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ABSTRACT 

Visual fields are an important tool for the ophthalmologist in the 

detection, diagnosis, and monitoring of certain diseases and maladies 

of the visual pathway. The aim of the present research is to build a 

computer system which utilizes a learning machine to develop a mathe­

matical model of the visual pathway. It is hoped that this system may 

be used in the field of ophthalmology as a teaching aid, or may assist 

in various aspects of diagnosis. Faults corresponding to blind or im­

paired areas of visual fields are extracted from medical records of a 

patient's condition. The structure of the model allows both forward 

and backward simulation of the faults in a manner related to the multi­

dimensional path sensitizing technique utilized in the diagnosis of 

digital systems. An important feature of the method is close man­

machine interaction, accomplished with the aid of a graphic display, 

which enables the path sensitizing and the learning to be observed as 

it progresses. 
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PREFACE 

This work grew out of a study and proposal of an automated visual 

field system by Mr. B. Shelman at Argonne National Laboratory. 1 The 

system he proposed considered " •.• automation in the preparation, use 

and retrieval of (visual field) patterns ..• with close man-machine in­

teraction." After the initial studv, design of a complete system was 

postponed until a study could be made to evaluate the classification 

of the visual fields for retrieval purposes. I was assigned this task 

during a summer research appointment at Argonne National Laboratory in 

1969. During my initial research2 it occurred to me that I could use 

the path sensitizing technique, which I studied under Dr. Szygenda, 3 

in dealing with maladies of the visual pathway. In this regard I modi­

fied the goal of the research from the classification task to a model­

building and diagnosis task with the following objectives: 

1) Build a learning machine with a practical application. 

2) Develop a good mathematical model of the visual pathway. 

3) Use path sensitizing in a new diagnostic application 

topological diagnosis of a biological neural net. 

4) Develop a diagnostic aid for the trained professional. 

5) Build a tutorial and instructional tool in the study of 

ophthalmology. 

6) Develop a new form of learning machine and implement it 

with original algorithms. 

7) Find further applications of this work. 

The result of this research, system VISUAL, is useful as a stand-

alone system; however, its design w111 allow it to be immersed in an 

"automated visual field system." A brief description of the system 
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VISUAL was first presented at the IEEE Conference on Feature Extraction 

and Selection in Pattern Recognition in October 1970. 4 

Chapter I of this dissertation is entirely introductory. Chapter 

II is designed to give the mathematicians, engineers, and computer 

scientists enough background on the anatomy of the visual pathway and 

the definition of the visual fields to understand the system. Medical 

people will probably want to omit this chapter. Chapter III describes 

the model. The model is a unifying concept in all facets of the system. 

A paper5 delivered in March 1971 at the Second Annual Pittsburgh Con-

ference on Modeling and Simulation describes many of the modeling con-

siderations that are presented in this chapter. Next, Chapter IV 

presents an overview of the system. 

Chapter V introduces the learning machine structure, which I feel 

is one of the most original contributions of this work. I hope that 

work on sin1ilar applications will be done using the concepts estab-

lished here. Finally, the results and conclusions are presented in 

Chapter VI. 

I felt that some details which were not essential to the basic 

understanding of the system but yet important to an in-depth study of 

this research should be placed in the appendices. This information is 

necessary to those researchers who may wish to further this study. 

Appendix A establishes mathematically the formal structure of the 

learning machine employed in VISUAL. Reference in this appendix is 

6 
made to the mathematical structure presented by Nilsson so that his 

structure can be compared and contrasted with the structure used in 

VISUAL. Appendix B details in flowchart form two of the processes --

radius selection and diagnosis -- described in the main body of the 



paper. Appendix C lists some approaches of learning that during a time 

in this research were considered, but were rejected for this applica­

tion. I feel that in another application perhaps one of these algo­

rithms will be effective and hence should be included in this work. 

Appendix D describes and flowcharts the details, concepts, and tech­

niques used in the nerve fiber bundle movement of the learning machine. 

At present, it is felt that further field testing of the system 

needs to be performed before all aspects of the system performance can 

be judged. To this end, I am preparing forthcoming reports, including 

a Users Manual and Field Studies as well as a System Documentation. 

These reports will provide excellent companions to this work in com­

pleting this study. 

In the final essence, VISUAL is a research tool and a vehicle for 

the study of interactive graphics, path sensitizing applications, and 

learning machines. Although it does have value as a diagnostic and 

teaching aid, to become financially and operationally practical, the 

system must be adapted for a computer other than the present one 

employed here at Argonne National Laboratory. 

I feel indebted to many people for their help and contributions 

to this work. I am grateful for the opportunity to study at Argonne 

National Laboratory under the Argonne Universities Association Program. 

Teachers Ben Shelman of Argonne, and Steve Szygenda of the University 

of Missouri and Southern Methodist University have spent time and 

energy invaluable to this research. Dr. Tibor Farkas has contributed 

his expertise as an ophthalmologist by reviewing this work from time 

to time. My parents have helped often, especially when finances would 

have forced me to leave graduate school. Thanks to Mae Jedlicka for 

v 
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typing and editing. Most of all, to my wife, Deirdre, for her patience 

and moral support throughout my graduate years-- my greatest thanks. 
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Chapter I. INTRODUCTION 

A patient's visual field contains important information that an 

ophthalmologist uses in the detection, diagnosis, and monitoring of 

certain diseases and maladies of the visual pathway. This paper de­

scribes a computer system, VISUAL, that the ophthalmologist may use in­

teractively to aid him to understand a particular patient's condition. 

Secondly, the system may be used as an ophthalmological teaching aid. 

At present, only tumors and lesions that affect the fibers in the 

chiasm are specifically dealt with; however, the straightforward ex­

tension of the method to other diseases (in other locations of the 

visual pathway) is indicated. 

Before the system can be used as a diagnostic aid, a model must 

be developed. This is accomplished with a learning machine, which will 

be described. 

It is necessary to outline two fields of background so that the de­

sign of the model can be understood. First, a discussion is presented 

of the important aspects of the anatomy of the visual pathway, the 

functioning of the fiber bundles in the transmission of visual forms, 

and the effect of diseases on the fibers in the visual pathway and on 

the visual fields. Secondly, an explanation of path sensitizing and 

its role in a simulation and diagnostic environment is presented. 

After these preliminaries, heuristic arguments for the model design 

can be examined in detail. 

At this point the over-all system is described. The desirability 

of a graphical display in conjunction with a learning machine is an im­

portant consideration in determining the computer environment necessary 

to support the envisioned system. In fact, this necessity has required 



that the proposed research be conducted under the direction of the 

Argonne Universities Association at Argonne National Laboratory, where 

special graphical and computer facilities are available. The system 

is described independently of the equipment, but the special equipment 

used is indicated in Chapter IV. 

2 

The software operates in six modes, most importantly in learning 

mode, display mode, and diagnostic mode. Operating in learning mode, 

the learning machine builds and improves the model; in diagnostic mode, 

the system acts as a diagnostic aid; and in display mode, the system 

performs as an ophthalmological teaching tool. All three modes refer 

to the model during decision processes, learning processes, and display 

processes, and are therefore dependent on the status of the model for 

the quality of their performance. During the development of the model, 

it is convenient to use the modes of diagnosis and display to monitor 

the progress of learning because in these modes a good graphical pic­

ture of the model can be seen. 

The learning machine incorporates much of the state-of-the-art 

theory in pattern recognition and learning machines. It is at the same 

time a type of learning machine that differs from the classical form. 

This new learning machine is called the "adapted machine." 

One of the main features of the research is the combination of 

three separate areas of specialization: path sensitizing, learning 

machines, and medical diagnosis. 



Chapter II. VISUAL FIELDS AND THE VISUAL PATHWAY 

A. Introduction to Visual Fields 

Harrington 7 defines the visual field as "that portion of space in 

which objects are simultaneously visible to the steadily fixating eye. 

It is somewhat more than one-half of a hollow sphere, situated before 

and around each eye of the observer, within which object.; are perceived 

while the eye is fixating at a stationary point on its inner surface." 

The stationary point is called the point of fixation, while the 

straight line extending from the eye to the point of fixation is the 

visual axis. 

The interested reader is encouraged to explore the apt description 

of visual acuity of the visual field as "an island hill of vision sur­

rounded by the sea of blindness" for a thorough understanding of visual 

perception. 7 The hill image comes from the fact that visual acuity is 

not uniform within the hollow sphere, but sharper and more sensitive 

near the point of fixation, and less sensitive away from the point. 

The hill of vision is shaped like a pointed mound, with the highest 

elevation of the hill in the center where visual acuity is greatest. 

A patient's visual perception is recorded on charts by examination 

techniques of perimetry. 7 The resultant record is called the visual 

field. The chart has a reference grid as shown in Figure 1. The chart 

has two sets of three concentric circles, one set for each eye. The 

center of a set of circles corresponds to the point of fixation of the 

eye. The circles correspond to regions of points of perception 10°, 

20°, and 30° from the visual axis. (These angles are defined with 

vertex at the eye, one edge the visual axis and the other edge the line 

from the eye to the point of perception.) 

3 



Figure 1. Chart for Recording Visual Field 
Using Tangent Screen Examination. 

The chart shown in Figure 1 is a chart used in the tangent screen 

examination. Although there are other means and instruments for perim­

etry (notably the Goldman Perimeter7), discussion of the tangent screen 

examination is sufficient for the purposes of this paper. The patient 

sits in front of a black screen, with one eye covered. The seeing eye 

is fixated at a point on the tangent screen. The examiner takes a test 

object (a white ball on the end of a long black wand) and moves the 

test object to various points on the tangent screen (see Figure 2) not-

ing where the object is perceived and where it is not. This process is 

continued until the examiner has mapped out a contour on the chart sur-

rounding the seeing area. This is a contour of one level of perception 

of the island hill of vision. These contours, called isopters, show 

the region of perception of a test object that subtends a constant 

visual angle. Clinically, the isopter is measured in terms of d, the 

distance between the eye and the test object, and S, the size of the 

4 
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object, both measured in millimeters and expressed as a fraction, S/d. 

A test object of size S and distance d subtends a fixed visual angle 

throughout the visual field. Table I lists some typical isopter sizes 

and the corresponding visual angle produced by the test object. 

Notice that the range of the normal visual field varies with 

the visual angle. The last column in Table I will be explained in 

Chapter V. 

Table I. 

ISOPTERS AND ASSOCIATED NORMAL VISUAL FIELDS 

Extent in Degrees of Normal 
Visual Isopter 

Visual Field Radius-Indices 
Angle Masked 

Temporal Nasal Inferior Superior 

10. 32 I 1/330 80 55 60 50 None 

3.42 1 1/1000 25 25 25 25 9 

6 o 84 I 2/1000 26 26 26 26 9 

10.20 1 3/1000 38 30 30 26 None 

1. 70 1 1/2000 24 24 24 24 8,9 

5.10 1 3/2000 30 30 30 24 None 



6 

• • • • • • • • • • • 

X .••. 
• • • 
• • 

Figure 2. Visual Field Examination Using Tangent Screen. 
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Figure 3 shows a sample record of a visual field taken with a tan­

gent screen. Two isopters were measured and charted with the anoptic 

portions of the field shaded. In the visual field of the right eye, 3mm 

test objects on a tangent screen at a 2000mm distance were visible to 

the patient except in the upper right quadrant of the field. The 

smaller lmm objects were again not visible in the upper right quadrant, 

and furthermore, not visible in portions of the lower right quadrant of 

1/2000 Isopter 

3/2000 Isopter 

Figure 3. Sample Visual Field. 



the right visual field. The left eye has normal vision for both isop-

ters. Notice the normal blind spot in each visual field. Since, as 

illustrated in this example, there is a substantial difference in shape 

of the visual fields from one isopter to another, a thorough visual 

field test consists of more than one isopter. 

Many factors affect the accuracv of the information obtained in 

the visual field examinations. The two factors most vulnerable to 

variation are the examiner and the patient. Because of his physical 

condition, the patient may not respond properly to the examiner's in-

quiries and may signify incorrectly where the regions of perception 

are. The technique of the examiner, his thoroughness, and precision, 

affect the data. Other variables which can be controlled more readily 

are illumination of the room, test objects, and screen. Finally, the 

eye fixation of the patient is an important consideration. During the 

examination, the examiner must continually insure that the patient's 

eye is fixated at the fixation point. 

Recently, some attempts to automate (and hopefully improve) the 

data gathering of visual field records have been made. The author is 

familiar with two approaches. B. Shelman's work at Argonne National 

Laboratory preceded this research. The approach was essentially along 

the lines of an automated tangent screen. 1 Dr. J. Lynn has attempted 

to perform the data gathering by using a cathode ray tube display 

. 8 dr1ven by an IBM 1130. The tube serves the function of a very close 

tangent screen, while the computer controls the intensity and location 

of test dots on the tube. Whether either system will improve the 

accuracy of the present technology remains to be seen. 

8 
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B. Anatomy and Physiology of the Visual Pathway 

7 9-13 The anatomy of the visual pathway is very complex. ' The 

physiology, or the functioning, of the pathway is correspondingly com-

plex and, unfortunately, there are some important processes of the 

miracle of visual that are not yet understood. This section introduces 

some basics in the anatomy and physiology of the visual system so that 

the mathematical model presented in Chapter III can be compared to the 

physical counterpart. It should be remembered that the model developed 

in Chapter!!! does not attempt to simulate all the physiological and 

psychological aspects of vision, but rather to simulate a special phase 

in the process of vision -- the transmission of data through the visual 

pathway. 

The anatomy of the eye is well known. Important to understanding 

the visual fields is the structure of the eye. The eye inverts an image 

in the same manner as a pinhole camera. This inverted image activates 

and stimulates photoreceptors in the retina. At the retina, the image 

is transformed by several layers of nerve cells to electric impulses 

that are carried through the optic nerve and chiasm to the lateral 

geniculate body. There another transformation of electrical impulses 

is performed, and the new impulses are carried through the postchiasmal 

pathway to the striate cortex of the occipital lobes of the brain. 

(Refer to Figure 4.) 

In Figure 5, cells from each of the layers of the retina are rep-

resented. The first layer of cell contains the photoreceptors (rods 

and cones); the bipolar and horizontal cells are in the next layer, 

along with amacrine cells; the final layer is composed of the ganglion 

cells whose axons form the optic nerve. It is not important to this 
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work to discuss in detail the functioning of the retina; however, one 

should note that in the retina the mapping of (transformation of) sig­

nals performed by the bipolar cells of the photoreceptors to the gan­

glion cells is many-to-many. Combining this property with the func­

tioning of the amacrine and horizontal cells, the fibers in the optic 

nerve transmit no less than three types of signals: "on" signals, 

"off" signals, and "on-off" signals. 

Because of the many-to-many mapping transformation, it is con­

venient to refer to the receptive field of a corresponding on (or off) 

fiber in the optic nerve. The receptive field for an "on" fiber, for 

example, is shown in Figure 6. The "on" signal is initiated by photo­

receptors in the center circle, the region of greatest sensitivity. 

The "off" signal is initiated by the receptors in the outer annulus, 

while the intermediate region evokes the "on-off" signal. 

The anatomy of the visual pathway varies microscopically and to 

some extent macroscopically from individual to individual. For the 

purposes of this work, the variation is not significant. Also, the 

symmetry of the fiber arrangement in the pathway is considered not 

sensitive to the degree of variation of the fibers. Figure 7 shows a 

schematic representation of the visual pathway showing how the tempo­

ral retinal fibers remain on the same side of the visual pathway, while 

the nasal fibers cross over in the chiasm to the opposite side of the 

visual pathway. A special name is given to the fiber bundles whose 

receptive field senses objects near the center of the visual fields. 

The location of these "macular fibers" is an important feature of the 

anatomy. In Chapter III we shall examine the structure of the visual 

pathway and especially the chiasm,in more detail. 



11 

eye chiasm occipital lobes 

optic nerve 
post pathway 

retina 
lateral genticulate body 

Figure 4. Architecture of the Visual Pathway. 
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Figure 5. Anatomy of the Retina. 
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+ + + + "on" 
+ + + 
+ 0 "off" + 

+ + 

Figure 6. Organization of a Receptive Field. 
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C. Diseases of the Visual Pathway 

Diseases of the visual pathway characteristically affect the 

visual field. 7 Diseases such as brain tumors in the vicinity of the 

visual pathway cause pressure on the fiber bundles in the pathway and 

disrupt the transmission of signals along the fibers. Figure 7 sche­

matically indicates various sites of total disruption of fibers (shown 

with solid lines or shaded circle) and correspondingly the resultant 

abnormal visual field. 

Example 1 in Figure 7 shows that the visual field on the side of 

the lesion is totally anoptic, while the contralateral field is normal. 

In example 2 of Figure 7, notice that the nasal retinal fibers of both 

eyes are damaged, and correspondingly the temporal half of the visual 

field for both eyes is anoptic. Further examination of this diagram 

shows how each particular area of damage affects the visual field 

uniquely and hence characteristically. For a more complete discussion, 

see Reference 7. 



!3 
()() 

, I I 

08 

Figure 7. Visual Fields Resulting from Total 
Fiber Disruption at Various Locations. 
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Chapter III. DESIGN OF THE MODEL 

In this chapter we mention first the elements of the model. Then 

we will explain path sensitizing and how the system uses that technique 

in conjunction with the model. At that point we can present heuristic 

arguments for the selection of the position of various elements in the 

model. 

A. Elements of the Model 

There are three element types in the model: sense points, nerve 

fibers, and c-sects. Although there are thousands of nerve fiber 

bundles, a set of 252 representative nerve fiber bundles was selected. 

Each fiber bundle begins at a theoretical point at the retina, called 

the sense point. At various parts of the visual pathway, a plane cuts 

the pathway. The intersection of the plane and the pathway makes a 

two-dimensional surface called a c-sect. Information of the location 

and orientation of the c-sect is contained in the model. The fiber 

bundles extend from their sense points back through the visual pathway 

to the occipital lobes. The location of the intersection of each nerve 

fiber bundle with the c-sects it passes through is recorded in the list 

structure of the model. 

B. Path Sensitizing in Digital Systems 

Before describing the path sensitizing simulation process, basic 

concepts of path sensitizing are outlined. Because the path sensitiz­

ing technique has been well defined and studied in depth, and because 

the philosophy of the technique rather than the method itself has been 

used in the VISUAL system, path sensitizing is reviewed conceptually 

as a test generation technique. 
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The importance of diagnostics for digital systems increased from 

the first appearance of electronic digital computers in the 1950's to 

the present with the complex computers of today's technology. One 

method of diagnostics is test generation. In this method the set of 

tests may be applied to a digital system, and from the results of the 

tests, diagnostics about the status of the digital system is made, the 

presence or absence of one or more particular faults may be determined, 

and possibly the location of the fault may be given. Path sensitizing 

is a method of generating the tests used primarily in combinational 

systems, although it has been used as a heuristic for sequential cir­

cuits.3 The discussion here is restricted to combinational circuits. 

Let us define combinational digital system, D, as a circuit consisting 

of "and", "or", "nand", "nor", and "not" gates connected by lines with 

no feedback or memory. The only lines of the system whose values may 

be externally controlled are the primary inputs (i 1 ,i2 , ••• ,iN). Like-

wise, the only lines of the system whose values are externally evident 

are the primary outputs (0 1 ,02 , ••• ,0p). That is why in describing a 

diagnostic test, the primary inputs need to be specified, and the re-

sults interpreted through the primary outputs. 

14 Although Eldred published perhaps the first paper on test genera-

tion for combinational circuits, the term path sensitizing was coined 

by Armstrong. 15 Armstrong's method is more precisely one-dimensional 

path sensitizing. The "sensitized path" is the path of propagation of 

the fault from the site of failure to a primary output. For example, 

consider the circuit (Figure 8) with line 3 stuck-at-one. 
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With input vector (1,1,0,1) the effect of the stuck-at-one fault 

is propagated through line 3-6-7. Diagrammatically this can be illus­

trated (Figure 9) by using the symbol d to represent line value of 0 

for a fault-free circuit, and line value of 1 for a circuit with the 

fault. 

In list form, the line values are 

1 

1 

2 

1 

3 

d 

4 

1 

5 

0 

6 

d 

7 

d 

8 

1 
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In this example, the sensitized path is 3-6-7. It is a one-dimensional 

path since there is one path of propagation of the fault from the site 

of the fault to a primary output. If we set the primary inputs at 

(1100) however, the circuit looks like that shown in Figure 10. 

The fault is propagated through two paths: lines 3-6-7 and lines 

3-6-8. This is an example of two-dimensional path sensitizing, or, 

more generally, multidimensional path sensitizing. In a general com-

binational circuit, it is necessary to check more than just the one­

dimensional path to determine whether a diagnostic test can be gen­

erated for a fault. This result was proven in Schneider's famous 

example. 16 Roth formalized the mathematics17 underlying the technique. 

He called the process of propagating the fault toward the primary out­

puts, the forward trace. The backward trace was the term defined to be 

the tracing of 0 and 1 line values to the primary inputs. 

The work of Eldred, Armstrong, and Roth as outlined above was well 

established, when in 1969 Szygenda and Goldbogen presented research 3 

from which the present work has borrowed philosophic and technical 

concepts. 
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In the implementation of the path sensitizing algorithm, 3 an 

n-tuple (where n is the number of lines in the system) is developed. 

At first the n-tuple contains a primitive cube of failure and remaining 

lines set to 'don't care' conditions as denoted by x. Then as the for-

ward trace propagates faults, and backward trace propagates line values, 

many of the x-valued lines assume values of 1, 0, d, or d (complement 

of d value). The final n-tuple described the test generated. In our 

example the n-tuple grows in the following manner: 

1 2 3 4 5 6 7 8 

X X d X X X X X primitive d-cube 

X 1 d X X d X X 

X 1 d X 0 d d X 

1 1 d X 0 d d X 

1 2 3 4 
From the final n-tuple we see the primary inputs as (l,l,O,x), and 

7 8 
primary outputs as (d,x). The final n-tuple also has the information 

that the test generated will not distinguish between the faults: 

line 3 stuck-at-one 

line 6 stuck-at-one 

line 7 stuck-at-one 

The final d-cube reveals the candidates of the site of failure by the 

presence of ad (or d). 

The second important concept presented by Szygenda and Goldbogen 

was embedding a path sensitizing routine in a simulation and diagnosis 

system. This is the main concept that is used in this research. 
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In the work of path sensitizing in digital circuits, the path sen-

sitizing algorithm generates a test which has information concerning 

presence or absence of faults at locations designating line numbers. 

In the implementation of the algorithm, an n-tuple is used to store 

information about each line, that information being: 

Content 

X line value unspecified or unknown ('don't care' value) 

1 line value 1 

0 line value 0 

d line value {~ for good circuit 
for faulty circuit 

d line value {~ for good circuit 
for faulty circuit 

In the present work, the path sensitizing generates information 

about the location of a tumor or lesion in the visual pathway as to a 

global location (which c-sect) and local location (within the c-sect 

area affected). In the implementation, there are N storage arrays, 

one for each c-sect. 

C. Path Sensitizing in VISUAL 

The model consists of uncoupled nerve fibers. Each fiber will be 

treated as an electrical line that receives a 0 signal from its sense 

point (primary input) and transmits the signal through each c-sect 

intersected by the fiber to the occipital lobes (primary output). A 

nerve fiber bundle is assumed to be impaired from a visual field test 

if the area of the visual field opposite to the sense point of the 

nerve fiber bundle is in an anoptic region. In the present system, a 

1 signal is transmitted through each faulty nerve fiber from the sense 
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point through each intersecting c-sect. As the faulty signal (1 signal) 

is propagated through the system, N arrays (one for each c-sect) record 

where the faulty nerve intersects. 

The c-sects are represented by lattice arrays with dimension 96 by 

96. Each element in the array is either 0 or 1, and hence represented 

by a bit. (This concept is slightly modified in Section C, Chapter V.) 

The array represents a two-dimensional surface, and the x-y coordinate 

on the c-sect corresponds to the ith, jth element of the array where 

i=x and j=y. Thus the x-y coordinates on the c-sect are scaled to 

range from 1 to 96 in each dimension. Because of this scaling and be­

cause c-sects have different physical size, the array distances may 

represent different physical sizes. 

In the VISUAL system as in a digital system, path sensitizing in­

volves two directions of propagation. In the VISUAL system, however, 

fault signals only are propagated. The direction of propagation from 

sense point back through the visual pathway is called the forward 

trace and is used in diagnostic and learning mode. The back trace, 

used in display mode, traces fault signals directly from the affected 

c-sect to the sense points. 

In the forward trace, N lattice arrays consisting of 96 by 96 bits 

are set to all 0. Then the sense points are set according to the 

visual field used in the learning or diagnosis cycle. Sense points 

which are perceiving are set to 0, while the anoptic points are set 

to 1. The fiber bundles whose sense points are set to 1 are path sen­

sitized. The "path sensitizing" process causes bits to be set to 1 at 

lattict:! points corresponding to lo~atiuns through which pass faulty 

nerve bundles. 



D. Selection of Location of Model Elements 

Mathematically, the model is a sequence of 252 lists, one for 

each representative fiber bundle in the model: 

s 1 ,s ,s , ... ,s., ... ,s 
2 3 1 252 

Each list has 12 triples. 

s. 
1 

c. x. y. 2 
1,2 1,2 1, 

c .. x .. y .. 
1,] 1,] 1,] 

where c .. is the index of the jth c-sect through which fiber 
1,] 

bundle i passes coming from sense point i and traveling 

toward the occipital lobes 

(x .. , y .. ) is the (x,y) coordinate of the point of 
1,] 1,] 

intersection. 

The model also has specifications in three dimensions as to where 

the c-sects lie. The present configuration of c-sects is illustrated 

in Figures 11 and 12. The final mathematical information in the model 

is the location of the sense points in the retina as illustrated in 

Figure 13. This location is inverted and then referenced to the scale 

on a visual field. For example, sense point 17 located at ray 2, 

circle 8 (of the left eye) perceives objects in the left visual field 

at 210° from the right horizontal and 25° from the point of fixation. 
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1. C-sect Locations 

The choice of c-sect locations is heuristic, and many factors in­

fluenced the choice. At almost every cross section in the chiasm there 

is a different arrangement of fiber bundles; however, at a specific set 

of cross sections there are different combinations of fiber bundles 

(see Figure 14). C-sect 1 has bundles from the left eye only. C-sect 3 

has, in addition, fiber bundles from the lower nasal quadrant of the 

retina. These fiber bundles loop through c-sect 3 at two locations. 

Further along, c-sect 5 shows these fiber bundles intersecting at only 

one location. C-sect 7 has fiber bundles from the upper nasal quadrant 

of the left eye looping out, while the upper nasal fiber bundles from 

the right eye come in to the c-sect. Finally, in c-sect 9 only nasal 

fiber bundles from both eyes are present. Along the right side of the 

chiasm we can make symmetric arguments for c-sects 2, 4, 5, 8, 10. 

C-sect 6 along the center of the chiasm shows nasal fibers which cross 

over. Although the arrangement of the fiber bundles may be different 

in some of the cross sections not chosen, the information loss is prob­

ably small and perhaps may be retrieved with further work. More pre­

cisely, it is thought that an interpolation process may supply some of 

the lost information. For example, suppose one considers a cross sec­

tion between c-sect 7 and c-sect 9. The fiber bundles which pass 

through the cross section also pass through c-sects 7 and 9. Also, 

although the arrangement of bundles is changing between the two c-sects, 

the bundles approximate straight lines to some degree, and this suggests 

linear interpolation. In fact, since the location of the c-sects rela­

tive to the chiasm is kno~ and since the location of the fiber bundles 

relative to the c-sect is known,linear interpolation is straightforward. 
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A second factor in the selection of c-sect locations is the location of 

common tumor or lesion sites. This factor is motivated by two reasons. 

One is that the machine will diagnose better when an unknown tumor is 

in the region of a c-sect, rather than between c-sects. The other 

reason is that the learning file is built with clinical patterns, most 

common of which are the more frequent diseases. For example, pituitary 

adenoma will exert pressure somewhere in c-sect 6. Because the relation 

of the pituitary gland to the chiasm differs from person to person, the 

exact area of this pressure will vary, but it will usually be in c-sect 

6 at some spot, hence this is a motivation for choosing c-sect 6 as a 

c-sect for the model. 

The remaining factors affecting the choice are mathematical, pro­

gramming, and display considerations. From a programming point of view, 

it is desirable to have as few intersections between a particular fiber 

bundle and a c-sect as possible. The c-sects chosen have at most 

double intersections. Some other candidates had triple intersections, 

but these c-sects have not been used in the model. The c-sect should 

completely cut the chiasm from one border to another. This minimizes 

confusion as to whether or not a fiber intersects a c-sect. Also, it 

may allow chiasma! shift to be (more readily) dealt with. Finally, 

for display purposes the c-sect should be horizontal or vertical. This 

facilitates the mathematics in calculating the displays as well as 

makes the displays on the 2250 Graphic Display more intelligible. 
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2. Sense Point Locations 

Selection of the sense point locations is again heuristic. Fig­

ure 13 shows the location of sense points in the left retina. These 

number 1 through 126. Sense points 127 to 252 lie in the right retina 

in similar locations. It is desired to have sufficient coverage by the 

sense points to be rather contour sensitive. In addition, the sense 

points are chosen to accentuate some of the major descriptors that the 

ophthalmologist normally uses. The presence of the vertical line in a 

contour is important, motivating sense points along rays 4, 5, 11, and 

12. The vertical is also important, and rays 1 and 8 sense this area. 

If our machine were to diagnose glaucoma, however, it is probable that 

more sense points along the vertical would be necessary. The major 

paths of fiber bundles as shown in Figure 14 dictate that quadrantal 

representation is necessary. Thus, in the left eye, for example, rays 

2 and 3 sense the lower temporal quadrant of the visual field. Rays 6 

and 7 sense the lower nasal quadrant; rays 9 and 10 the upper nasal 

quadrant; and rays 13 and 14 the upper temporal quadrant of the visual 

field. Since the macular fiber bundles travel in their own unique path, 

there are special sense points on each ray which sense the central field. 

The sense points on the circle 1, 2, and 3 perceive images at points in 

the visual field at 20, 3o, and so from the point of fixation. There-

fore, 3 sense points (out of 9) on each ray correspond to macular 

fibers. This aids to extract information from the visual field concern­

ing the status of the macular fibers; i.e., whether spared, split, or 

whatever extent involved. 7 The remaining sense points on a ray except 

30° for the 4th, 5th, 6th, 7th, 8th, and 9th sense points on a ray. 
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ANTERIOR 

Figure 14. Location of Some Nerve Fiber Bundles in Chiasm. 
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Notice that the sense points are perceiving visual fields only to 

30°. This means that our model is neglecting the outer 30° to 90° data, 

which could be obtained through Goldman perimeter tests. There is 

strong motivation for this, since evidence in ophthalmology shows that 

most diagnosis can be made using the central visual fields. 7 This also 

means that the fiber bundles corresponding to sense points which might 

lie in this outer region are not modeled. 

Notice that the blind spot is also ignored in this manner. Sense 

point ray 1 circle 6 for the left eye would perceive that region of the 

visual field that lies in the normal blind spot. The system treats the 

blind spot in this manner: when a normal blind spot lies in a seeing 

field, it is designated as seeing; when it lies in an anoptic field, 

it is designated anoptic. 

With regard to the sense points and the model, although sufficient 

coverage is necessary and requires a certain amount of density, it is 

hoped that the spacing of the sense points is sparse enough to allow 

for minor variations between individuals. In particular, the spacing 

of the sense points should be enough so that the receptive fields of 

the corresponding nerve fiber bundles do not overlap. 

3. Fiber Bundle Considerations 

Finally, we need to list the assumptions on the fiber bundles as 

electric lines. It is assumed that when a sense point perceives a 

test object, a zero is transmitted through the corresponding line to 

the brain when the patient signifies that the object is visible. This 

occurrence we called event 1. A second possibility, event 2, is that 

the object is perceived by the sense point and the zero signal trans­

mission is begun; however, because of a tumor or lesion, the signal is 
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blocked and never reaches the brain. The patient signifies that the 

object is not visible. These two events are shown in the table below: 

Object is perceived Patient signifies Tumor obstructs 
bv sense point as visible line Event 

YES YES NO 1 
YES NO NO 5 

NO YES NO 6 

NO NO NO 3 

YES YES YES 7 

YES NO YES 2 

NO YES YES 8 

NO NO YES 4 

Events 3 and 4 can occur when testing a small isopter whose normal 

visual field extends less than 30°. In Chapter V, Section B, we dis-

cuss how these outcomes are screened out. 

Because vision is a psychological as well as a biological process 

and because we are dealing with people (the patient and the examiner), 

events 5, 6, 7, and 8 in the table may occur. For example, consider 

event 5; even though a patient perceives the test object, he may-- be-

cause he is tired or because he is mentally or physically incapable 

not signify that he sees the object. Although this outcome as well as 

other outcomes are possible, we assume our information is accurate and 

that the visual field data described events 1 or 2 for each sense point 

area. We also have intentionally not modeled the functioning of the 

visual pathway in extreme detail. The form of the signal transmitted, 

the preprocessing performed by the retinal cells, and the transformation 

of signals to the occipital lobes are considerations for models which 

perform as their main function imitating in detail the "psychological 

Of • i 11 9,10,18,19 process v1s on. 
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Chapter IV. DESCRIPTION OF THE SYSTEM VISUAL 

A. Graphical Display 

An interactive graohical display device augments the utility of a 

general-purpose digital computer in three ways. First, user facility 

and convenience are achieved by presenting alphanumeric output in a 

soft form, where data can be searched efficiently without wasting time 

and material on volumes of hard copy which might be discarded after the 

gleaning of a single number. Secondly, the user gains speed and saves 

user time through interactive communication. Finally, the user gains 

interactive graphical communication with the computer. Graphical com-

munication allows the user to go beyond the bounds of languages and 

numbers to the visual world of graphical and diagrammatical representa-

tion. This is, after all, where man does his best problem solving. In 

some learning and pattern recognition tasks, there is already some evi-

dence indicating that man aided with an interactive graphical device 

performs better than man alone or computer alone. 
20 

Michie and Chambers 

explored the graph transverse problem of the most efficient connection 

of a single line to 50 points. Their results indicated man-machine 

interaction performed the task best. 
21 

Recently, John W. Sammons, Jr. 

presented an interactive graphic system intended for general pattern 

recognition use, which he feels" ..• will provide new and powerful methods 

for the exploration and ultimate understanding of complex pat terns." 

Lichlider and Clark in 1962 saw heuristic programming as a long--term 

1 h h - 22 problem whose solution wi 1 en ance man-computer partners 1ps. In 

fact, as far back as 1945, man expected and awaited interactive 

h . 23 
grap 1cs. Today many systems generally use interactive graphics in 

mathematical problem solving, data manipulation, and information 
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. 24-33 
d1splay. In these systems the ability to display and converse 

graphically is an important adjunct in problem solving. Speed and 

convenience are also important ingredients in these systems. \.Jhen 

problem solving involves formulation of a plan or heuristic, testing 

the process and evaluating the results, the ability to work in the 

immediate time domain aids the user indispensably. Thoughts can be 

formulated and tested without the dulling of painful and tedious pro-

granuning. 

With these guidelines, the system VISUAL has been constructed to 

show graphically as much as the user desires of the status and progress 

of the model before, during, and after the learning. The system allows 

the user to communicate graphically both in commanding the learning 

process and in handling the data. Of course, the user also gets the 

speed and facility of the graphical display. 

B. Equipment 

The system VISUAL is a large Fortran program designed for an 

IB}f 2250 Model 3 Graphic Display. The IBM 2250 is attached to an 

IB}1 360 Model 75 computer. VISUAL uses Fortran subroutine calls from 

Graphical Subroutine Package (GSP) 33 to control the 2250 interactively, 

while the 360 is under control of the MVT version of OS/360. 

Figure 15 shows an IBM 2250. The 2250 has the ability to display 

dots, straight lines, and characters on a 12" x 12" screen. The user 

can communicate with the system VISUAL by three devices whose function 

and utility are created by the program: The program function keyboard 

contains 32 buttons. The system can be programmed to sense when and 

'vhich button is pressed. The alphanumeric keyboard is a standard type-

writer keyboard. The software allows alphanumeric information to be 



transferred from the keyboard to a buffer in the 360. The light pen 

can be pointed at the display screen, and the program can sense which 

image has been "touched" by the light pen. 
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C. File Structure 

There are two main files in VISUAL: the model and the pattern 

file. The model has been described in Chapter III. It is updated dur-

ing the learning process and consulted during the simulation process. 

The model is embedded in a 3 by 12 by 252 array, and is formatted as a 

loose list of 3-tuples as shown below in Figure 16. 

j 
i 

1 

-1, 
1,2 

-1, 
1,3 

where 

2 3 4 5 6 7 

c .. 
1,] 

(x,y)i,j 
represents a 3-tuple, ~ unused 

Figure 16. Loose-List Structure of Model. 

12 

This loose-list structure enables a fiber bundle description (a 

sub list S.) to be located inunediately and to be processed quickly by 
1 

incrementing a single index. The loose structure allows addition of 

elements to a sublist during learning. This process has not been 
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implemented, but at one time was considered, and hence is discussed in 

Appendix C. 

There are other reasons for adding elements to the model. A more 

accurate model of the chiasm will require a larger model. Also, when 

the model is extended to the post-chiasma! pathway, the model will be 

larger. These increases will result in more c-sects and hence some of 

the unfilled locations in the loose list will be filled. The loose-list 

structure allows flexibility and ease in these changes in the model. 

The pattern file has information for each pattern consisting of: 

a) (x,y) coordinates contouring the visual field. 

b) Test object distance and size. 

c) Packed sense points, which is a digitized form of the 

information in a). 

d) Extent of the damage given in terms of the parameter r. 

e) Patient information includes name, age, condition, etc. 

f) Examination information contains comments on examination 

conditions as well as examiner's name, data, number of 

isopters. 

g) Diagnosis data lists x,y center and verbal description 

of diagnosis. 

Since a pattern represents a single isopter, and because an examination 

usually consists of more than one isopter, the pattern file is divided 

into a two-level file. The first level contains the "pattern" informa­

tion of a, b, c, and d. Items e, f, and g denoting patient information 

are in the second level of the file. In order to link between these 

two levels, each record has pointers to associates in other levels. 

Figure 17 diagrams this file structure. 
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Figure 17. Pattern File Structure. 

D. Graphic Data Sets 

The images and text which appear on the graphical display are 

grouped by the software into units called graphic data sets. 

Some of the graphic data sets are static. They are constructed 

once and remain unchanged throughout the execution of the program. 

These may be omitted (subroutine OMIT) from the screen or returned 

to the screen (subroutine INCL). These graphic data sets are 

ICHAST Top view of chiasm and c-sects 

ICHASS Side view of chiasm and c-sects 

ICUT Numbers of c-sects, light pen sensitive 

IGRID Normal grid for visual fields 

IGRID2 Large grid for input 
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The graphic data set that shows the information in the pattern file 

is the pattern board (IPAT). The pattern board presents a list and a 

brief description to the user. Preceding each entry in the list is a 

light pen-sensitive file number, which when touched causes the corre-

sponding pattern to be retrieved from the file. The pattern board 

changes as patterns are added or deleted from the file. 



The dynamic graphic data sets are created repeatedly in different 

forms during the various modes of operation of the system. 

IFORH 

IDAT 

IPATIIT 

IPATHS 

IRET 

I SECT 

IQ 

IVF 

IRINGT 

I RINGS 

IRINGF 

JRINGT 

JRINGS 

JRINGF 

Contour picture of the visual field pattern 

Patient and pattern data associated with the form 

Top view of sensitized paths 

Side view of sensitized paths 

Retina sense point display 

Display of sensitized fibers intersection with c-sect 

C-sect front view outline and number 

Redrawn visual field resulting from back trace 

IRING - Diagnosis of location and extent of damage 

JRING - Correction of location and extent of damage, 
also used to set lesion for back trace 
simulation 

42 
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E. The Svstem VISUAL 

VISUAL operates in six modes: initialization, input mode, diag-

nostic mode, learning mode, display mode, and output mode. 

Initialization is always the beginning step when operating the 

system. The initialization phase sets up in an initial model, and an 

initial pattern file. It also creates the static graphic data sets and 

the initial pattern board. 

\fuen the initialization phase is completed, the user may select 

any of the remaining modes or may terminate the processes. (See 

Figure 18.) 

INPUT 

MODE 

Figure 18. 

INITIALIZATION 

LEARNING 
MODE 

Overview of VISUAL FLOW 

TERMINATE 



Input mode permits the user to "sketch" a visual field, type in 

patient and pattern data, process the visual field picture to produce 

the sense point array, and store the information on the pattern file. 
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Output mode allows the output of the present model and/or selected 

patterns from the pattern file for a file that may be used in future 

runs of the system. 

The diagnostic, learning, and display modes are the heart of the 

system. 

Learning mode utilizes a single subroutine LEARN which implements 

the local learning discussed in Chapter V, and Appendices A and B. The 

user need only select the c-sect and the pattern sequence, S, either 

set values, or accept default values on the set of learning parameters, 

and call the subroutine LEARN. 

Display mode performs the back trace propagation to simulate a 

hypothetical lesion. The user first selects a c-sect with the light 

pen. Then using subroutine PRESSR, a ring of dots (JRING) is manipu­

lated until the user positions and sizes the graphic data set as he 

wishes. At this point, the system performs the back trace, sets the 

sense point arrays, and draws the resulting visual field. The flow 

of the display mode is given in Figure 19, while Figure 20 shows the 

graphic display status at the end of the display mode process. 

In diagnostic mode the pattern board is first displayed. The 

user light pen selects a pattern to be displayed. The pattern board 

disappears and the visual field appears (IFORM) along with the accom­

panying retina sense points (IRET). The graphic display is shown in 

Figure 21. The user has the option of selecting sense points with the 

light pen to view their corresponding fiber bundle paths. In Figure 22, 
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the user has light-pen-selected fiber bundle 171 to view. In Figure 23, 

he selects all sensitized fibers. The path sensitizing operation pre­

sents the same options, sensitizes only sense point touched by the light 

pen or sensitizes all fibers. Here the user may view the fault arrays 

sequentially or by command of the light pen. Figure 24 shows the fault 

array 2 being displayed. Next, the diagnosis algorithm is called and 

the diagnosis (IRING) displayed in Figure 25. The dotted circles sig­

nify the location and extent of damage. A subroutine is called to 

allow the user to present the system with a correction as shown in 

Figure 26, in solid circles. The flow of diagnostic mode is given in 

Figure 27. 

F. Parameters 

The system has three types of parameters: model parameters, learn­

ing parameters, and decision parameters. The learning parameters as 

discussed can be changed interactively. These parameters control the 

local learning process. The decision parameters can be changed (but not 

interactively) to cause the decision algorithm to perform differently. 

The model parameters are inputted during the initialization mode of the 

system. The user can control c-sect number and location, and sense 

point number and location. The path-sensitizing mapping properties of 

the system as well as other functions can proceed as usual, once the 

model parameters are set. User control of these parameters is an impor­

tant aspect of the flexibility of the system VISUAL. 
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DIAGNOSE 

Figure 27. Diagnostic Mode Flow 



Chapter V. THE LEARNING MACHINE 

In this chapter we wish to show the major concepts of the learn-

ing machine in VISUAL. The mathematics of the system are detailed in 

Appendix A. 

A. Classical Learning Machine 

A learning machine is a device which, through experience, adapts a 

method of performing a given task or a set of tasks. Learning machines 

have been primarily pattern-recognition devices whose task is to exam-

ine an unknown input, I, and respond, diagnose, classify, or interpret 

the input signified by emitting a response, R. This type of learning 

machine has been applied to primarily character recognition. Other 

types of learning machines have been made to play simple games (tic-

tac-toe), highly complex games (chess, go), perform mathematical hill 

climbing, simulate human cognitive processes, and solve general logic 

bl 34,35,36 pro ems. It is beyond our scope of concern to investigate 

all the configurations of learning systems; however, a basic learning 

system of the first type is presented below. It is the one representa-

tive of a learning machine which is very commonly used in many applied 

problems and has received thorough mathematical treatment in prominent 

k h f . ld f . . 6,37-41 wor s in t e 1e o pattern recogn1t1on. For this reason, it 

is called a classical learning machine. These machines learn on a 

training set of known inputs. When this training phase is completed, 

the machine performs its specific task on a second file of inputs, 

called simply the input file. 

The pattern recognition device may further be divided into three 

subsystems: the preprocessor, the feature extractor, and the pattern 

classifier. The preprocessor transforms the input from the input space 
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Figure 28. Classical Learning Machine in Learning Phase. 
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Figure 29. Classical Learning Machine Performing Tasks. 
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to a pattern space, filtering out noise, and if possible enhancing the 

input. In this discussion we include in the preprocessor all the func­

tions required to change the input in the real world to a digital form 

in the computer system. The feature extractor is important when the 

representation of the input is in a form difficult to handle mathemati-

cally. The feature extractor will transform the input from a pattern 

space to a feature space using a mapping that emphasizes distinguishing 

features of the input data while filtering noise and irrelevant charac-

teristics from the input data. The pattern classifier analyzes the 

feature space representation of the input pattern, and responds. It 

maps, therefore, a point in the feature space to a point in the response 

space. Usually the pattern classifier accepts in input (the point in 

the feature space) as an N-tuple, X, and evaluates M discriminant func-

tions, one for each response class. One of the values (say the maximum) 

is selected and that response class chosen. The performance of the 

pattern classifier is dependent on the performance of the feature ex-

traction. The functioning of the whole pattern recognition device is 

dependent on the functioning of each of the subsystems so that the 

interrelationships of the subsystems and the relationship of each sub-

system to the whole system is a prime consideration, and the separation 

of the functions of the subsystems is difficult. In practice, however, 

we break up the system into the three subsystems to facilitate the dis-

cussion of our system. Before proceeding, it is important to note that 

until recently, most of the work in the field of pattern recognition 

concentrated on the pattern classification problem. 42 The field of 

feature extraction has had few works yielding significant problem inde-

pendent results. Most work, in fact, has problem-dependent heuristic 
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feature extractors which utilize the ingenuity of the designer to 

overcome a particular problem. 

The classical pattern classifiers are usually termed parametric or 

nonparametric. Parametric classifiers have received much mathematical 

. 37-40 
analys1s ; the parametric classifiers assume a functional form for 

conditional probability distributions of the input patterns. These 

distributions are assumed known except for a set of parameters. The 

function of the learning machine is to learn optimum values of the 

parameters. Once these parameters are evaluated, they are used in 

discriminant functions which form the decision or response. 

Because the parametric learning machines depend upon the assumed 

probability densities, and because in applied problems these functional 

forms are often difficult to estimate, in practice the nonparametric 

learning machines are used in most useful applications. Adaptive 

distribution-free procedures are used in nonparametric learning 

machines. 

A general (nonparametric) learning machine is described in detail 

in Appendix A. There the mathematical definitions of the preceding 

terms as well as theorems and procedures are discussed, and the mathe-

matical support for the system is given. 

In summary of this introduction to classical learning machines, 

Figure 30 shows the relation of the mentioned terms. During learning, 

the supervisor compares the system response with the known response, and 

emits a correction. Notice that the correction from the supervisor 

feeds back to the pattern classifier. In parametric machines, the 

parameters are updated and improved. In nonparametric 111achines, 

weights may be changed as in the case of linear machines. 
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B. Adapted Learning Machine 

In this section we will show structurally the relation between 

the classical learning machine and the adapted learning machine used 

in the VISUAL system. The VISUAL system has its counterparts of the 

preprocessor, feature extractor, and pattern classifier subsystems. 

In the VISUAL system, the preprocessor performs the task of setting 

the sense points from a given visual field and isopter size. A sense 

point perceives a spot in the visual field at a location opposite, in 

the way shown in Chapter III. If this spot lies in an anoptic field, 

the sense point is set to one (1); otherwise it is set to zero (0). 
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If the spot is not visible in normal vision under the isopter size, 

the sense point is set to -1, signifying a 'don't care', and that 

point and associated nerve fiber is ignored. This masking of the 

'don't care' nerves is done according to limits of the normal visual 

field as shown in Table I. For example, in a 1/1000 isopter test, 

objects are not normally seen at 26° from the point of fixation. 

Objects at 30° are perceived by sense points in circle 9. Hence, for 

a 1/1000 isopter, sense points on circle 9 are set to -1. This infor­

mation is given in the last column in Table I. 

Thus the preprocessor transforms the visual field in a form of a 

clinical record to a set of sense points set to zero, one, or 'don't 

care'. The pattern space consists of more than 2252 points, since each 

of 252 sense points can be set to zero or one. The "more than 2252 " 

comes from the addition combinations with the 'don't care' masks. 

The feature extractor, using path sensitizing, transforms the 

sense point array to c-sect arrays as described in Chapter III, Sec­

tion C. The system is designed so that when the system is operating 
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well, the faults cluster best in the c-sect which has the lesion in its 

vicinity. The pattern classifier determines the response by picking out 

the best clustered c-sect array. Clustering will be defined in the next 

section. 

An important adaptation in the VISUAL system is the correction of 

the model instead of the weights or parameters in the pattern classi­

fier. This correction process is really performed during Local Learn­

ing, which is discussed later in this chapter. A diagrammatical com­

parison of the two systems follows in Figure 31. 
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C. Clustering 

In the current pattern recognition literature, clustering is not 

universally defined. As a property of data, it is the tendency of the 

same class to cling together in hyperspace. It is used to extract 

information about the structure of a data set. For example, in a 

population of sample points in the pattern space, clustering can be 

used to determine the number of major groups among the sample points. 

Clustering may reveal in addition some distance relations by finding a 

minimal spanning tree. 

In this paper, clustering is used to compare c-sect arrays in the 

decision process of the pattern classifier. The c-sect arrays have 

been set by the feature extractor using path sensitizing; they appear 

to the pattern classifier as lattice arrays with 96 by 96 points. At 

each point there may be a 1 if an affected fiber passes through the 

point, or a 0 if an unaffected fiber passes through, or an X if no 

nerve intersects the c-sect at that point. The cluster of faulty 

fibers in each c-sect array is measured with three heuristic measures: 

"count" (KCC), "density" (SMON), and "pureness" (SMX/NCC). The best 

cluster of faulty fibers should correspond to the location of the lesion 

in the patient. 

KCC is a count of the number of affected nerves which pass through 

the c-sect. The faulty nerve lattice points have a centroid (MX,MY) in 

the c-sect, and an average distance from the centroid (SMOM). Because 

the fiber bundles are sensitized one at a time, the information needed 

to calculate these measures is not available at one time; hence, MX~MY 

and SMOM are calculated on the run ..tnd are continually updated. 43 When 

an unsensitized nerve fiber is encountered, it is examined to see 
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whether it lies within SMOM of the point (MX,MY). If it does, the 

counter SMX is incremented by one. Thus SMX is an approximate count on 

the nt.nnber of unaffected nerves within SMOM of (MX,MY). The counter 

NCC is the count of the number of nerve intersections (affected and un-

affected) which pass through the c-sect. The pureness, or p factor, is 

defined to be SMX/NCC. Two assumptions are made: 

1. The area of damage in the patient is such that the affected 

fibers are adjacent and the area of damage is contiguous. (Exceptions 

here include multiple lesions and chiasma! shift. 7 These do occur in 

practice, but in the present system are not considered.) 

2. Unaffected nerve fibers will not be surrounded by affected 

nerves in a cross section at the area of damage. 

The first assumption requires that the best clustered fault array 

is more densely clustered than other arrays. The measurement SMOM 

yields a heuristic measure of this. By searching for the fault array 

with smallest SMOM, the decision rule shows preference to contiguous 

affected fibers. Consider the following geometric examples: 

SMOM = 10 

Array A 

,-\ 
I It .. ,; 

SMOM 

(MX,MY) 

SMOM = 13 

Array B 
Figure 32. Two Fault Arrays. 
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Intuitively, array A is better clustered than array B. Array B seems 

to violate the condition that the affected fibers be adjacent. (This 

does not restrict the affected fibers to lie at lattice points one unit 

apart, because in the c-sect the fibers do not fill every lattice point. 

The fibers are assumed to lie in a distribution that is a uniform dis-

tribution throughout the c-sect.) Array B would perhaps represent three 

disjoint fault clusters, while array A seems one contiguous fault clus-

ter as indicated by the dotted lines. 

Assumption 2 accentuates the clustering idea of assumption 1, but 

more importantly, is an important cluster feature in its own right. 

Consider the following figure: 

0 

0 0 

0 

NCC = 17 

SMOM = 10 

SMX = 3 

3 p =-
17 

0 

Figure 33. Fault Arrays with 
Unaffected Nerves. 

(A) 

(B) 

0 

NCC = 17 

SMOM = 10 

SMX = 4 

p = 4 
17 

0 0 

0 

0 

(Fig. 33 contd. on next page) 
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0 0 

NCC = 17 

SMOM = 10 

(C) 
SMX = 1 

1 
0 
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17 

0 
0 

001 0 0 

I 
NCC = 17 I 

SMOM = 10 ' 0 0 
(D) 0 

SMX = 0 

0 p =-
0 17 

0 
0 

Figure 33 (contd.). Fault Arrays with Unaffected Nerves. 

The fault array in (A) has many unaffected nerves among the clus-

ter of faulty nerves. The array in (B) has less. The array in (C) has 

even less, while the array in (D) is the best cluster according to 

assumption 2. The pureness is accordingly descending in arrays A, B, 

C, D, illustrating its worth has a heuristic to accentuate assumption 2. 

To illustrate how the P factor accentuates the presence of assumption 1, 

in Figure 34 arrays A and B of Figure 32 are redrawn with some unaffected 

nerves added. When the SMOM is larger, the chances of engulfing un-

affected nerves within this radius are greater. Hence, array B has a 

higher P factor than array A. 
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Figure 34. Fault Arrays of Figure 32 
with Unaffected Fibers Added. 

SMX = 3 

3 
p = ll 

These measurements are meant to be heuristics. They are fast, 

efficient means of measuring the loosely defined quality of cluster. 

Possibly one might devise unusual fault arrays where these measure-

ments do not work well, but in the present application they perform 

adequately. 
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D. Types of Learning 

Learning in the VISUAL system is performed by perturbating the 

model; the status of the model contains the substance or knowledge 

that has been learned. This substance is somewhat intangible and de-

fined and measured in terms of two heuristics, Local Learning and 

Global Learning. The system has two functions: building a good model 

of the visual pathway and performing diagnoses and simulation correctly. 

Local learning is concerned with the former, global learning with the 

latter. 

1. Local Learning 

Local learning concerns the behavior of the system with re-

gard to each c-sect separately. Consider one fixed c-sect, c-sect i, 

and for the moment, consider the reduced model, Mi, to be one lattice 

array of dimensions 96 by 96 lattice points, and N elements (nerve 

fiber bundles) mapped into the 9126 lattice points. From the train-

ing set T pick a subset Ti of training patterns whose lesions are 

associated with c-sect i • Each member t of T. will have the following 
1 

information about the lesion. In addition, there is a parameter FRAC 

which is used with all patterns. 

x = x coordinate of center of lesion 

y = y coordinate of center of lesion 

r = radius of extent of damage from center 

where 

1 ~ x,y ~ 96, x and y integers 

5 .:S r .:::, 96 * 12 

0.0 ' FRAC ~ 1.0. 

The lesion represented by a test pattern is such that affected nerves 
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lie within r of the center of the lesion and that unaffected nerves lie 

outside a distance of f = r * FRAC from the center. Figure 35 illus-

trates a possible lesion associated with a test pattern t, where x = 1, 

y = 96, r = 72.0, FRAC = 0.6667. 

c-sect i 

Affected 
Area 

Allowable 
Area for 
Unaffected 
Fiber Bundles 

Figure 35. Area of Damage in c-sect i. 

Note that although the regions outlined by the radii are sections 

of circles, the lesion is not restricted to that shape. The lesion 

shape does, however, contain the circle of radius f. Within the band 

between the circles of radius rand the circle of radius f, the shape 

of the lesion may vary considerably. The lesion will not extend past 

the circle of radius r. Unaffected nerves may lie anywhere outside 

the circle of radius f. Since we are dealing with maladies such as 

tumors and lesions, the shape of the affected regions may vary 



considerably. The geometry of circles seems to align itself with the 

idea that the pressure will probably be proportionate to the distance 

from the source of the malady. 

When a training pattern t is inputted to the system, the sense 

points are set and the path sensitizing is performed. In c-sect i, 

there will be two types of elements: l's representing sensitized 

fibers and O's representing unsensitized fibers; 'don't care' fibers 

being neglected. If the l's lie within r and the O's lie outside f, 

the model satisfies the training pattern t and no correction is neces­

sary. If the model does not satisfy the training pattern, the model 

is perturbated. The l's are moved toward the center and the O's are 

moved away. The manner in which these elements are moved is discussed 

in Appendices A and D. Geometrically, it suffices here to note that 
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the l's and O's are moved a fixed increment, INC. Figure 36 illustrates 

c-sect i with pattern t applied. In (A) the test pattern has been 

applied and three l's and two O's are in incorrect regions. (B) shows 

the movement initiated through a single application of the learning 

process. (C) shows the c-sect after the movement of the l's and O's. 

After one pass of learning has been applied, there is still a 1 in an 

incorrect region. More applications of pattern t are necessary to move 

it further toward its acceptable region. 
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Figure 36. Arrangement of Fibers in c-sect 
Before, During, and After Learning. 
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It is an important feature of the learning system that there are 

two types of movements of the fiber bundles: toward the center, and 

away from the center. It has been suggested to call this action "push-

pull" learning. The system can learn that fiber bundles pass near an 

area when damage to that area causes loss of vision in those bundles. 

Conversely, the fiber bundles corresponding to the portion of vision 

not impaired should not lie near the affected area. 

With regard to a single c-sect and a single test pattern, the local 

learning process using incremental movement can be applied repeatedly 

until the test pattern is satisfied. When more than one test pattern 

is applied to a c-sect, certain new situations must be dealt with. In 

particular, there are three major types of inconsistencies that may be 

seen when two test patterns are applied to a c-sect. Minor problems 

also arise from the implementation considerations. 

The first type of inconsistency occurs when a nerve bundle is sup-

posed to lie in each of two disjoint regions of the c-sect. Consider 

the following example: 
Center 

Test Pattern (i) xi yi r. Sense Point 7 Set to 
l. -

1 1 96 40 1 
2 10 1 30 1 

CENTER 1,'\ 

Figure 37. 
Type I Inconsistency. 

CENTER 2, 
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Nerve bundle 7 is in a location outside of r 1 • Hence application 

of pattern 1 causes the fiber bundle to be moved to point A. Then 

application of pattern 2 moves the fiber bundle to point B inside the 

circle of radius r 2 ; however, during this movement the fiber bundle has 

moved out of the first region. Because the regions are disjoint, re-

peated applications of these two patterns will cause fiber bundle 7 to 

oscillate between the two regions along the line joining the centers. 

The second type of inconsistency occurs when the fiber bundle is 

being sent out of overlapping regions. For example: 

Center Sense Point 8 
Test Pattern (i) X y ri f. Set to 

1 

3 1 45 90 70 0 

4 96 50 92 75 0 

Figure 38. Type II Inconsistency. 



Application of pattern 4 brings fiber bundle 8 to point A outside 

of the radius f 4 • Then application of pattern 3 moves fiber bundle 8 

to point B outside of f 3 • Since there is no area in the c-sect not 

covered by circle f 3 or circle f 4 or both, repeated applications of 

pattern 3 and pattern 4 result in oscillation of nerve 8 along the 

line joining center 3 and center 4. 

The third type of inconsistency occurs where a fiber bundle is 

moved into a region and at the same time out of another region that 

completely engulfs the first region. For example: 

Test Pattern (i) 

5 

6 

Center 
X y 

40 

42 

1 

1 

CENTER 5 

r. 
1 

30 

46 

25 

40 

CENTER 6 

Sense Point 9 
Set to 

1 

0 

Figure 39. Type III Inconsistency. 
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Fiber bundle 9 is moved to point A after application of pattern 5. 

Then applying pattern 6 moves bundle 9 to point B outside of circle f 
G' 

but also outside circle r 5 • Repeated applications of pattern 5 and 

pattern 6 will cause fiber bundle 9 to oscillate, since there is no re­

gion inside r 5 and outside f 6 • The area where this oscillation will oc­

cur depends on many factors, some of which are discussed in Appendix D. 

It is possible for the oscillation to progress along the circumference 

of both circles to a region near point c, but other movement factors 

may prevent this. 

The inconsistencies arrive mainly because the extent of the damage 

of a tumor or lesion is difficult to estimate, and the estimated value 

of r may be in error. Revisions in the radii help undo these inconsis­

tencies. Also, if the shape of the tumor does not fit well into the 

approximated regions specified for it, revision in r may aid the fit. 

Consider now a finite sequence of test patterns S = {t1 ,t2 , ••• tk} 

being applied to the model, and at each application incremental move­

ment being used. Learning on each member of the sequence is called a 

learning cycle. 

With these concepts, the entire learning process adds another 

level of learning (the revision of the radii) as shown in Figure 40. 

The algorithm that selects the radius to be revised in step 5 of 

the local learning process tries to pick the radius whose change will 

help the most oscillating nerves. This algorithm is detailed in 

Appendix B. 
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INITIALIZE 1 
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2 

7 

Figure 40. Local Learning Process on Sequence of Test Patterns. 

73 



In review then, a particular fiber bundle, j, has one of three 

relations with a given test pattern, i. The fiber may be sensitized, 

may be unsensitized, or may be unrelated to the test pattern with a 

'don't care'. Each of these relations imposes a region, R~, in which 
J 

the fiber bundle should lie. When the fiber is sensitized, the region 

R~ is the interior of the circle r. ; for the unsensitized fiber, the J J 

region R~ is the exterior of f.; and for the 'don't care' condition, J J 

the entire c-sect qualifies as the region. 
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The local learning process is a movement of each fiber bundle to 
k 

the region Ri = n R~ which is the logical intersection of the regions 
j=l J 

i. 
R .• 

J 
If there is an inconsistency between any two of the regions, the 

intersection is null. Revisions of the radii may alleviate most of 

the inconsistencies. When there are no inconsistencies, Ri is not null, 

and the movement will bring the fiber to a point within Ri. \Vhen incon-

sistencies exist, the movement results in oscillation as shown in Fig-

ures 37, 38, and 39. Both the movement and the radius revisions are 

part of the local learning process. 

The progress and effectiveness of the local learning process on 

a given c-sect, i, and pattern sequence t 1 ,t2 , ••• ,tk is measured in 

two manners. The first measures the speed of convergence of the local 

learning process. Convergence is defined as the minimization of the 

number of fiber bundles moved per learning cycle. Alternately, when 

some fiber bundles are moved more than once during a cycle, counting 

the total number of movements per cycle gives a more sensitive measure 

of convergence of local learning. In Chapter VI, some sample runs of 

local learning on pattern sequence are given. Convergence is shown by 

plotting fibers moved and total movement versus cycles. 
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The second measure of local learning is an attempt to measure the 

validity of the final values of the radii and the final position of the 

fiber bundles. To implement this measure, a number of different start­

ing configurations of the fiber positions are generated randomly. To 

each starting configuration, the local learning process is applied, 

using the same pattern sequence (and starting values of radii). The 

final position of each fiber bundle is compared for each starting con­

figuration. The closer together these final positions are the more 

precise the learning process. Tightness of the clusters of the posi­

tions also indicates the amount of information in the pattern sequence. 

Comparing the final values of the radii for each starting configuration 

yields a measure on the validity of the learning process. This measure 

of the local learning is further discussed and examples presented in 

Chapter VI. 

2. Global Learning 

The behavior to the system with regard to diagnosis is the function 

which is considered global in nature. The term global implies the de­

pendence of this function on more than one c-sect. Recall that the di­

agnosis algorithm compares the fault clusters of the different c-sects. 

In this regard, global learning is the ability of the system to change 

the model so that the clustering can yield proper diagnosis through the 

diagnosis decision algorithm. 

Global learning occurs indirectly when the local learning process 

is invoked. For this reason the learning feedback loop implied in 

step 6 of Figure 31 is not an immediate correction response, but an 

accumulated correction response that comes from repeated applications 

of the local learning process. When an application of a pattern, t, is 



applied in diagnostic mode, the user, upon viewing an incorrect diag­

nosis, corrects this diagnosis as to c-sect, (x,y) coordinates, and 

extent (r). The pattern t with the corrections may then be inserted 

into a test pattern sequence. Application of the sequence using the 

local learning process corrects the model. This type of local learn­

ing on many c-sects is important to the global learning progress. 
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Global learning is measured in terms of percent of correct diagno­

sis. The measurement is applied to two separate sets -- the training 

set composed of patterns that have been used in a local learning process 

and a test set of patterns not used in the learning process. The re­

sults of the global learning are discussed in Chapter VI. 

E. Difference of Area Measurement 

A final measure of the simulation ability of the system is to take 

patterns from the test set and simulate the damage at the c-sect, (x,y) 

coordinate, and extent given by the pattern. Using display mode, this 

results in a visual field. The difference in the area of the two visual 

fields is the measurement sought. The VISUAL system attempts to mini­

mize this difference in area. This process is illustrated in Figure 41. 

In summary, three types of measurement are used to monitor the 

learning process of the model and the system. Local and global learning 

measure the forward trace aspects, while the difference of area measure­

ment is used to monitor the back trace simulation. Before leaving the 

subject of learning and measurement, note that Appendix C includes some 

of the approaches to learning that were tested and not used because of 

various reasons. However, these approaches are described to give sug­

gestions for future research or refinements that may be made to the 

system. 
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Figure 41. Difference of Area Measurements. 
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Chapter VI. RESULTS 

In this chapter, some local learning results and global learning 

results are discussed. Also, considerations of the types of model 

development are presented. 

A. Local Learning Results 

Two aspects of local learning results are discussed: convergence 

of local learning on a pattern sequence, and local learning from dif­

ferent starting positions. In each case, examples are given first and 

the qualitative generalization. 
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In regard to local learning on a pattern sequence, some parameters 

may vary, affecting the convergence. INC is the parameter which con­

trols the length of movement of a fiber bundle during application of a 

test pattern. (Refer to Appendix D for complete discussion of move­

ment.) RINC is the parameter that is the change in the length of a 

radius which is determined by the radius selection algorithm discussed 

in Appendix B. FRAC, as shown in Chapter V, determines f by the rela­

tion f = r*FRAC. The unit of measure of the abscissa (time) in the 

following examples is LCYCL, the number of cycles per unit. Recall that 

a cycle is one pass through the training sequence. 

Example 1 

This is a typical example of local learning on a sequence. This 

example shows actual computer results of a sequence of eight patterns 

on c-sect 6 with FRAC = .8. Other data is: 

Units 

1 2-49 50-74 75-100 

LCYCL 25 6 3 1 

rnc 4 4 2 1 

RINC 4 4 2 1 
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Pattern X y Starting Radius Final Radius 

1 1 48 17.7 25.7 

2 48 1 91.6 87.6 

3 48 1 58.0 54.0 

4 48 1 16.9 44.9 

5 96 96 135.4 135.4 

6 96 96 120.0 108.0 

7 96 96 31.5 91.5 

8 96 48 60.0 28.0 

The arrangement of the patterns and their (starting) radii is 

shown in Figure 42. 

c-sect 6 

Figure 42. Arrangement of Pattern Regions for Example 1. 
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Figure 43 plots the convergence of the local learning. Both the 

total fiber movement (t graph) and the number of fibers moved (g graph) 

are charted. The total fiber movements must always be greater or equal 

to the number of fibers moved. The strict inequality holds when one or 

more fibers is moved more than once in a cycle. After each unit, the 

radius changed is marked by vertical lettering ri ± j, where radius i 

is increased (+) or decreased (-) by j. At the end of the first cycle 

the value of the t graph and the g graph was 180 and 70, respectively. 

After 25 cycles (one unit) the values came sharply down to 55 and 30. 

The general trend of both graphs then was to decrease until conver-

gence to zero at 52 time units. There are some areas of increase in the 

graph at 7, 8, 9, at 22, and at 24. At these points the measurement of 

learning indicates more fiber bundles are being moved because of the 

change of a radius. This does not indicate real "negative" learning 

because the radii value at these points is still converging to the final 

value that satisfies the pattern sequence. In the interval marked (a) 

on the graphs, the convergence shows no marked improvement, and con-

tinual monotone change of a radius (in this case radius 4) seemingly 

does not improve the model. On the contrary, the model is continually 

being improved in this region. Probably at this point inconsistencies 

are encountered which need large alterations in the radii to become 

h d • "f' d • t d II consistent. Since the radii are c ange 1n a 1xe -1ncremen mo e, 

the measure of learning seems constant until the accumulated change in 

the radii is sufficient. 



f graph 

r6-4 

10 I I . -. • fF. -··. ~ 

a 

15 ! 
r7+4 

r4+4 
r4+4 
r4+4 

r8-4 

r7+4 
r8-4 

r7+4 

Figure 43. 
Example 1 Local Learning Convergence. 

(Fig. 43 contd. on next page) 
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Another phenomena which is indicated in Figure 43 is oscillation of 

the radii values. In the interval b, the value of radius 1 oscillates 

between 29.7 and 25.7. Movement of a few fiber bundles oscillate also. 

In the 50th time interval, the parameters RINC and INC are halved, end­

ing the oscillation and resuming convergence. The movement is very 

sensitive to INC, since in time slots 51 and 52, rl has no total change, 

but the change in INC allows the fiber bundles to slip into different 

lattice points. (See Appendix D for details on movement.) 

In general, the convergence can be improved somewhat by using the 

absolute-error-correction type movement, which is discussed in Appen­

dix D. The fixed-increment movement, although slower, is easier to con­

trol, and allows more flexibility. Especially in cases where conver­

gence does not go completely to zero, the fixed-increment movement per­

forms smoother. Consider Figure 44, where fiber bundle 6 needs to be 

in regions r 1 , r 2 , and r 3 to satisfy the pattern sequence. There are 

cases (when data is in error, for example) when these situations occur 

and the radii cannot be changed without introducing an equal or greater 

inconsistency involving perhaps other fibers. Absolute-error-correction 

movement will result in the final movement oscillation shown by the 

dotted lines, while fixed increment movement causes the bundle to 

oscillate less, indicated by the solid lines. 

A second reason to prefer fixed increment mode is that it allows 

the system to handle patterns with multiple regions within a c-sect. 

For example, consider pattern 9, which is caused by pressure from be­

low on c-sect 6. The pressure below is sufficient to push the chiasm 

up and press the top of the chiasm against tissue above the chiasm. 
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This results in some damage to fibers in two regions of the chiasm, as 

shown in Figure 45. 

6 ' .. 
..... 

...... ....... 

Figure 45. Region of Damaged 
Fibers in Pattern 
9. 

' 
...... 

Figure 44. Oscillation for 
Two Types of 
Movement. 

\ 
\ 

(48,96) 

(48,1) 



When pattern 9 is added to the pattern sequence in Example 1, 

the local learning cycle proceeds as before with slight modifications. 

First, pattern 9 is not used in the first five time intervals. This 

is to allow the fiber bundles to perform some major migration before 

being influenced by pattern 9. When pattern 9 is added to the learn­

ing sequence, each fiber is influenced only by the region of pattern 9 

to which it is closest. Absolute-error-correction movement would 

cause implementation problems at that point. 

Figure 46 shows the local learning profile of Example 1, with 

pattern 9 added, using the adaptations listed above. 
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Example 2 

This example uses the same pattern sequence and data as Example ]. 

Six different starting configurations are used, and local learnin~ 

performed for each configuration. The starting configurations are 

generated randomly uniform over the discrete 96 by 96 lattice points. 

For each fiber bundle, the starting position and ending position 

is noted for the six learning runs. The starting centroid (SC) and 

average distance from the centroid (ASD) for the six starting loca-

tions are calculated. Likewise, the ending centroid (EC) and average 

distance of the ending locations from the ending centroid (AED) are 

calculated. This AED is the most important measurement. A snall AED 

indicates that (for that fiber) no matter where the starting position 

is set, the fiber moves to nearly the same ending position. This also 

means that both the learning heuristic is good, and that the pattern 

sequence contains a significant amount of information concerning that 

fiber. Figures 47, 48, and 49 show starting and ending configurations 

for fibers 4, 24, and 222, in Example 2. S. and E. are positioned at 
1 1 

the ith starting and ending locations, respectively. The data shown 

graphically in the figure is listed in Table II. 

The average distance is reduced by 93.2 percent; 87.5 and 83.6 per-

t for f "bers 4 24 and 222 In general, the reduction rate is about cen 1 , , • 

85 percent in Example 2. 
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Figure 47. Distribution of Starting and Ending 
Locations for Fiber Bundle 4. 
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Figure 48. Distribution of Starting and Ending 
Locations for Fiber Bundle 24. 
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y 

Figure 49. Distribution of Starting and Ending 
Locations for Fiber Bundle 222. 
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Position Fiber 1 2 

X y X y 

Starting 4 87 49 42 81 

Ending 4 26 47 19 48 

Starting 24 15 19 19 55 

Ending 24 51 45 57 58 

Starting 222 89 92 10 12 

Ending 222 15 43 4 32 
~------- L__ --- -

Table II. 

DATA FOR EXAMPLE 2 

Run Number 

3 4 5 

X y X y X 

40 12 . 43 10 95 

24 46 24 48 45 

56 21 24 77 42 

68 47 55 57 56 

15 5 4 17 84 

4 32 3 33 16 
L__ -- - - - '-----

6 

y X y 

21 32 7 

49 21 47 

51 71 81 

52 63 51 

72 55 60 

44 15 43 

Centroid 

X y 

56.8 30.3 

23.2 47.5 

37.9 50.7 

58.3 51.7 

48.8 43.0 

9.5 37.8 

Average 
Distance 

from 
Centroid 

35.11 

2.39 

28.67 

6.75 

46.26 

8.03 

\0 
l-.1 



Another measurement to note here is the consistency of the final 

values of the radii. Table III shows that the value of radius 4 very 

consistently stops near 56.9, even though its value change is one of 

the largest of the radii. The value of radius 2 varies the greatest. 

Addition of one or two more patterns in the pattern sequence helps 

lessen this variance. 

Table III. 

RADIUS VALUES FOR EXAMPLE 2 

Radius Starting 1 2 3 4 5 6 

1 17.7 19. 7 17.7 20.7 17.7 14.7 17.7 

2 91.6 79.6 79.6 59.6 71.6 63.6 79.6 

3 58.0 62.0 58.0 58.0 58.0 58.0 58.0 

4 16.9 56.9 56.9 56.9 56.9 56.9 58.9 

5 134.4 134.4 134.4 134.4 134.4 134.4 134.4 

6 120.0 118.0 120.0 118.0 114.0 116.0 116.0 

7 31.5 87.5 99.5 88.5 88.5 87.5 91.5 

8 60.0 28.0 22.0 27.0 25.0 28.0 22.0 
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B. Global Learning Results 

Global learning is the ability of the system to improve its diag­

nostic performance through local learning in more than one c-sect. For 

example, suppose pattern A is diagnosed as belonging to c-sect i rather 

than c-sect j (its true location). This may be caused by one of many 

decision steps in the diagnosis algorithm (see Appendix B). Further, 

suppose the SMOM(i) (the SMOM measurement of pattern A in c-sect i) is 

less than SMOM(j) (the SMOM measurement inc-sect j). This would result 

in a misclassification. After some local learning in c-sect j and 

c-sect i, it is probable that the SMOM(i) increased, while SMOM(j) de­

creased, rectifying that decision step in the diagnosis algorithm for 

pattern A. A similar consideration can be shown concerning the pure­

ness factor and other parameters. The results of local learning to 

improve the diagnosis can be seen in the following example. 

Example 3 

Two sets of patterns are presented to the system. Each set has 

some patterns belonging to c-sects 3, 6, and 7. The set Twill be 

used to train the system. That is, the patterns of T belonging to 

c-sect 3 will be applied to c-sect 3 for local learning. The same 

will be done for the patterns of T belonging to c-sects 6 and 7. The 

patterns in set Q will not be used for training, since Q will be a 

"test" set. 

Before learning the patterns, T had 9 incorrect and 1 correct 

diagnosis for a 10 percent performance. Set Q had 9 incorrect and 

1 correct for 10 percent performance. 



After the learning, the system performance was 4 incorrect and 

6 correct from set T for 60 percent and 50 percent improvement, while 

the test set Q showed 5 incorrect and 5 correct for a performance of 

50 percent and 40 percent improvement. 

As anticipated, the system did better with the T set than the 

Q set; however, it is important to notice that significant improve­

ment is accomplished for the Q set, even though none of the patterns 

in Q were used in learning. Because of this phenomenon, it is felt 

that after a substantial amount of local learning, the system will 

perform well even on patterns that were never used in learning. 

C. Difference of Area Results 

Example 4 
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The global learning can also be measured by the "difference in 

area method" mentioned in Chapter V. That is, using the backtrace of 

display mode, simulate a lesion in a particular location and find the 

resultant visual field; compare this visual field to the known visual 

field and measure the difference of areas of the two fields. As this 

example shows, this area is lessened by local learning (see Figures 50 

and 51). Pattern A was a member in set T of the preceding example, and 

pattern B is from set Q. In each case the true pattern is shown first, 

then in dotted lines superimposed on the backtraced patterns, with the 

difference in area shaded. As with the other measurement of local 

learning, the improvement for both patterns is substantial, with the 

system performing better on pattern A. 



Original 
Pattern 

Back trace 
Pattern 
Before 
Learning 

Back trace 
Pattern 
After 
Learning 

96 

Difference in Area .12302 

Difference in Area .05000 

Figure 50. Difference of Area for Pattern A. 
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Difference in Area .22006 

Figure 51. Difference of Area for Pattern B. 

97 



D. Types of Model Development 

There are two criteria on which the development of the model is 

measured: 1) Does the model perform diagnosis well under simulation? 

2) Does the model accurately represent its physical counterpart, the 

anatomy of the visual pathway? Four types of models may result. The 

model sought is one which satisfies both criteria. It is conceivable 

that a model may be developed which satisfies one of the criteria but 

not the other, or perhaps the model will not satisfy either. Before I 

can definitely assert that I have developed a model of the first type, 

I feel that the model and the system must undergo more field testing 

by ophthalmological experts. The evidence thus far supports such an 

optimistic conjecture. First, the global learning, of which Example 3 

is typical, shows criteria 1 is satisfied. Secondly, the graphical 

display of the model enables the ophthalmologist to compare the model 

to the actual anatomy of the visual pathway as he knows it. Also, the 

results of the difference of area measurements as shown in Example 4 

tend to support the conjecture that the model closely represents its 

physical counterpart. 

E. Conclusions 

The system presented shows that through interactive graphics, the 

tasks of learning and diagnosis can be merged. In fact, in this re­

search the tasks are interconnecteq and complimentary -- faulty diag­

nosis yields learning, learning improves the model, and the improved 

model improves the diagnosis. 
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Furthermore, the learning algorithms, because of their originality, 

are a contribution in learning machines. I hope and feel that this 

push-pull learning algorithm will have broad applications. Finally, 



the syBtem shows that utilizing path sensitizing and clustering con­

cepts together is a practical and efficient means of topologically 

diagnosing networks. 

The present system has two notable shortcomings. First, in diag­

nostic mode, the system considers only one isopter at a time. There 

is often some information that can be gained by comparing several 

isopters of a patient's visual fields. 7 When the system is expanded 

to include the optic nerve and the post-chiasma! pathway, the ability 

of the system to consider more than one isopter in its diagnosis pro­

cedure will become important. Secondly, a few diseases result in 

multiple pressure locations in the visual pathway. These diseases 

cannot be handled properly by VISUAL, , although intuitively it seems 

that they could be dealt with by extending some of the concepts 

developed in this research. 
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MATHEMATICAL FOUNDATIONS 

106 

In this appendix, the ingredients of a classical learning machine 

are introduced, and the fundamental training theorem is stated. The 

classical learning machine may use many types of learning processes. 

An intuitive and geometric introduction of three of these processes -­

fixed, fractional, and absolute movement-- is given. Each of these 

processes uses a weight vector, w, and each process requires certain 

conditions and constraints for the learning to be successful. Since 

these conditions are not thoroughly developed in this review, the 

fundamental training theorem is presented in the form of an axiom; that 

is, without proof and without the conditions of the hypothesis being 

specifically stated. The interested reader will find Nilsson6 a source 

for a more complete development of the fundamental training theorem. 

After the classical learning machine structure is discussed in Section 1 

the corresponding mathematical structure for the adapted learning 

machine is presented. The learning process in the adapted machine 

utilizes a model, M, as opposed to the weight vector, w. This discus­

sion of the adapted machine is incomplete in that the conditions under 

which the learning processes are successful are not presented. Although 

the conditions have not yet been formally developed and in fact are not 

completely understood, the mathematical framework for the adapted 

machine is presented, and corresponding fundamental training theorems 

are stated. It is hoped that future research will complete the mathe­

matical structure by supplying the conditions under which the processes 

succeed in their learning task. 
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Note that the important terms in this appendix are underscored as 

they are presented. Also note that the discussion of the adapted 

machine is divided into a section on local learning and a section on 

global learning. Before proceeding, the reader should refer to Figure 

31 on page 59, which diagrammatically compares the structure of the 

classical machine and the adapted machine. 

1. The Classical Machine 

6 The classical learning machine as presented by Nilsson has the 

task of identifying an input as a member of one of R categories. The 

inputs are elements of a pattern space from which f features are ex-

tracted. - T The vector representation of an element is y =[y1 ,y2 , ... ,yn] . 

To train the machine, a training set Y is available. Y is partitioned 

when i:; j. 

v. 
l. 

Each V. is a collection of training patterns, 
l. 

-(i) -(i) 
Y2 ,. • • ,ym. ' 

l. 

An element y E Y belongs to V. if its true label is category i. The 
l. 

training set is finite and has N0 = m1 + m2 + ... +mR training patterns. 

The machine learns on the training patterns utilizing some learning 

process and some weight vector, wt, which (as a result of the learning 

The process) changes with time. wt is an element of a vector space W. 

learning process consists of two phases, evaluation and learning. At 

time t an input 
-(i) 

test pattern, yk is presented to the learning machine 

for evaluation, 
-(i) -

denoted by f(yk , wt) = j. Where f is a function 

mapping W x Y ~ {1,2, ..• ,R}, j is the machine's choice of category for 

When j 
-(i) 

= i, the machine has diagnosed yk correctly; however, 

when j :; i, the learning process changes wt to a new weight vector, 



wt+l 

-(i) -
yk ,wt 
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Diagrammatically: 

When j = i, wt satisfies y~i). It is convenient to think of the tran­

sition of wt to wt+l as movement in the W space. If a w £ W exist 

which satisfies ally £ Y, it is a solution. The set of all such w's 

is the solution set, S l: W. 

Geometrically, the movement of the weight vector in W is of three 

types. In fixed (-error-correction) movement, lwt+l - wtl = 

That is, the distance moved in the W space is a 

constant. In fractional (-error-correction) movement, lwt+l - wtl = 

d(t); that is, the distance moved in theW space depends on time. 

These two types of movement are diagrammed in Figures 52 and 53. In 

absolute (-error-correction) movement, wt moves a sufficient distance 

-(i) 
so that wt+l satisfies the input test pattern, yk • Denote the set 

of w which satisfies the test pattern y~i) by h~i). Then the learning 

(") 
process at time, t, with input pattern, yk~ , and wt' insures that 

wt+l £ h~i). In Figure 54, absolute movement is diagrammed for three 

training patterns y1 , y2 , y3 applied in the sequence y1 ,y3 ,y1 ,y2 ,y1 , 

showing the movement of w into h1 ,h3 ,h1 ,h2 ,h1 . 

Let c; = yi,y2,y3,··· be a sequence of elements of Y such that 

every element in Y occurs infinitely often inC'. C' is a complete y y 

training sequence. 

To begin the learning process, an initial weight vector w0 , is 

selected. Then apply c; and form a new sequence Cy = y1 ,y2 ,y 3, ... by 

i'' 
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SPACE 

Figure 52. Fixed Movement. 
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SPACE 

Figure 53. Fractional Movement. 
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SOLUTION 55 
------

W SPACE 

Figure 54. Absolute Movement. 



112 

deleting those elements of C' which do not move the weight vector w 
y t. 

Cy is the (reduced) training seguence and We= w0 ,w1 , .•. is the corre­

sponding reduced weight seguence. When w moves into a point in the 

solution set, S, application of any element of Y will not move wand 

hence the learning process halts. The task of the classical learning 

machine is to take an initial w0 and use the training set Y to move w 

into the solution set. When certain conditions are satisfied, the 

classical learning machine behaves so as to satisfy what Nilsson calls 

the general fundamental training theorem. 
fixed 1 

Let L be a leaPning maahine, using- fractional\. movement in its 
, absolute 

learning process, ~hose task is to identify patterns of R types. 

Let Y be a set of training patterns, and suppose a solution set 

exists for Y. Then given any initial ~eight vector, w0, and 

applying any complete training sequence C will cause w to move 
y 

to a point in the solution set in a finite number of steps. 

2. The Adapted Machine (Local Learning). 

In Chapter III, the model was presented as a sequence of 252 

lists. Then in Chapter V, the model was partitioned into P submodels, 

M., i=l,2, ..• ,P, where Pis the number of c-sects. Recalling that 
1 

local learning involves one c-sect at a time, we facilitate the dis-

cussion here by fixing i and calling the submodel, Mi, simply "the 

model." 

The model M. is concerned with N. elements, corresponding to 
1 1 

the fiber bundles that intersect c-sect i. Each element has an x 

and y coordinate corresponding to the lattice point intersected by 

the element. Thus Mi may be described by 2Ni discrete variables, 

x ,y ,x ,y , ••. ,~ yN where the range of each variable z is 1 ~ z ~ 96 
1 1 2 2 i i 
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as determined by the lattice size 96 x 96. H M b "d d ence, . may e cons1 ere 
1 

a point in 2Ni-dimensional model space. 

Similarly, the training set T can be partitioned into P subsets, 

the subset T. consisting of training patterns that affect c-sect i. 
1 

The local learning task of the adapted machine is to arrange the 

N. elements within the c-sect so that the model M. satisfies the train-
1 1 

ing patterns inTi. A training pattern tj E Ti consists of a visual 

field D., a c-sect C.= i, a center (~.,Bj) and a radius of damage 
J J J 

extent rj" D. is processed to assign to each of theN. elements the 
J 1 

value of one, zero, or x ('don't care'), depending on whether the fiber 

bundles are affected, unaffected, or outside normal vision. Therefore, 
. j . 

the processed D3• is represented by the two lists 0j = (~J,02 , ••• ,0J ), 
qj 

z. = (z1,z~, •.. ,zj) omitting the list of 'don't care' fiber bundles 
J ~. 

which consists of fhe Ni-qj-£j bundles not listed in 0j or Zj. The 

training pattern tj has the following information for the local learn­

ing t . = { 0 . , Z . , (a . , 8j) , r . } • 
J J J J J 

Mi satisfies tj if: 1) elements of 0j 

are within a distance of rj from (~j,8j); 2) elements of Z. are at 
J 

least a distance of fj = rj*FRAC from (~j,Bj). 

When M. does not satisfy t., the elements that violate (1) are in 
1 J 

A 

the set 0., while those that violate (2) are in set Z .. The applica-
J J 

tion of Mi to tj and the result is denoted by: 

f (M., t.) = 
1 J 

when M. satisfies t. 
1 J 

A A 

(0.,Z.) when Mi does not satisfy t .. 
J J J 

A 

In the learning process, each element in 0j is moved toward 

( a 0 ) while the elements listed in Z. are moved away from (a.,S.). 
j'""'j J J J 

Considering the movement of these elements one at a time, a movement 



of an element a distance d in the c-sect causes the model M. to move 
l. 

distance d through the model space. These elements (and hence the 

model) may move in three modes as the weights do in the classical 

system. 

In the adapted system, a complete training sequence C. is a se-
1 

quence of patterns from T. such that every element ofT. appears in-
1 1 

finitely often in Ci. When applying Ci, the model Mi moves through 

the model space every time a pattern is encountered which the model 
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does not satisfy. The (reduced) model sequence is a record of the 

path traversed by the model Mi from the initial point M~ forward. 

[M~,M~,M~, •.. ,]. The set of points in the model space that simultane-
1 l. l. 

ously satisfy every member of Ti is the ~elution set Si' and is a 

subset of the model space. Well-behaved means that the exit B in the 

movement algorithm was never used (see Figure 62). 

The general fundamental training theorem for a local-learning 

model-building system: 

Let M. be a submodel partitioned from M and let T. be the 
l. 1 

corresponding partition of the training set T. If a solution 

set s. exists and if~ when applying a complete training set c., 
l. l. 

the system is well-behaved~ then given any starting configura-

tion M~ ~ the model travels through 
1 

in s. for a learning machine using 
1 

the model space to a point 
fixed 
fractional movement. 
absolute 
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Co:rooZZary. 

Let H be a model partitioned into suhmodels M1 ,M , ••• M 
2 ' p 

and letT be a training set partitioned into T1 ,T2 , ••• ,T. 
p 

Then if each M; converges to a point in s. (defined by T.) 
... ~ l. 

then the model M conver>ges to a point in s defined by T. 

The total model space in which M is found is the concatenation of 

M1 ,M2 , • • ·, and ~1 • S is a subset of M fanned from the concatenation of p 

S1 ,S2 , ••• ,SP. The corollary follows immediately from the fundamental 

theorem. 

In practice, it seems that the given set of patterns Ti has incon­

sistencies and application of a complete training sequence C. results 
l. 

in oscillation of the fibers as shown in Figures 37, 38, and 39. Using 

a ping-pong strategy of applying a finite segment of C. and then revis­
J. 

ing the radii according to the oscillation appears to eliminate the in-

consistencies in Ti and allows Mi to have a solution set to which it 

can converge. 

3. The Adapted Machine (Global Learning) 

The local learning in the c-sects has a profound effect on the 

ability of the machine to perform diagnosis using the diagnosis algo-

rithm detailed in Appendix B. The results in Chapter VI show that 

local learning improves the diagnosis percentage. In this regard, the 

training set Tis said to be sufficient if, after the set is parti-

tioned and local learning converges for each c-sect, the diagnosis of 

each member of T is performed correctly. It is hoped that a large 

sufficient training set applied to the model contains enough informa-

tion for the machine to formulate a model capable of diagnosing most 

patterns. 
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Appendix B 

TWO HEURISTICS 

1. Radii Selection 

Function - The radii selection algorithm selects and changes a 

radius use in a pattern sequence. The radius selection will most prob-

ably contribute greatly to alleviation of an inconsistency condition. 

Data from the last learning cycle has been retained for each pattern. 

MOVI(I) and MOVO(l) is the number of elements of ei and Zi (see Appen-
~ A 

dix A), respectively lf some patterns have either ei or Zi equal to 

zero but not both, then among these patterns, I is selected which has 

the maximum MOVI(I) or MOVO(I). If no ei or Zi is null, the greatest 

MOVI(I) . MOVO(I) rat1os determine I. For clarity, the flowchart of this process 

is included as Figure 55. 

2. Diagnosis 

Function - Select c-sect and determine center and radius of 

damaged area. Select preference is to c-sect with approximately 

highest count and best clustering. Approximate highest count is used 

since c-sect 5 always has highest count because all nerve bundles pass 

through it, and because of looping some affected fibers may nearly 

miss the affected c-sect (see Figure 56). 



MAXI=O 
MAXO=O 
MAXIP=O 
MAXOP=O 

MAXI=MOVI(J) 
MAXIP=J 

Yes 

Yes 

No 

Yes 

MAXO=MOVO(J) 
MAXOP=J 
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Yes 

Figure 55. Select and Change Radius. 

(Fig. 55 contd. on next page) 



ZMAX.I=O 
ZMAXO=O 

ZI = MOVI(J) 
MOVO(J) 

ZO = 1/Zl 

ZMAXI=ZO 
MAXIP=J 

No 

ZMAXO=ZO 
MAXOP=J 

No 

Yes 

MAXI=ZMAXI*lOO 
MAXO=ZMAXO*!OO 

Yes 
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RAD(MAXOP)= 
RAD(MAXOP)-RINC 

RAD(MAXIP)= 
RAD(MAXIP)+RINC 

Figure 55 (contd.). Select and Change Radius. 



No 

KMX=KCC(S) 
J=O 
I=1 

J=J+1 
IMS(J)=I 

I=I+1 

IMS(1)=6 
J=l 

Figure 56. 

P = number of c-sects 

KCC(I) = count of affected 
nerves in c-sect I 

IMS(I) = storage array of 
candidate c-sects 

SMOM(I) = average radius of 
affected fibers in 
c-sect I 

P(I) 

MX(I) 

MY(I) 

FRAC3 

FRAC4 

= pureness factor 

= X centroid 

= 

= 

= 

y centroid 

screening parameter 

radius parameter 

IMS (1)=3 
IMS(2)=7 

J=2 

Diagnosis Algorithm. 
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(Figure contd. on next page) 



SM=9999 
I=l 

ISM=O 

ISM=K 
SM=SMOM(K) 

ID=ISM 

120 

NO 
DIAGNOSIS 

Figure 56 (contd.). Diagnosis Algorithm. 

(Figure contd. on next page.) 



No 

KX=MX(ID) 
KY=MY(ID) 

KYC=96 

R= 
SMOM(ID) 

DIAGNOSIS 
C-SECT=ID at 

KXC,KYC 
RADIUS R 

Yes 
KKX=KX 

Figure 56 (contd.). Diagnosis Algorithm. 
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Appendix C 

OTHER APPROACHES TO LEARNING 

1. Moments 

Initially, a method was proposed using moments of fiber bundles 

within a c-sect relative to the centroid of the fibers. Calculation of 

the centroid involved first x and y moments. In this method the faulty 

sense points are set and the fiber bundles sensitized, and as before, 

this results in a fault cluster of l's. When the centroid of the l's 

is taken, the distance between the centroid to the (x,y) coordinate of 

the center given in the test pattern data is calculated. If this dis­

tance is greater than a threshold, a fixed increment moving process is 

called. Figure 57 illustrates this process. 

To some extent, this method worked fairly well, but it had several 

disadvantages. The threshold value is difficult to estimate, hence the 

learning process may stop too soon or not soon enough. It is possible 

to have the centroid within the threshold distance of the center and 

yet have some fiber bundles far away from the main cluster. No provi­

sion is made to move unsensitized bundles away from the center. Move­

ment tends to draw too many points near the center. This latter dis­

advantage can be corrected by moving fiber bundles in a fractional 

increment mode rather than fixed increment mode. For example, the 

incremental distance moved by the fiber could be made proportional to 

the distance between the fiber and the center. 



Threshold 
Distance 

* 

(A) 

~I 

-1 

"'I 
(B) 

Figure 57. Moment Learnfng. 

Calculated 
Centroid 

New -
Centroid 
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2. Interpolation 

A form of interpolation may be used to supplement the arrangement 

of fiber bundles in a c-sect where not many patterns are available for 

learning. If this c-sect lies between two c-sects which have experi­

enced much learning, the position of the fiber bundles in these c-sects 

can be used to influence the position of the c-sect in question. Again, 

a diagram aids the discussion. 

~ ~ 
F' 

Top View ' ~ ~X 

c-sect i c-sect j c-sect k 

Side View 

Figure 58. Interpolation. 

A fiber bundle passes through c-sect i, j, and k. The position of 

the fiber bundle in c-sect i and k has been established through local 

learning, and is indicated by *'s. Linear interpolation could be used 

to establish the (x,y) coordinates in c-sect j. 

More elaborate interpolation systems can be envisioned. Higher 

order interpolation can be used if the fiber position in more c-sects 

is considered in the interpolation. Technical problems arise in actual 

implementation of this algorithm. For example, interpolating for 

c-sect 3 using c-sect 1 and 5 presents a problem, since in the top view 
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(see Figure 11) linear interpolation could result in selecting a point 

off of c-sect 3. To see this, connect the upper edge of c-sect 1 and 

c-sect 5 in Figure 11 with a straight line. 

3. Reordering Curves 

Another form of learning which has been considered but not imple­

mented or tested is called reordering curves. The basic assumption for 

this heuristic is that the sequence of the sense points on a ray carries 

over to the new positions of the fibers in the c-sects. To illustrate 

this, consider the sequence of sense points 4, 5, 6, 7, 8, 9 on ray 1 

of the left retina. As the fibers pass through the c-sects, it is prob­

able that along some simple curve in the c-sect connecting the fiber 

bundles, the sequence is preserved. This assumption leads to a re­

ordering phase in the learning process. Figure 59(A) shows the arrange­

ment of the sense points 4, 5, 6, 7, 8, 9 in the left retina. Figure 

59(B) shows the corresponding fiber locations in c-sect 1 after a 

hypothetical local learning process. A simple (second degree) curve 

approximately fitting these points is drawn. Notice that fibers 7 and 

8 are "out of sequence." This would be repaired by reordering the 

fibers in locations along the curve as shown in Figure 59(C). 



Arrangement 
in Left (A) 
Retina 

After Local (B) 
Learning 

After 
Reordering 

(C) 
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------~------1r--~~pproxirnating 

)( 

9 

Figure 59. Reordering. 

Curve 
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4. Directional Learning 

This type of learning is similar to the local incremental learning 

discussed in Chapter V. However, it represents an immediate feedback 

of correction for the feedback loop of Figure 3l(B). The learning 

process proceeds in this manner: In diagnostic mode, a pattern is 

simulated and diagnosed. If the diagnosis is incorrect, the user in­

puts the corrected diagnosis. Immediately the system performs direc­

tional learning by moving the sensitized fibers toward the center of 

the correction and moving the unsensitized fibers away from the center. 

In this process no limiting radii are used, and hence the process 

suffers from the same "overlearning" problem that the moment-generated 

learning has. 

5. Addition Learning 

The present model seems adequate enough to make this type of 

learning unnecessary. This is because the a priori knowledge of the 

model contained sufficient information concerning through which c-sects 

the different fiber bundles pass (although exactly where is not known). 

Until this degree of knowledge proved sufficient, it was necessary to 

consider this type of learning. 

Consider a lesion in c-sect 8. Fiber bundle 171 passes through 

c-sects 2, 4, 5, 6, 7, 9, but is affected by the lesion. Therefore, a 

rethreading of the fiber bundle to pass through c-sect 8 is performed. 

This is the addition process and results in a change in the list 

structure. Figure 60 illustrates this. 
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List Structure 

-2 5 9 

1 2 x2 y2 
4 x4 y4 
5 xs Ys 
6 x6 y6 
7 x7 y7 

Before 7 x9 Addition Yg 

Learning 0 0 0 

0 0 0 

0 0 0 

0 0 0 

0 0 0 

(A) 

Fiber 
Bund1e7 List Structure 
171 -2 5 9 

2 x2 y2 
4 X y4 4 
5 xs Ys 
8 X8 Ys 

8 
I I 

After X Ys 8 
Addition 6 X y6 Learning 6 

7 x7 y7 
9 x9 y9 

0 0 0 

0 0 0 

0 0 0 

9 

(B) 

Figure 60. Addition Learning 
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6. Symmetry 

Because of the symmetry of the visual pathway, the local learning 

process can be extended through use of symmetry. There are three types 

of c-sects in regard to symmetry. (Refer to Figures 11, 12, and 14.) 

Consider a mid-line drawn in Figure 11. The anatomy of the visual 

pathway can be considered symmetric to this line for our application. 

C-sects are of three types with respect to this mid-line. Type I 

c-sects have a companion c-sect symmetric to the line. This type in­

cludes c-sects 1, 2, 3, 4, 7, 8, 9, 10. Type II c-sects straddle the 

mid-line. C-sect 5 is the only type II c-sect. Type III c-sects 

(c-sect 6) lie on the mid-line. To understand how symmetry is used, 

it is necessary to first define symmetric sense points. A pair of 

sense points are symmetric sense points if one is in the right retina 

and one is in the left retina, they are both on the same circle, and 

they are symmetric with respect to a vertical line drawn through the 

center of each retina. Figure 6l(A) shows two symmetric pairs of 

points: sense points A and B, and sense points C and D. 

When learning has occurred in a type I c-sect, the new positions 

of the fibers in the c-sect are noted. Then the sense point and hence 

the fiber bundle corresponding to the other member of the sense point 

pair is found. This partner is moved to a point in the companion 

c-sect which is opposite (relative to the mid-line) the location in 

the original c-sect. Inspection of Figure 6l(B) will clarify this 

concept. C-sects 1 and 2 are companion c-sects. Points A and B, and 

points C and D are symmetric pairs. Therefore, the location of B in 

c-sect 2 is opposite A in c-sect 1. 

----~---



When learning has occurred in a type II c-sect, the symmetry is 

basically the same except the partner of a moved fiber is moved to a 

point opposite relative to the center line in the same c-sect. 

Figure 6l(C) illustrates this. 
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Type III c-sect presents a conflict between the structures of the 

model and the principle of symmetry. For symmetry to be precise, fiber 

of symmetric pairs that intersect with this type of c-sect should occupy 

the same point in the c-sect. This would violate the construction prin­

ciple that one fiber only occupy a lattice point in a c-sect. To cir­

cumvent this conflict, symmetric pairs are located in adjacent lattice 

points, the fiber from the left retina positioned above the fiber from 

the right. Figure 6l(D) illustrates this concept. 



Af5,4J 

Circle 9 

Circle 8 

~.....--- Circle 7 

(A) 

-
C(4-5S 
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~ 

Figure 61. Symmetry. 
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MOVEMENT 

132 

The movement of fibers in the learning process depends on four 

factors. The starting location (a,b), the distance moved, d, the 

direction moved, and the location of the other fibers in the c-sect. 

The distance moved depends on the mode of movement. In fixed increment 

movement, the distance is always a constant. In fractional increment 

movement, the distance depends on some measure of time. In absolute 

movement, the distance is sufficiently great to move the fiber bundle 

into the desired region. Once this distance d is determined, the 

algorithm seeks a vacant lattice point a distance d from the starting 

location (a,b) toward (or away) from the center (a,B). When occupied 

lattice points are encountered, the search for unoccupied points con­

tinues in approximately the same direction at very small increments. 

This process for fixed or fractional movement is flowcharted in 

Figure 62. 



DX=a-a 
DY=B-b 

RC= v DX2+DY2 

IDX=-1 
IDY=-1 

KX=a+D**INC/RC 

No 

KY=b+DY**INC/RC KX=KX+IDX 
KY=KY+IDY 

Yes 

Yes 

Yes 

Yes 

Figure 62. Movement of Fibers. 
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