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Abstract

The source of the gravitational-wave (GW) signal GW170817, very likely a binary neutron star merger, was also
observed electromagnetically, providing the first multi-messenger observations of this type. The two-week-long
electromagnetic (EM) counterpart had a signature indicative of an r-process-induced optical transient known as a
kilonova. This Letter examines how the mass of the dynamical ejecta can be estimated without a direct
electromagnetic observation of the kilonova, using GW measurements and a phenomenological model calibrated to
numerical simulations of mergers with dynamical ejecta. Specifically, we apply the model to the binary masses
inferred from the GW measurements, and use the resulting mass of the dynamical ejecta to estimate its contribution
(without the effects of wind ejecta) to the corresponding kilonova light curves from various models. The
distributions of dynamical ejecta mass range between = -- -

M M10 10ej
3 2 for various equations of state,

assuming that the neutron stars are rotating slowly. In addition, we use our estimates of the dynamical ejecta mass
and the neutron star merger rates inferred from GW170817 to constrain the contribution of events like this to the
r-process element abundance in the Galaxy when ejecta mass from post-merger winds is neglected. We find that if
10% of the matter dynamically ejected from binary neutron star (BNS) mergers is converted to r-process
elements, GW170817-like BNS mergers could fully account for the amount of r-process material observed in the
Milky Way.

Key words: gravitational waves – methods: data analysis – stars: neutron

1. Introduction

On 2017 August 17, 12:41:04 UTC, the Laser Interferometer
Gravitational-wave Observatory (LIGO)/Virgo gravitational-
wave (GW) observatory network, composed of LIGO Hanford
Observatory, LIGO Livingston Observatory, and Virgo, recorded
GWs consistent with a binary neutron star (BNS) inspiral and
merger (Abbott et al. 2017c). This signal was subsequently
named GW170817.

In addition to the GW signature, the merger of a BNS system
is expected to have multiple electromagnetic (EM) signatures
over different timescales (Nakar 2007; Metzger & Berger
2012). The LIGO/Virgo sky localization of GW170817
(Abbott et al. 2017c) spurred an intensive multi-messenger
campaign covering the whole EM spectrum to search for
counterparts (see Abbott et al. 2017d for an extended list).
Within hours, broadband observations—backed by archival
data investigation—revealed an optical transient (Arcavi et al.
2017; Coulter et al. 2017; Lipunov et al. 2017; Pian et al. 2017;
Soares-Santos et al. 2017; Tanvir et al. 2017; Valenti et al.
2017), a type of transient called a kilonova (Li &
Paczynski 1998; Metzger 2017) originating from neutron-rich
matter unbound from the system (e.g., Evans et al. 2017;
McCully et al. 2017; Smartt et al. 2017; Troja et al. 2017).

Broadly, two types of ejecta are expected to contribute to
kilonovae: dynamical ejecta produced at the time of the merger
(Rosswog et al. 1999; Metzger et al. 2010; Roberts et al. 2011;
Barnes & Kasen 2013; Bauswein et al. 2013; Hotokezaka

et al. 2013; Rosswog 2013; Tanaka & Hotokezaka 2013;
Bovard et al. 2017; Dietrich & Ujevic 2017; Dietrich
et al. 2017b; Radice et al. 2016; Sekiguchi et al. 2016), and
post-merger winds produced by the remnant system, for
example from an accretion disk around a black hole or massive
neutron star (Dessart et al. 2009; Perego et al. 2014; Fernández
et al. 2015; Kasen et al. 2015; Kiuchi et al. 2015; Martin et al.
2015; Foucart et al. 2016; Ciolfi et al. 2017; Fujibayashi et al.
2017; Shibata et al. 2017; Siegel & Metzger 2017).
Both EM and GW measurements rely on models to connect

the underlying properties and composition of the ejecta to their
respective observations. The process of interpreting ejecta
based on EM observations is described in Alexander et al.
(2017), Arcavi et al. (2017), Chornock et al. (2017), Covino
et al. (2017), Cowperthwaite et al. (2017), Diaz et al. (2017),
Drout et al. (2017), Evans et al. (2017), Kasen et al.
(2017), McCully et al. (2017), Nicholl et al. (2017), Pian
et al. (2017), Smartt et al. (2017), Tanaka et al. (2017), Troja
et al. (2017), and Abbott et al. (2017d). We use phenomen-
ological calculations that estimate the dynamical ejecta mass
from the pre-coalescence binary properties, which GW
observations can constrain. This mass is a critical ingredient
needed to predict the contribution of dynamical ejecta to the
EM light curve associated with this kilonova transient. Going
forward, this procedure would also assist in the interpretation of
future follow-up observations where a dim counterpart was
detected, or none at all.
This Letter shows how dynamical ejecta masses obtained

from GW parameter estimates of GW170817 via phenomen-
ological fits to numerical models for the mass and velocity of
dynamically ejected matter in BNS systems (Dietrich & Ujevic
2017, hereafter DU17) can predict kilonova light curves.
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Similar numerical work has produced fitting formulae in the
case of neutron-star black-hole (NSBH) binaries (Kawaguchi
et al. 2016). While the GW detection of GW170817 cannot
rule out the presence of a black-hole companion, the BNS
interpretation is favored (Abbott et al. 2017c). Consequently,
we do not include the NSBH scenario in this work, and only
employ the fitting formulas for ejecta mass and velocity from
BNS simulations (DU17). The GW170817 analysis extracted
the BNS source parameters using Bayesian inference (Abbott
et al. 2017c), and those results are used here to estimate the
mass of the dynamical ejecta. This approach accounts for the
dependence of the amount of ejected matter on the size and
stiffness (Kawaguchi et al. 2016) of the components of the
binary, characterized by the equation of state (EOS) and its
influence on the mass–radius relationship (Lattimer &
Prakash 2001; Özel & Freire 2016).

Bayesian inference with a GW signal model applied to the
strain data provides a posterior distribution of component
masses (mi) and dimensionless spins (c º ∣ ∣ ( )Sc Gmi i i

2 , where
S is the angular momentum of the neutron star (NS)) consistent
with the observations (Veitch et al. 2015). Assuming NS spins
are small (χ�0.05, hereafter “low-spin”), we obtain distribu-
tions of ejecta between 10−3 and 10−2Me. Allowing for larger
NS spins (χ�0.89, hereafter “high-spin”) pushes some ejecta
values higher, of the order of 10−1 Me at its highest. In this
Letter, we focus on dynamical sources, so it is important to
recall that this analysis may not account for a significant
fraction of the ejecta mass; winds could produce comparable or
even more ejecta than from dynamical sources. Using the GW-
derived dynamical ejecta estimates, the derived light curves
vary significantly between the adopted models, in both color
evolution and time and magnitude of peak emission; in extreme
cases, they can reach beyond 15th magnitude in optical bands.

Like supernovae (Terasawa et al. 2001), neutron star mergers
are believed to contribute to the abundance of heavy elements
(Lattimer & Schramm 1974) through r-process nucleosynthesis
(Burbidge 1954). Using our GW estimates of dynamical ejecta
masses and the merger rates inferred from the BNS discovery
( -

+1540 1220
3200Gpc−3yr−1; Abbott et al. 2017c), we estimate

a present-day r-process density of –10 101.7 3.2 MeMpc−3

contributed by BNS mergers. Under the assumption that all
BNS mergers produce the same amount of dynamical ejecta
that we infer for GW170817, this estimate is consistent with the
Galactic values and suggests that the associated nucleosynth-
esis is one of the primary contributors to r-process abundances.

2. Predicted Dynamical Ejecta Mass

In general, the amount of ejecta from binary mergers
depends on the masses and EOS of the two components, their
rotation, and, most importantly for post-merger winds, the
neutrino/radiation hydrodynamics and the magnetic fields, e.g.,
Hotokezaka et al. (2013), Martin et al. (2015), Dietrich et al.
(2017b), Radice et al. (2016), Sekiguchi et al. (2016), and
Siegel & Metzger (2017). Based on detailed numerical studies
of merging, irrotational binaries, the phenomenological fits
devised by DU17 relate the dynamical ejecta mass Mej to the
gravitational mass of the component stars (m), their baryonic
mass (mb), and their radii R (or equivalently compactnesses
=C Gm Rc2). Contributions due to winds were not included

in the simulations used by DU17, and thus are not part of the
fits for Mej, even though they may lead to comparable ejecta
masses.

Because the EOS in neutron stars is poorly constrained, two
approaches are taken to describe the bulk properties of the
binary components. In the first approach, we assume an EOS
and infer mb and C from the binary’s measured gravitational
masses using a zero-temperature non-rotating model (computed
using the Oppenheimer–Volkoff equations, Oppenheimer &
Volkoff 1939). Different EOSs will predict different radii and
baryonic masses for the same gravitational masses and, as such,
will affect the amount of ejecta and the predicted light curve of
the kilonova. The EOS of cold, dense, degenerate matter is
poorly constrained (see Oertel et al. 2017 for a recent review),
so we evaluate a representative selection of the EOS considered
in Özel & Freire (2016). The tidal deformabilities allowed by
GW170817 (Abbott et al. 2017c) do disfavor stiffer EOSs;
however, many remain compatible with our measurements.
Due to observational constraints, we restrict ourselves to EOSs
that have a maximum mass above 1.97Me (Demorest
et al. 2010; Antoniadis et al. 2013). Specifically, we consider
EOS calculations from Glendenning (1985, GNH3), Müther
et al. (1987; MPA1), Wiringa et al. (1988; WFF1-2), Engvik
et al. (1996; ENG), Müller & Serot (1996; MS1, MS1b),
Akmal et al. (1998; APR3-4), Douchin & Haensel (2001; SLy),
and Lackey et al. (2006; H4).
In the second case, we take an approach that does not assume

a specific EOS to compare against our EOS-specific results.
The internal structure of the NSs in a binary is encoded in the
gravitational waveform through the (dimensionless) tidal
deformabilities (denoted Λ) of the NSs (Flanagan & Hinderer
2008; Damour et al. 2012; Del Pozzo et al. 2013; Wade
et al. 2014). One can infer mb and C from the binary’s
measured gravitational masses and tidal deformabilities by
applying fits from Coughlin et al. (2017) and Yagi & Yunes
(2017), which give mb(m, C) and C(Λ), respectively. While
some error is incurred using these additional fits, it is small
compared to the estimated uncertainty of the fits for the
dynamical ejecta properties and the intrinsic uncertainty in
current numerical relativity simulations. Specifically, for the
EOS considered by Yagi & Yunes (2017), the error in the tidal
deformability-compactness relation is <10% for the nuclear
EOS, while for the baryonic mass fit, the maximum error found
by Coughlin et al. (2017) is <3%. When applying these fits, we
also exclude cases with component masses above 3 Me, a
standard upper bound on NS masses (Kalogera & Baym 1996),
and restrict the compactness to be below the Buchdahl bound
(Buchdahl 1959) of 4/9;0.44, which similarly only affects a
few cases.

2.1. Sources of Uncertainties in Ejecta Mass Estimation

Many caveats must be considered when assessing the
uncertainty in estimates of Mej. The amount of ejecta from
mergers also depends on various microphysics, such as the
particular treatment of thermal effects, neutrino transport, and
magnetic fields (Dessart et al. 2009; Bauswein et al. 2013;
Perego et al. 2014; Radice et al. 2016; Sekiguchi et al. 2016;
Bovard et al. 2017; Ciolfi et al. 2017), which lead to
uncertainties about the ejecta’s structure, angular distribution,
and composition (Kasen et al. 2013; Tanaka & Hotokezaka
2013; Barnes et al. 2016). These parameters are not included in
the Mej fits in DU17. Additionally, the DU17 fits ignore the
effects of spin on dynamical ejecta, which can change the
amount of ejecta (Kastaun & Galeazzi 2015; Dietrich et al.
2017a; Kastaun et al. 2017). In particular, aligned spin can
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increase torque in the tidal tail and lead to more ejecta, which is
most notable for unequal mass configurations. To understand
the effect of spin on dynamical ejecta, additional better
resolved simulations are needed.

Systematic uncertainties are also of concern. The accuracy of
the Mej fit from DU17 relies on the underlying numerical
relativity simulations. Simulation choices for input physics
(nuclear EOS and microphysics), inclusion of different neutrino
transport models, and chosen grid resolution can all result in
large systematics. For example, comparisons of numerical
relativity predictions of Mej differ by a factor of ∼4 (Lehner
et al. 2016; Sekiguchi et al. 2016; Bovard et al. 2017). Further,
the error on ejecta masses from numerical simulations likely
has an absolute component, leading to increasing relative errors
for low ejecta masses—for additional discussion see Endrizzi
et al. (2016) and Ciolfi et al. (2017). An error at low masses is
not symmetric as Mej cannot be negative, potentially biasing the
phenomenological fits of DU17 to an overestimation of the
ejecta mass. Additionally, there are also systematic uncertain-
ties introduced by the specific form of the fit, where all EOS
effects are contained in the values of mb and C for a given m.
Finally, as discussed in Abbott et al. (2017c) and Section 2.2,
the waveform model used to infer the masses and tidal
deformabilities from the GW signal introduces its own
systematic uncertainties, though these are estimated to be
smaller than those of the DU17 Mej fit.

All of these considerations contribute to the uncertainty in
the Mej fit from DU17; the error is a mixture of systematic
errors that need investigation with dedicated future studies and
numerical simulations. To model some part of this error, we
will treat the average relative error of the fit quoted in DU17
(72%) as a statistical error for any results used here, and defer a
more robust error analysis to future work. We include an
estimate of the error of the Mej fit from DU17 by replacing each
ejecta mass sample with a random value consistent with a
Gaussian distribution in Mlog10 ej centered on the value and
with standard deviation of log 1.7210 , as motivated in
Section 2.1. This method excludes zero ejecta masses, and
errors for small ejecta masses 10−3Me are not well modeled.
The ejecta mass fit is based on simulations with nonzero ejecta
mass. The full parameter space likely also contains cases with
little or no ejecta mass, for example, systems exhibiting prompt
black-hole formation. Since we reported in Abbott et al.
(2017b) that prompt collapse can only be excluded for extreme
EOSs such as MS1, and the fit at values below 3×10−3Me
strongly overestimates the ejecta mass compared to the
numerical relativity (NR) data points, the fit cannot reliably
exclude zero ejecta mass below this value. Figure 1 shows that,
in the low-spin cases, the number of samples less than

< ´ -
M M3 10ej

3 is typically ∼10%–15% of the cumulative
total for most. In extreme cases, this fraction is up to 50%, but
also arises from EOSs that have been disfavored in Abbott et al.
(2017c). In the high-spin cases, this number is typically
smaller, around 5%–10%, but can reach up to 25% in the
extreme cases. We also discard the few samples where the fit
predicts a negative value.

2.2. Ejecta Mass Predictions

We evaluate the Mej fit using the binary parameters derived
from the GW analysis (Abbott et al. 2017c). These parameters
include the gravitational masses, tidal deformabilities, and
spins of the component stars, though the spins are not used in

evaluating the fit. Bayesian inference provides a distribution of
these parameter values as a set of independent samples drawn
from the posterior (Veitch et al. 2015; Abbott et al. 2016a). As
a quantity that derives from these binary parameters, Mej then is
also represented as a statistical sample.
While the estimation of Mej does not include the component

spins as an input, they are an important degree of freedom in
the waveform models used in the GW analysis. We consider
two sets of GW parameter samples, defined by the choices for
the prior on the spin magnitude. The two spin priors considered
here are χ�0.89 (our “high-spin” case with the upper limit
dictated by the waveform model used), and χ�0.05 (our
“low-spin” case, slightly above the largest inferred spin at the
merger of an NS in a BNS system that will merge within a
Hubble time (Burgay et al. 2003)). While the waveform models
used only include the effects of the spin components along the
orbital angular momentum, the spin priors assume isotropic
spin directions. The very highest spins allowed in the high-spin
posterior set exceed the mass-shedding limit (χ∼0.7 for the
EOS considered in Lo & Lin 2011), but the small density of
posterior samples in this region lies outside the 90% credible
intervals. More importantly, the high-spin posterior on the
primary mass contains samples with masses well above
the maximum mass allowed for a static NS for any of
the EOSs we consider; we simply exclude from consideration
any samples with such unsupported masses for each EOS.
There are also systematic errors introduced by the waveform

model used. As discussed in Abbott et al. (2017c), analysis
with a different waveform model changes the 90% credible
bounds on the masses by ∼15% in the high-spin case (with no
changes in the low-spin case), and the bounds on the tidal
deformabilities by ∼20%–30% in both low- and high-spin
cases. As these differences are below the systematic errors of
the DU17 fit, we do not attempt to account for them here. The
true systematic errors from waveform models may be
significantly larger than those estimated in this comparison;
making such assessments is the subject of future work.
Figure 1 reports cumulative probability distributions for the

dynamical ejecta for a selection of the EOS tested. While all of

Figure 1. The figure above displays the cumulative distribution function of the
dynamical ejecta mass predicted for a representative selection of the EOS in the
study. The low-spin cases are traced in solid colors and the high-spin case are
dashed curves.
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the cases predict ejecta concentrated between 10−3 and
10−2Me, the high-spin results allow for larger median ejecta
values in general—maximum values can exceed a tenth of a
solar mass. Since the DU17 fits for Mej neglect spin, the
differences in ejecta for the cases shown in Figure 1 are driven
by the imprint of the spin choices inherent in the GW analysis
that was input into this analysis.

Figure 2 shows the distribution of ejecta masses using the
SLy EOS, illustrating how the ejecta mass tends to scale with
the component mass distribution. Among the EOSs tested,
SLy is closer to the lower side of ejecta distributions in both
the estimated median and maximum ejecta. The fits
themselves imply an ejecta distribution strongly dependent
on the mass of the primary (m1) and the difference between
the primary and secondary masses. However, applying the fit
uncertainty smears the ejecta distribution over the difference
of the component masses. This effect is most evident in the
marginal distributions plotted as histograms on the sides of
the Figure 2 panels. Since the high-spin distribution has more
posterior samples away from equal mass systems, as well as
larger primary masses overall, more samples give rise to
larger ejecta masses. While this only affects the high-spin
case, those EOSs that allow for larger maximum masses also
allow for a larger maximum ejecta values, typically >Mej

-
M10 1 (above the maximum ejecta mass of 6.5×10−2Me

in the simulations to which the Mej fit has been calibrated).
This is a natural consequence of larger maximum masses
corresponding to larger differences between m1 and m2, as
illustrated in Figure 2.

3. Kilonova Light Curve Models

Current kilonova emission models (Li & Paczynski 1998;
Barnes et al. 2016; Metzger 2017; Tanaka et al. 2017) produce
spectral energy distributions between the ultraviolet (UV) and
the near-infrared (NIR). Generally, there are two different

physical processes that require modeling. First, the conversion
of dynamical and wind ejecta material into r-process elements
(i.e., the nucleosynthesis; Kasen et al. 2013, 2015; Barnes
et al. 2016; Metzger 2017; Rosswog et al. 2017), and second,
the production of an associated EM transient (Metzger
et al. 2010; Kasen et al. 2013; Barnes et al. 2016; Rosswog
et al. 2017). Beyond these considerations, there are still several
important nuclear physics ingredients that are unknown, such
as opacity and heating rate, and can lead to large uncertainties
in light curve prediction (see, e.g., Rosswog et al. 2017). We do
not attempt to model these uncertainties.
We briefly describe here three parameterized models used to

generate light curves in this work. Wollaeger et al. (2017) use
radiative transfer simulations and provide analytic fits for the
peak time, bolometric luminosity, and color corrections as a
function of ejecta parameters. The Wollaeger et al. (2017) light
curves are scaled as a function of ejecta mass and velocity,
which changes both the time of peak luminosity as well as peak
magnitude. We obtain the velocity from additional fits
in DU17, and assume an opacity of 10 cm2 g−1, thus modeling
the presences of lanthanides. Conversely, Metzger (2017)
provide a toy model for blue kilonova with opacity 0.1 cm2 g−1

for lanthanide-free matter. DU17 use the radiative Monte-Carlo
(MC) simulations of Tanaka & Hotokezaka (2013) and derive
an analytical model for kilonova emission driven by dynamical
ejecta from a BNS merger. No wind contribution is included
in DU17, although winds can potentially dominate (Kiuchi
et al. 2015; Ciolfi et al. 2017; Siegel & Metzger 2017). The
dynamical ejecta models tend to predict redder and more
slowly rising NIR than wind-driven models.
Light curves from dynamical ejecta models depend sig-

nificantly on the thermalization efficiency, the radiation
transport simulations used, and other assumptions (Metzger
& Fernandez 2014; Coughlin et al. 2017; Rosswog et al. 2017).
In our analysis we do not consider observational error from

Figure 2. The left (high-spin prior) and right (low-spin prior) panels above show the distribution of the primary (m1) and secondary (m2) masses from GW
measurements. The color of each point indicates the predicted dynamical ejecta mass for each sample that the SLy EOS allows. In the left-hand plot, black markers
correspond to m1 values that are disallowed by the maximum mass of the EOS (marked by a vertical line). The underlying black histograms to the top and right of each
plot are the one-dimensional marginalized histograms of the masses. The stacked histograms on top of them in various colors show the binary masses that create ejecta
masses above logarithmically spaced thresholds of 1×10−3, 3×10−3, 8×10−3, 2×10−2, 6×10−2, and 2×10−1 Me, where only the first four are nonzero in
the right-hand plot.

4

The Astrophysical Journal Letters, 850:L39 (13pp), 2017 December 1 Abbott et al.



extinction in the light curve prediction, as it is likely
smaller than the systematic error of the models (Kawaguchi
et al. 2016).

4. Predicted Kilonova Light Curves

In conjunction with the mass and tidal estimates for the low-
spin case, we calculate the mass and velocity of dynamical
ejecta as described in Section 2. Using the light curve models
of DU17, Metzger (2017), and Wollaeger et al. (2017), we
show the absolute and apparent magnitudes consistent with
these estimates of dynamical ejecta in Figure 3. Here, we
employ the DZ2 model from Wollaeger et al. (2017), and set
40Mpc (near the median of the GW distance posterior (Abbott
et al. 2017a, 2017c)) as the fiducial distance to the event for
calculating the apparent magnitudes. DU17 exhibits the
features of most lanthanide-rich dynamical ejecta models, with
a rapid fade in the blue and a late rise in the NIR. Wollaeger
et al. (2017), which also considers the contribution from the
wind ejecta of 0.005Me, is brighter, has a slower fade in the
blue, and a faster fade in the NIR. The model in Metzger (2017)
—adopted here only considering dynamical ejecta—is between
these two models, originally brighter in the blue and NIR bands

(g, r, i, z) than either of these models, but fades more quickly
than Wollaeger et al. (2017).
Employing the lower-opacity blue-peaked model in

Metzger (2017) and GW inferred distance, we can calculate
the distribution of peak times and observed peak magnitudes
in a given photometric band. As the source resides at a low
redshift, we neglect the cosmological redshift of the source.
Figure 4 shows the peak i-band magnitudes from those light
curves versus the time of peak i-band magnitude when
considering the low-spin distribution. The samples from the
high-spin distribution produce the peaks that are brighter by
one magnitude on average. This is understood from the ejecta
distributions in Figure 2—the low-spin distribution tends to
produce less ejecta and hence is less luminous. We note again
that the light curves in Figure 3 are calculated with a distance
fixed to the source, while the magnitudes in Figure 4 fold in
the distance inferred from the GW data. Thus, a wider spread
arises from the variance in the GW-only distance posterior
distribution. Including the distance values from the GW
posteriors provides a better estimation of the variation that
would arise in a prediction from GW information alone, as
opposed to having constraints from EM measurements.
The estimates presented here are a proof-of-principle study

with which to illustrate what is presently possible with forward
modeling from GW observations. In particular, if it is available
before EM observations begin, or in a situation before a
confident counterpart has been identified (e.g., due to poor sky
localization), analysis driven by the GW data can inform EM
follow-up observations and interpretation, particularly in cases
where (due to geometric effects and observational delays) the
effect of dynamical ejectas on the light curve is enhanced.
Predictions of peak times in the emission and the color
evolution are useful for comparison with early observations,
and provide falsifiable predictions with which to evaluate
models of the source.

Figure 3. Absolute (left vertical axis) and apparent (right vertical axis)
magnitudes of light curves consistent with parameter estimation for
astrophysical spins for the kilonova models of DU17, Metzger (2017),
Wollaeger et al. (2017) in grizyJHK filters. In particular, the DZ2 model is
employed from Wollaeger et al. (2017). The dashed lines show the median
light curve, while the shaded intervals show the 90% intervals. In addition to
including the average relative error (72%) of the ejecta-mass fitting formula, we
include 1 mag errors on the intervals to account for errors in the models
themselves (Coughlin et al. 2017). The lower percentiles are not conservative
as we cannot definitively exclude zero ejecta mass due to unmodeled
systematics. The fiducial distance to the event is 40 Mpc.

Figure 4. Inferred peak i-band apparent magnitude vs. time of peak i-band
magnitude with the blue model in Metzger (2017) and low-spin sample
distribution (marginal distributions on Mej and time of peak shown on the top
and right). Apparent magnitudes are calculated from the dynamical ejecta only,
using the GW inferred distance.
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5. Abundance of r-process Material

The r-process and s-process are the two known mechanisms
by which heavy elements can be synthesized (Burbidge
et al. 1957). To assess the contribution of the r-process to the
observed abundances of heavy elements (Arnould et al. 2007;
Sneden et al. 2008), one can identify the abundances expected
from the s-process alone, and hence the r-process residual. SNe
II can produce r-process elements, but they may not produce
the observed abundance patterns (e.g., Freiburghaus et al.
1999). BNS mergers could also account for these elements.
However, quantifying the contribution of those mergers has
remained elusive due to poor constraints on both the rate of
mergers as well as the amount of matter ejected in each merger.
With GW170817, we are able to constrain both of these
quantities significantly from data.

If BNS mergers are to produce most of the observed
r-process elements in the Milky Way (MW), the mergers must
occur with a sufficiently high rate and eject significant amounts
of r-process material. Assuming dynamical ejecta dominate
over winds, the mass fraction Xrp of r-process nuclei in the
MW should be proportional to the merger rate density  and
dynamical ejecta mass Mej, with a proportionality constant
set by the local galaxy density and the MW age and
mass. Following Qian (2000), we estimate that the merger
rate and ejecta per event are approximately related by
 - - - - ( )f M M600 10 Gpc yrrp ej

2 1 3 1. In this relationship,
ºf M Mrp rp ej is the fraction of matter dynamically ejected in

NS mergers that is converted to heavy r-process elements
rather than lighter products, e.g., α particles. The value of frp
depends on details of the dynamics, geometry, and neutrino
illumination of the ejected matter, all of which change the
electron fraction (Ye) distribution of ejected matter (see, e.g.,
Goriely et al. 2015; Kasen et al. 2015). However, various
studies have suggested significant r-processing of ejecta
material (e.g., Goriely et al. 2011, 2015; Wanajo et al. 2014;
Just et al. 2015; Radice et al. 2016). The red band in the left
panel of Figure 5 shows this relationship between  and Mej

for Î [ ]f 0.5, 1rp (e.g., Goriely et al. 2015). Also shown in the
left panel are the constraints on the local rate density of BNS

mergers from GW170817 (gray) and the range of ejecta masses
typically considered in the literature (blue). The overlap of
these constraints suggests that BNS mergers could account for
all of the observed r-process abundance.
A more detailed calculation of r-process enrichment from the

dynamical ejecta of BNS mergers can be done using the
specific distributions of Mej and  inferred from GW170817.
Under the assumption that all binary mergers have the same
ejecta mass as that inferred from GW170817, we calculate the
average dynamically ejected local r-process material density
according to
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where th is the Hubble time.164

In this expression,
*
ṙ is the cosmological star formation rate,

assumed to follow Madau & Dickinson (2014); pdelay is the
delay time distribution of NS mergers, pdelay(t)∝t−1 (see, e.g.,
O’Shaughnessy et al. 2008; Dominik et al. 2012), with a
minimum delay time of 10 Myr; and  is the present-day
merger rate density for NS mergers. The denominator is a
normalization factor that scales the present-day merger rate
density to .
In the right panel of Figure 5, we plot the distribution of

r frp rp for a few representative EOSs using our Mej distributions
and the rates inferred from GW170817. On the top axis, we
also show

*
r r= ( )X f frp rp rp rp , where

* *òr r= ˙ ( )t dt
t

0

h . If

frp=1, the range - -
 –M M10 Mpc 10 Mpc1.7 3 3.2 3 brackets

our 90% credible intervals on ρrp for all EOSs. Both ρrp and Xrp

are shown normalized to frp, as frp depends on unknown details
of the merger. The gray band in the right panel of Figure 5
shows the MW mass abundance of r-process elements, derived
from Arnould et al. (2007). As long as frp10% of the
dynamically ejected mass is converted to heavy r-process
elements, dynamical ejecta could account for all of the MW

Figure 5. Left panel: plot of the present-day BNS merger rate density  vs. dynamical ejecta masses Mej. The solid gray band corresponds to the event rate range
deduced from GW170817. The solid blue band shows the approximate range of conceivable dynamical ejecta masses, based on the ejecta models used in this work.
The red band shows the approximate range of r-process elements per unit volume, based on Galactic observations, an approximate density of MW-like galaxies
(0.01 Mpc−3), a range of Galactic masses, and r-process formation efficiencies frp between 0.5 and 1. Configurations in the intersection of all three bands correspond to
cases where dynamical ejecta from BNS mergers are solely responsible for r-process element formation. Right panel: probability distributions of r-process material
density and abundance (normalized by frp) from dynamical ejecta for different EOSs at z=0. The lower (upper) bound on the 90% credible interval for ρrp/frp over all
EOSs is 101.7 Me Mpc−3 (103.2 Me Mpc−3). The vertical gray band shows the Solar r-process abundance (Arnould et al. 2007).

164 We assume ΛCDM cosmology with TT+lowP+lensing+ext parameters
from Ade et al. (2016).
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r-process abundance. We have not factored in modeling details
such as the relative abundance pattern of r-process elements,
the value of frp, the relative contribution of dynamical versus
wind ejecta, and uncertainties in the star formation history of
the Universe.

6. Conclusions

In this Letter, we derive estimates for the dynamical ejecta
mass produced by the BNS merger GW170817, as well as the
corresponding kilonovae light curves and r-process nucleosynth-
esis yields, without additional photometric or EM spectral data.
These estimates have the GW data as their foundation and use a
fit to a wide variety of simulations to obtain dynamical ejecta
masses from these data. Our predictions for light curves include
a range of possible magnitudes and timescales of emission. In
general, for the blue model in Metzger (2017) in the i-band, we
predict peak magnitudes concentrated between ∼19 and ∼17 for
a merger consistent with our low-spin results, and peak
magnitude between ∼19 and ∼16—typically lasting twice as
long—for mergers consistent with high-spin results. Such
predictions can guide expectation as to whether or not future,
perhaps more distant, counterparts would be observable with a
given facility. The predictions from the GW inference for the
dynamically unbound matter depend strongly on the allowed
spin configurations in the GWmodel, which in turn influence the
predicted light curves. The low-spin results predict smaller ejecta
masses on the whole, and as such, a bright kilonova event (e.g.,
>16 magnitude) may indicate a faster spinning NS component.
We stress that the phenomenological fits used to predict Mej
themselves are not corrected for spin effects, so this increased
brightness occurs because of degeneracies in the GW parameter
estimates between spin and mass ratio.

We have also presented predicted light curves derived from
other models in the literature. Our results show that when large
amounts of ejecta mass are allowed, the light curves have
brighter peaks and are longer-lived. They differ in color
evolution, however (compare DU17 and Wollaeger et al. 2017,
for example) and EM observations combined with these curves
could hint at mixtures of different ejecta material compositions
(Metzger 2017). For example, strong emission observed in both
blue and red bands could imply sectors of material containing
both high and low electron fractions. However, the Metzger
model, as implemented here, neglects post-merger wind effects,
and in general, these conclusions only hold under the
assumption that dynamical ejecta dominate the mass ejection.

Our results suggest that dynamical ejecta from rare NS
mergers could be an important and inhomogeneous source of
r-process elements in the Galaxy (Beniamini et al. 2016; Ji et al.
2016). If more than f 10%rp of the mass ejected from mergers
is converted to r-process elements, our prediction for average
r-process density in the local universe is consistent with the
Galactic abundance. Our approach does not address the
contribution from winds, which could eject a substantial overall
mass but may (Siegel & Metzger 2017) or may not (Rosswog
et al. 2017) have the wide range of Ye needed to produce all
r-process abundances (i.e., the second and third r-process peak).
Our approach is also not as detailed as full multi-species
chemical enrichment calculations used to interpret observations
of individual elements in targeted populations (see, e.g., Côté
et al. 2017). As Advanced LIGO and Virgo approach design
sensitivity, these observational constraints should rapidly
shrink, enabling more precise tests of the BNS r-process

nucleosynthesis paradigm. Additionally, present and future EM
observations should provide complementary information to
directly constrain those parameters that our analysis cannot.
Finally, if EM measurements are consistent with a total ejecta

mass (dynamical and wind) of 0.01 Me, and if we require
consistency with low neutron star spins, then one possible
conclusion is that winds contribute significantly to the total
ejected mass. However, if winds dominate, then the dynamical
ejecta mass will be an important but potentially difficult to
measure component in the light curve, which our calculations can
supply. Additionally, with so much material ejected per event, to
be consistent with our inferred detection rate, we would predict
that only a fraction of the ejecta can form r-process elements.
The coincidence of GW170817 and GRB 170817A was an

exceptionally rare event, allowing for a unique set of
measurements to be made about the processes driven by the
BNS merger. Future observations should facilitate the refine-
ment of these measurements. The observation of GW170817
suggests that in the upcoming year-long third observing run
(Abbott et al. 2016b) with a three-instrument GW network,
there will likely be more GW observations of BNSs. In the
coming years, GW measurements will allow for better
understanding of populations of kilonova events.
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