9551 0.001 0.001 L
40.9658 0.001 0.001 H
40.9815 0.001 0.001 L
40.9995 0.001 0.001 L
41.0 0.001 0.001 H
41.24951 0.001 0.001 L
41.24978 0.001 0.001 H
41.4328 0.002 0.002 L
41.4465 0.002 0.002 L
41.4824375 0.001 0.001 H
41.484625 0.001 0.001 H
41.493 0.001 0.001 L
41.499727 0.001 0.001 L
41.5 0.001 0.001 H
41.92276 0.001 0.001 H
41.965 0.001 0.001 H
41.9995 0.001 0.001 L
42.0 0.001 0.001 H
42.24948 0.001 0.001 L
42.24977 0.001 0.001 H
42.4193 0.002 0.002 L
42.433 0.002 0.002 L
42.48093 0.001 0.001 L
42.499714 0.001 0.001 L
42.5 0.001 0.001 H
42.5 0.0005 0.0005 L
42.7679 0.001 0.001 L
42.7946 0.001 0.001 L
42.82083 0.001 0.001 L
42.82083 0.001 0.001 L
42.8478 0.001 0.001 L
42.8743 0.001 0.001 L
42.9015 0.001 0.001 L
42.92092 0.001 0.001 H
42.9279 0.001 0.001 L
42.9642 0.001 0.001 H

(Table continued)

TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

42.9995 0.001 0.001 L
43.0 0.001 0.001 H
43.24945 0.001 0.001 L
43.24976 0.001 0.001 H
43.4058 0.002 0.002 L
43.4195 0.002 0.002 L
43.46886 0.001 0.001 L
43.499701 0.001 0.001 L
43.5 0.001 0.001 H
43.556559375 0.001 0.001 H
43.55885625 0.001 0.001 H
43.91908 0.001 0.001 H
43.9634 0.001 0.001 H
43.9995 0.001 0.001 L
44.0 0.001 0.001 H
44.24942 0.001 0.001 L
44.24975 0.001 0.001 H
44.3923 0.002 0.002 L
44.406 0.002 0.002 L
44.45679 0.001 0.001 L
44.499688 0.001 0.001 L
44.5 0.001 0.001 H
44.7143 0.001 0.001 L
44.741 0.001 0.001 L
44.76723 0.001 0.001 L
44.76723 0.001 0.001 L
44.7942 0.001 0.001 L
44.8207 0.001 0.001 L
44.8479 0.001 0.001 L
44.8743 0.001 0.001 L
44.91724 0.001 0.001 H
44.9626 0.001 0.001 H
44.9995 0.001 0.001 L
45.0 0.001 0.001 H
45.24939 0.001 0.001 L
45.24974 0.001 0.001 H
45.3788 0.002 0.002 L
45.3925 0.002 0.002 L
45.4 0.0005 0.0005 L
45.44472 0.001 0.001 L
45.499675 0.001 0.001 L
45.5 0.001 0.001 H
45.63068125 0.001 0.001 H
45.6330875 0.001 0.001 H
45.9 0.0005 0.0005 L
45.9154 0.001 0.001 H
45.9618 0.001 0.001 H
45.9995 0.001 0.001 L
46.0 0.001 0.001 H
46.24936 0.001 0.001 L
46.24973 0.001 0.001 H
46.3653 0.002 0.002 L
46.379 0.002 0.002 L
46.43265 0.001 0.001 L
46.499662 0.001 0.001 L

(Table continued)
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TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

46.5 0.001 0.001 H
46.6607 0.001 0.001 L
46.6874 0.001 0.001 L
46.71363 0.001 0.001 L
46.71363 0.001 0.001 L
46.7406 0.001 0.001 L
46.7671 0.001 0.001 L
46.7943 0.001 0.001 L
46.8207 0.001 0.001 L
46.91356 0.001 0.001 H
46.961 0.001 0.001 H
46.9995 0.001 0.001 L
47.0 0.001 0.001 H
47.24933 0.001 0.001 L
47.24972 0.001 0.001 H
47.3518 0.002 0.002 L
47.3655 0.002 0.002 L
47.42058 0.001 0.001 L
47.499649 0.001 0.001 L
47.5 0.001 0.001 H
47.704803125 0.001 0.001 H
47.70731875 0.001 0.001 H
47.8 0.0005 0.0005 L
47.91172 0.001 0.001 H
47.94158 0.0032 0.0016 L
47.9602 0.001 0.001 H
47.9995 0.001 0.001 L
48.0 0.0005 0.0005 H
48.0 0.001 0.001 H
48.2493 0.001 0.001 L
48.24971 0.001 0.001 H
48.3 0.0005 0.0005 L
48.3383 0.002 0.002 L
48.352 0.002 0.002 L
48.40851 0.001 0.001 L
48.499636 0.001 0.001 L
48.5 0.001 0.001 H
48.6071 0.001 0.001 L
48.6338 0.001 0.001 L
48.66003 0.001 0.001 L
48.66003 0.001 0.001 L
48.687 0.001 0.001 L
48.7135 0.001 0.001 L
48.7407 0.001 0.001 L
48.7671 0.001 0.001 L
48.90988 0.001 0.001 H
48.9594 0.001 0.001 H
48.9995 0.001 0.001 L
49.0 0.001 0.001 H
49.24927 0.001 0.001 L
49.2497 0.001 0.001 H
49.3248 0.002 0.002 L
49.3385 0.002 0.002 L
49.499623 0.001 0.001 L
49.5 0.001 0.001 H

(Table continued)

TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

49.778925 0.001 0.001 H
49.78155 0.001 0.001 H
49.90804 0.001 0.001 H
49.9995 0.001 0.001 L
50.0 0.001 0.001 H
50.24924 0.001 0.001 L
50.3113 0.002 0.002 L
50.325 0.002 0.002 L
50.49961 0.001 0.001 L
50.5 0.001 0.001 H
50.5535 0.001 0.001 L
50.5802 0.001 0.001 L
50.60643 0.001 0.001 L
50.60643 0.001 0.001 L
50.6334 0.001 0.001 L
50.6599 0.001 0.001 L
50.6871 0.001 0.001 L
50.7135 0.001 0.001 L
50.9062 0.001 0.001 H
51.0 0.001 0.001 H
51.2 0.0005 0.0005 L
51.24921 0.001 0.001 L
51.2978 0.002 0.002 L
51.3115 0.002 0.002 L
51.499597 0.001 0.001 L
51.5 0.001 0.001 H
51.853046875 0.001 0.001 H
51.85578125 0.001 0.001 H
51.90436 0.001 0.001 H
52.0 0.001 0.001 H
52.24918 0.001 0.001 L
52.2843 0.002 0.002 L
52.298 0.002 0.002 L
52.499584 0.001 0.001 L
52.4999 0.001 0.001 L
52.5 0.001 0.001 H
52.5266 0.001 0.001 L
52.55283 0.001 0.001 L
52.55283 0.001 0.001 L
52.5798 0.001 0.001 L
52.6063 0.001 0.001 L
52.6335 0.001 0.001 L
52.6599 0.001 0.001 L
52.90252 0.001 0.001 H
53.0 0.001 0.001 H
53.24915 0.001 0.001 L
53.2708 0.002 0.002 L
53.2845 0.002 0.002 L
53.499571 0.001 0.001 L
53.5 0.001 0.001 H
53.90068 0.001 0.001 H
53.92716875 0.001 0.001 H
53.9300125 0.001 0.001 H
54.0 0.001 0.001 H
54.1 0.0005 0.0005 L
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TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

54.2573 0.002 0.002 L
54.271 0.002 0.002 L
54.4463 0.001 0.001 L
54.473 0.001 0.001 L
54.49923 0.001 0.001 L
54.49923 0.001 0.001 L
54.499558 0.001 0.001 L
54.5 0.001 0.001 H
54.5262 0.001 0.001 L
54.5527 0.001 0.001 L
54.5799 0.001 0.001 L
54.6063 0.001 0.001 L
54.89884 0.001 0.001 H
55.0 0.001 0.001 H
55.2438 0.002 0.002 L
55.2575 0.002 0.002 L
55.499545 0.001 0.001 L
55.5 0.001 0.001 H
55.897 0.001 0.001 H
56.0 0.0005 0.0005 H
56.0 0.001 0.001 H
56.001290625 0.001 0.001 H
56.00424375 0.001 0.001 H
56.3927 0.001 0.001 L
56.4194 0.001 0.001 L
56.44563 0.001 0.001 L
56.44563 0.001 0.001 L
56.4726 0.001 0.001 L
56.4991 0.001 0.001 L
56.499532 0.001 0.001 L
56.5 0.001 0.001 H
56.5 0.0005 0.0005 L
56.5263 0.001 0.001 L
56.5527 0.001 0.001 L
56.89516 0.001 0.001 H
57.0 0.001 0.001 H
57.0 0.0005 0.0005 L
57.499519 0.001 0.001 L
57.5 0.001 0.001 H
57.89332 0.001 0.001 H
58.0 0.001 0.001 H
58.0754125 0.001 0.001 H
58.078475 0.001 0.001 H
58.3391 0.001 0.001 L
58.3658 0.001 0.001 L
58.39203 0.001 0.001 L
58.39203 0.001 0.001 L
58.419 0.001 0.001 L
58.4455 0.001 0.001 L
58.499506 0.001 0.001 L
58.5 0.001 0.001 H
58.89148 0.001 0.001 H
59.0 0.001 0.001 H
59.499493 0.001 0.001 L
59.5 0.001 0.001 H

(Table continued)

TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

59.88964 0.001 0.001 H
59.926975 0.004 0.002 L
60.0 0.001 0.001 H
60.0 0.06 0.06 H
60.0 0.06 0.06 L
60.149534375 0.001 0.001 H
60.15270625 0.001 0.001 H
60.2855 0.001 0.001 L
60.3122 0.001 0.001 L
60.33843 0.001 0.001 L
60.33843 0.001 0.001 L
60.3654 0.001 0.001 L
60.3919 0.001 0.001 L
60.49948 0.001 0.001 L
60.5 0.001 0.001 H
60.8878 0.001 0.001 H
61.0 0.001 0.001 H
61.499467 0.001 0.001 L
61.5 0.001 0.001 H
62.0 0.001 0.001 H
62.22365625 0.001 0.001 H
62.2269375 0.001 0.001 H
62.28483 0.001 0.001 L
62.28483 0.001 0.001 L
62.3 0.0005 0.0005 L
62.499454 0.001 0.001 L
62.5 0.001 0.001 H
62.8 0.0005 0.0005 L
62.8254 0.003 0.003 H
62.8298 0.003 0.003 H
63.0 0.001 0.001 H
63.499441 0.001 0.001 L
63.5 0.001 0.001 H
64.0 0.0005 0.0005 H
64.0 0.001 0.001 H
64.297778125 0.001 0.001 H
64.30116875 0.001 0.001 H
64.499428 0.001 0.001 L
64.5 0.001 0.001 H
65.0 0.001 0.001 H
65.2 0.0005 0.0005 L
65.499415 0.001 0.001 L
65.5 0.001 0.001 H
65.7 0.0005 0.0005 L
66.0 0.001 0.001 H
66.3719 0.001 0.001 H
66.3754 0.001 0.001 H
66.499402 0.001 0.001 L
66.5 0.001 0.001 H
66.665 0.001 0.001 L
67.0 0.001 0.001 H
67.499389 0.001 0.001 L
67.5 0.001 0.001 H
67.6 0.0005 0.0005 L
68.0 0.001 0.001 H

(Table continued)
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TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

68.1 0.0005 0.0005 L
68.499376 0.001 0.001 L
68.5 0.001 0.001 H
68.6 0.0005 0.0005 L
69.0 0.001 0.001 H
69.499363 0.001 0.001 L
69.5 0.001 0.001 H
70.0 0.001 0.001 H
70.49935 0.001 0.001 L
70.5 0.001 0.001 H
71.0 0.001 0.001 H
71.0 0.0005 0.0005 L
71.499337 0.001 0.001 L
71.5 0.001 0.001 H
71.5 0.0005 0.0005 L
71.91237 0.0048 0.0024 L
72.0 0.0005 0.0005 H
72.0 0.001 0.001 H
72.499324 0.001 0.001 L
72.5 0.001 0.001 H
73.0 0.001 0.001 H
73.499311 0.001 0.001 L
73.5 0.001 0.001 H
73.9 0.0005 0.0005 L
74.0 0.001 0.001 H
74.4 0.0005 0.0005 L
74.5 0.001 0.001 H
75.0 0.001 0.001 H
75.5 0.001 0.001 H
76.0 0.001 0.001 H
76.3 0.0005 0.0005 L
76.3235 0.001 0.001 H
76.3235 0.001 0.001 H
76.411925 0.001 0.001 H
76.5 0.001 0.001 H
76.50035 0.001 0.001 H
76.588775 0.001 0.001 H
76.6772 0.001 0.001 H
76.75 0.001 0.001 L
76.765625 0.001 0.001 H
76.8 0.0005 0.0005 L
76.85405 0.001 0.001 H
76.942475 0.001 0.001 H
77.0 0.001 0.001 H
77.0309 0.001 0.001 H
77.119325 0.001 0.001 H
77.20775 0.001 0.001 H
77.296175 0.001 0.001 H
77.3 0.0005 0.0005 L
77.3846 0.001 0.001 H
77.473025 0.001 0.001 H
77.5 0.001 0.001 H
77.56145 0.001 0.001 H
77.749975 0.001 0.001 L
78.0 0.001 0.001 H

(Table continued)

TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

78.5 0.001 0.001 H
78.74995 0.001 0.001 L
79.0 0.001 0.001 H
79.2 0.0005 0.0005 L
79.5 0.001 0.001 H
79.7 0.0005 0.0005 L
79.749925 0.001 0.001 L
80.0 0.0005 0.0005 H
80.0 0.001 0.001 H
80.5 0.001 0.001 H
80.7499 0.001 0.001 L
81.0 0.001 0.001 H
81.5 0.001 0.001 H
81.749875 0.001 0.001 L
82.0 0.001 0.001 H
82.1 0.0005 0.0005 L
82.5 0.001 0.001 H
82.6 0.0005 0.0005 L
82.74985 0.001 0.001 L
83.0 0.001 0.001 H
83.5 0.001 0.001 H
83.749825 0.001 0.001 L
83.897765 0.0056 0.0028 L
84.0 0.001 0.001 H
84.5 0.001 0.001 H
84.7498 0.001 0.001 L
85.0 0.001 0.001 H
85.0 0.0005 0.0005 L
85.5 0.001 0.001 H
85.5 0.0005 0.0005 L
85.749775 0.001 0.001 L
86.0 0.001 0.001 H
86.5 0.001 0.001 H
86.74975 0.001 0.001 L
87.0 0.001 0.001 H
87.5 0.001 0.001 H
87.749725 0.001 0.001 L
87.9 0.0005 0.0005 L
88.0 0.0005 0.0005 H
88.0 0.001 0.001 H
88.4 0.0005 0.0005 L
88.5 0.001 0.001 H
88.7497 0.001 0.001 L
89.0 0.001 0.001 H
89.5 0.001 0.001 H
89.749675 0.001 0.001 L
90.0 0.001 0.001 H
90.3 0.0005 0.0005 L
90.5 0.001 0.001 H
90.74965 0.001 0.001 L
90.8 0.0005 0.0005 L
91.0 0.001 0.001 H
91.3 0.0005 0.0005 L
91.5 0.001 0.001 H
91.749625 0.001 0.001 L

(Table continued)

B. P. ABBOTT et al. PHYSICAL REVIEW D 96, 122004 (2017)

122004-18



3. 50-mHz signal-frequency bands where the upper
limit value does not hold

See Table VII
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TABLE VII. (Continued)

fL (Hz) LFS (Hz) HFS (Hz) IFO

92.0 0.001 0.001 H
92.5 0.001 0.001 H
92.7496 0.001 0.001 L
93.0 0.001 0.001 H
93.5 0.001 0.001 H
93.7 0.0005 0.0005 L
93.749575 0.001 0.001 L
94.0 0.001 0.001 H
94.2 0.0005 0.0005 L
94.2381 0.003 0.003 H
94.2447 0.003 0.003 H
94.5 0.001 0.001 H
94.74955 0.001 0.001 L
95.0 0.001 0.001 H
95.5 0.001 0.001 H
95.749525 0.001 0.001 L
95.88316 0.0064 0.0032 L
96.0 0.0005 0.0005 H
96.0 0.001 0.001 H
96.5 0.001 0.001 H
96.6 0.0005 0.0005 L
96.7495 0.001 0.001 L
97.0 0.001 0.001 H
97.1 0.0005 0.0005 L
97.5 0.001 0.001 H
97.749475 0.001 0.001 L
98.0 0.001 0.001 H
98.5 0.001 0.001 H
98.74945 0.001 0.001 L
99.0 0.001 0.001 H
99.0 0.0005 0.0005 L
99.5 0.001 0.001 H
99.5 0.0005 0.0005 L
99.749425 0.001 0.001 L
99.9989 0.001 0.001 H
100.0 0.001 0.001 H

TABLE VIII. 50-mHz search-frequency bands that are ex-
cluded from the results. Bands are excluded from the results if
they were identified as disturbed based on visual inspection (D),
if they were identified as mildly disturbed based on visual
inspection then excluded later in the analysys (M), if they
contained a hardware injection (I), or where the results were
produced from entirely fake data as detailed in Table I (C). Bands
labeled D, C, or I are excluded from the analysis.

Start Band Start Band Start Band Start Band
band type band type band type band type

20.40 M 20.90 D 20.80 M 21.45 M
22.40 D 23.90 M 24.45 D 24.20 M
25.25 M 25.60 M 26.05 M 26.90 M
27.50 D 27.45 M 27.85 D 27.55 M
28.55 D 28.90 M 29.15 D 30.60 D
30.85 M 31.10 M 31.40 I 31.75 M
32.35 M 32.90 M 33.05 M 34.80 M
34.60 C 34.65 C 34.70 C 34.75 C
35.20 C 35.25 C 35.30 C 35.35 C
35.70 M 35.80 C 35.85 C 35.90 C
35.95 C 36.60 M 36.60 C 36.65 C
36.70 C 36.75 C 37.25 M 39.75 M
40.20 M 40.85 D 42.80 M 43.65 M
44.70 D 44.65 M 45.30 D 45.35 M
46.90 M 47.65 M 48.95 M 50.25 M
51.00 M 52.30 M 52.60 M 52.80 I
53.05 M 54.70 M 55.05 M 55.60 M
56.80 D 57.10 M 58.95 M 59.50 M
59.55 M 59.95 C 60.00 C 61.00 M
61.05 M 62.45 D 62.05 M 66.65 M
74.50 D 74.45 M 75.00 M 76.60 D
76.65 M 83.30 M 85.80 M 89.40 D
89.35 M 90.00 M 99.95 D
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