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DYNAMIC RESPONSE OF PILE GROUPS EMBEDDED IN TRANSVERSELY 
ISOTROPIC MEDIA USING HYBRID NUMERICAL METHOD 

 
B. Ghadimi  
MSc. Holder  
Sharif University of Technology  
Tehran-Iran, Azadi ST. 
 
 
ABSTRACT 
 
In this paper, the dynamic response of pile groups embedded in 3-D homogeneous transversely isotropic media subjected to time-
harmonic vertical and horizontal loading is investigated. The response of pile groups is calculated by a novel method. This method is 
less complicated than boundary elements method (BEM) used in the most previous studies in this field. In the method the pile groups 
is discretized to some beam-column elements and radiation discs. The radiation discs represent the propagation of wave from piles to 
the unbounded soil medium. By calculating the dynamic stiffness of radiation discs and setting with beam-column elements, the 
dynamic stiffness of pile groups embedded in soil is properly determined. In this paper, the response of the transversely isotropic 3-D 
half-space subjected to time-harmonic vertical and horizontal excitations is presented in analytical form. 
.   

 
 

INTRODUCTION 
 
Many structures exposed to dynamic loading such as machine 
foundations, bridges, or offshore structures are supported by 
piles arranged in a group, one of the primary purposes of 
which is to limit deformations to an acceptable level. If the 
spacing between the piles is very wide, the group stiffness 
may be evaluated by summing the contributions from the 
single piles. On the contrary, when the piles are closely 
spaced, which most often is the case, pile–soil–pile interaction 
occurs and has to be accounted for in the analyses. Due to this 
interaction, the load acting on a pile contributes to the motion 
of the other piles and wave propagation phenomena generally 
occur. As a result, the group efficiency (in other words, the 
ratio of the group stiffness to the sum of the individual pile 
stiffness), which for static loading is always smaller than unity 
if the pile installation effects are ignored, under dynamic 
excitation generally exhibits a strong oscillatory behavior 
when it is plotted versus the excitation frequency, and may 
even exceed unity depending on pile spacing, group size, 
frequency, and soil properties.  
Many methods were developed to achieve a direct and 
complete analysis of pile groups under dynamic conditions 
(Sen et al., 1985; Mamoon et al., 1990; Cairo et al., 2005; 
Padro´n et al, 2006). These methods are essentially of a 
numerical nature and involve discretization of the domain 
(FEM) or its boundary (BEM). Generally, significant 

computational efforts are required, and large systems of 
equations have to be solved, especially when the group 
consists of a great number of piles. 
 
In this paper, a simple method is presented to carry out the 
analysis of pile groups under time-harmonic vertical and 
horizontal vibration. In this hybrid numerical method, piles are 
modeled by FEM as rods and beams under vertical and 
horizontal loads respectively; moreover, the affect of the wave 
propagation through soil is considered by using radiation 
discs. (Fig. 1) 
 
 

 
 

 
Fig. 1.  Discretize a pile group 

 to Finite Elements & Radiation Discs 
 
 
 
 

 Radiation discs Finite Elements 
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PILE FINITE ELEMENTS EQUATIONS 
 
 
The behavior of a pile submitted to dynamic vertical loads can 
be described by the following differential equation. In this 
case, the pile is modelled by FEM as a rod. (Graff, 1991) 
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where  E is Young’s modulus, ρ is the mass density of the pile, 
and  is the longitudinal displacement of a cross-section 
of the pile. (Fig. 2.) 
 

 
 

(a) (b) 
Fig. 2.  Pile Finite Element under 

 (a) vertical load, (b) horizontal load 
 

By solving the equation (1), and satisfying the boundary 
conditions of the pile element, the force-displacement 
relationship is derived as: 
 

 

 
(2) 
 

 
where A is the area of the section of the pile and L is the 
element length. As can be seen, the dynamic stiffness matrix 
of the element depends on the external load frequency (ω). 
 
Under time-harmonic horizontal loading, piles are modelled 
by beam elements. In this case, the governing equation of the 
Pile element is expressed as: (Graff, 1991) 
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where I is the moment of inertia of the section of the pile, and  

is a distributed force on the element. Also, for 
horizontal loading the force-displacement relationship is 
derived as: 
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where y is a transverse displacement, and θ is a rotational 
angle at each node of the element. As we will see in the next 
section, the dynamic stiffness matrix of the radiation discs 
corresponds to transverse displacement degrees of freedom. 
Therefore, the dynamic stiffness of beam elements must be 
condensed. For this purpose, the stiffness matrix is partitioned 
into transverse and rotational DOFs as 
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According to equations (a) and (b), we obtain the force-
displacement relationship as  
   

 

(6) 
 

 
 
FUNDAMENTAL SOLUTION FOR THE 
TRANSVERSELY ISOTROPIC HALF-SPACE 
 
In this section the displacement functions for a transversely 
isotropic half-space subjected to a time-harmonic load are 
presented. The general solutions of the governing equations of 
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motion (brought in Noorzad et al., 2002), in the frequency 
domain are given as follows:   
 

, , ( , , , ) , , ( , , ) i tu v w r z t u v w r z eωθ θ=  (7) 
 
where u, v, and w are displacements in r, θ, and z directions 
respectively. The displacement components in the frequency 
domain can be expressed in terms of two scalar potential 
functions as: (Noorzad et al., 2002)  
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Also, are elastic moduli, and ρ is mass density of the 
media. Substituting equations 8-10 in the equations of motion 
yields all the equations of motion described in terms of the 
potential functions: 
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2
1S  and 2

2S  are the roots of the following equation 
(Lekhnitskii, 1981):  
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In past studies in this field, the coefficient of B was 
disregarded, while we proved that this coefficient has 
considerable effect on the response of the media. We, 
therefore, consider this coefficient in our solution, which 
caused this solution differs from the previous solutions. 
 
The equations 11 and 12 are analytically solved by using 
Fourier series in the tangential direction of the coordinate, and 
using Hankel transform in the radial direction. Therefore, the 
potential functions are obtained as 
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For satisfying radiation condition, we divide the media in two 
parts (Fig. 3) 
 

 
Fig. 3. Divided media embedding the loaded disc 

 
 
 

In equation 14 and 15 for part (II), the terms of i zeα ′
must be 

omitted because only outwardly propagation waves are 
considered.  
  
By substituting potential functions in transformed stress and 
displacement functions and satisfying boundary conditions, 
the coefficients of ( , )m

mX zξ  and ( , )m
m zψ ξ  for the two parts 
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of the media are obtained. The displacement functions is 
expressed in terms of the potential functions as follows 
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These integrals cannot be evaluated analytically. It is, thus, 
required to employ a suitable numerical scheme to evaluate 
these displacement functions. The singularities and oscillatory 
nature of the integrand require careful consideration in 
constructing the integration scheme and in setting the 
increment of variable of integration as well as upper limit of 
the integral at some appropriate values. Reviewing the 
oscillatory nature of different displacement functions, the 
trapezoidal method is used as the main scheme for numerical 
integration with the increment of ξ∆  set at a particular value 
less than 0.2. The upper limit of various integrals has been 
determined reviewing the characteristics of integrands for 

different frequencies. Because of the decaying functions i ze α ′−

, the deeper the point is located, as is included in the integrand, 
the faster is the convergence.      
 
 
DYNAMIC STIFFNESS MATRIX OF RADIATION DISCS 
 
This matrix is obtained by inverting the dynamic flexibility 
matrix of Radiation Discs. By applying a dynamic unit force (

i te ω ) at each disc ( & 0,i t
i jP e P i jω= = ≠ ), and 

calculating displacements of that disc and the other radiation 
discs, the flexibility matrix will be achieved. As an example, 
the dynamic flexibility matrix of a square  pile group is 
schematically brought (Fig. 4) 

Fig. 4. Radiation discs in a square pile group 
 

[ ]
[ ]
[ ]

[ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ]

[ ] [ ]
[ ]

11

12

13

11 12 13 12

11 12 13

11 12

11

0

1

2

.

For R C

For R R C

For R R C

C C C C
C C C

C
C C

Sym C

= →

= →

= →

 
 
 =  
 
  

 
(19) 

 
where [ ]C is dynamic flexibility matrix,  and [ ]CKL  is the 
displacement matrix of  the radiation discs of pile L when unit 
force is applied to the radiation discs of pile K.   
 
 
COUPLING FINITE ELEMENT AND RADIATION DISC 
STIFFNESS MATRICES 
 
According to the fact that displacements of one radiation disc 
must be equal with the displacement of the corresponding 
node of the finite element, and because of the fact that Total 
external forces subjected to a pile group-soil are equal to the 
sum of the nodal forces subjected to finite elements and 
radiation discs, the dynamic pile group-soil stiffness matrix 
will be achieved by summing the Finite Element and 
Radiation Disc stiffness matrices 
 
[ ] [ ] [ ]T P sK K K= +  (20) 
 
In formulating the pile-soil interaction problem, it should be 
noted that the soil flexibility matrices are valid only for the 
whole medium without plies, i.e. the free field. Therefore, a 
modified pile density must be used to account for the added 
soil column mass 
 

p sρ ρ ρ= −  (21) 
 
in which pρ and sρ  are the pile and soil densities 
respectively.   
 
 
RATE OF CONVERGENCE 
 
Increasing number of the Elements, the impedance of pile 
groups converges to a limit value. In prediction of the 
response of pile groups, especially when the group consists of 
a great number of piles, it is very important that how fast this 
rate is. In Fig. 5 and 6 the rate of convergence of the 
impedances of a 2*2 square pile group embedded in Tr. 
Isotropic Clay subjected to dynamic vertical and horizontal 
loads has been shown where L and d is the length and 
diameter of the piles, respectively. Also, R is the side lengths 
of the 2*2 square pile group (Fig. 4) 
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Table 1. Parameters for the Pile Group     

PE  R L/d ρ  

24820 MPa  3m 15 7 ton/m^3 
 

Table 2. Parameters for Tr. Isotropic Clay 

ρ  ( )HE Mpa
 

( )HE Mpa
 

HHυ
 

VHυ  /H Vn E E=
 

1.5 
ton/m^

3 

59.6 47.68 0.37 0.4
9 

1.25 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. Convergence of the Impedance (Vertical Loading) 
 

In these figures, a0 is the dimensionless frequency, Kyy is the 
horizontal impedance of the pile group head, and Kzz is the 
vertical impedance of the pile group head. 
 
Note that the hybrid numerical method presented in this paper 
converges to a limit point with a high rate. Moreover, by 
increasing dimensionless frequency, we should increase the 
number of elements to achieve a solution with special 
accuracy.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Convergence of the Impedance (Horizontal Loading) 
 
 
CONCLUSION 
 
A simple method has been proposed for the analysis of pile 
groups subjected to time-harmonic vertical and horizontal 
loading. In this hybrid numerical method, piles are modelled 
by FEM as rods and beams under vertical and horizontal 
loads, respectively. According to high rate of convergence, 
this method is suggested especially when pile groups consist 
of a great number of piles. 
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