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ABSTRACT 

This dissertation focuses on several problems in neuroscience from the perspective 

of nonlinear dynamics and stochastic processes. 

The first part concerns a method to visualize the idea of the power spectrum of 

spike trains, which has an educational value to introductory students in biophysics. 

The next part consists of experimental and computational work on drug-induced 

epileptic seizures in the rat neocortex. In the experimental part, spatiotemporal patterns of 

electrical activities in the rat neocortex are measured using voltage-sensitive dye imaging. 

Epileptic regions show well-synchronized, in-phase activity during epileptic seizures. In 

the computational part, a network of a Hodgkin-Huxley type neocortical neural model is 

constructed. Phase reduction, which is a dimension reduction technique for a stable limit 

cycle, is applied to the system. The results propose a possible mechanism for the initiation 

of the drug-induced seizure as a result of a bifurcation. 

In the last part, a theoretical framework is developed to obtain the statistics for the 

period of oscillations of a stable limit cycle under stochastic perturbation. A stochastic 

version of phase reduction and first passage time analysis are utilized for this purpose. The 

method presented here shows a good agreement with numerical results for the weak noise 

regime. 
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1. INTRODUCTION 

"Science is built up of facts, as a house is with stones. But a collection of facts is no more 

a science than a heap of stones is a house."-Henri Poincare 

"If we knew what it was we were doing, it would not be called research, would it?" 

-Albert Einstein 

1.1. OUTLINE 

Quantitative approaches in neuroscience have recently been attracting great 

attention. This dissertation focuses on several different problems in neuroscience using 

approaches from nonlinear dynamics and stochastic processes. 

This Section summarizes the background for the rest of the dissertation. In 1.2, a 

quick overview of the nervous system is given. Section 1.3 describes methods used in 

Section 3 and 4 to measure electrical activity in the neural system. Section 1.4 explains 

how spiking activity of a single neuron occurs in a quantitative language. In 1.5, basic 

facts from nonlinear dynamics are summarized. Some basic definitions from probability 

theory and stochastic processes are summarized in Section 1.6. Section 1.7 provides a 

quick overview of stochastic differential equations. A significant amount of effort was 

made to make this dissertation as self-contained as possible, due to the fact that the field of 

this dissertation does not belong to traditional physics and is highly interdisciplinary. 

Cross-references are made throughout the dissertation. Hopefully, the reader can start 

reading from anywhere in Sections 2-5 and refer to topics in this Section when necessary. 

Section 2 presents a method, circular statistics, to analyze a certain class of neural 

signals (spike trains). Although it is shown that the method is equivalent to the power 

spectrum, the method can be utilized to introduce the notion of the power spectrum at an 

introductory level. The results presented here have been published [ 1]. 

Section 3 focuses on the synchronization analysis of voltage-sensitive dye imaging 

during drug-induced seizures in the rat neocortex. Phase synchronization analysis is 

applied to the signals from the voltage-sensitive dye imaging to characterize 
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spatiotemporal patterns of synchronization during seizure events. Some preliminary 

results from this Section have been presented in a conference with a published abstract [2]. 

Section 4 concerns the modeling of epileptic dynamics in the drug-induced 

seizures studied in the previous section. The dynamics of a neocortical neuron is modeled 

by a conductance-based model (Hodgkin-Huxley type model). A dimension reduction 

technique, phase reduction, is applied to a pair of neurons to obtain stable and unstable 

phase differences between the two neurons as a function of a control parameter which 

mimics the effect of a seizure-inducing drug. The results presented here have been 

published [3]. 

Section 5 focuses on the development of a theoretical framework for stochastic 

perturbation of limit cycles. A theoretical framework for obtaining the statistics of the 

period of a limit cycle oscillator is developed using a stochastic version of phase 

reduction. A part of the results presented here has been submitted [4]. 

1.2. THE NERVOUS SYSTEM -- OVERVIEW 

In this section, some basic facts about the nervous system are provided. To make 

this subsection simple and readable, the description is sometimes idealized at the expense 

of precision. For more precise and exhaustive knowledge, the reader is referred to [5-7]. 

The nervous system of animals is classified into two groups 1: the peripheral and 

central nervous systems. The central nervous system consists of systems such as the brain 

and spinal cord, while the nerves connecting to the central nervous system belong to the 

peripheral nervous system. The review below is restricted to molecular, single-cell, and 

network levels in the brain, especially the neocortex, since those are most relevant to the 

dissertation. 

The brain mainly consists of two types of cells: neurons and glial cells. Although it 

had been thought that only neurons are critical elements for electrical communication in 

the brain, recent evidence suggests that glial cells may be as important as neurons. 

However, the role of glia is beyond the scope of this dissertation. 

1 A group is an algebraic structure that consists of a set with a binary operation that has a unit and inverse 
elements. That is not the group mentioned here, of course © 



3 

It is estimated that there are 10 10-1 0 12 neurons in the brain. It is commonly 

believed that electrical signals are used in all brain function. Electrical activity is caused 

by the flow of ions through proteins embedded in the cell membrane such as ion channels 

(see 1.2.3 and 1.4.2) with a mechanism similar to that of an ionic battery (see 1.2.4 and 

1.4.1). When the increase in voltage of a neuron is above some threshold, a voltage change 

occurs in a spike-like signal. This is called the action potential, and the signal propagates 

to other regions of the neuron (see 1.2.5). When an action potential propagates to a 

terminal of a neuron which is responsible for transmission of signals to another neuron, 

the change in voltage occurs in the other neuron through a structure called the synapse 

(see 1.2.7). 

1.2.1. Brief Anatomy of a Neuron. A neuron usually consists of a cell body, and 

processes called dendrites and axons, which are branches growing from the cell body [5]. 

Pictures of several different kinds of neurons are shown in Figure 1.1. The cell body 

contains the cell nucleus, in which the genetic material (DNA) of the cell is located. A 

dendrite carries information to the cell body, while an axon carries information away from 

the cell body. 

1.2.2. Cell Membrane. A neuron is enclosed by a double layer (bilayer) of lipid 

molecules called the cell membrane. In the cell membrane, lipid molecules are aligned 

with hydrophilic heads outside and hydrophobic tails inside. The cell membrane prevents 

substances insoluble in lipid from moving through the membrane and can be viewed as a 

capacitor. Therefore, the movement of ions such as Na+, K+, Ca2+, and cr through the cell 

membrane, which is important for neural function as discussed in the subsequent 

subsections, must occur through proteins embedded in the cell membrane called ion 

channels (see 1.2.3) or ion pumps (see 1.2.6). 

1.2.3. Ion Channels. Many types of proteins are embedded in the cell membrane. 

Among them, one type of protein that is relevant to the dissertation is the ion channel. Ion 

channels are proteins with a pore that allow ions to move into and out of a neuron [5]. The 

flux of ions through the cell membrane causes a difference in electrical potential between 

the outside and inside of the cell (following the convention, the electrical potential inside a 

cell with respect to the outside is called the membrane potential and denoted by V in this 

dissertation). Most of the ion channels are selective for particular kind of ion such as Na +, 
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K+, Ca2+, or cr. The permeability of some ion channels is gated by deformation of the 

channel protein due to changes in the environment such as membrane potential or changes 

in concentration of some chemicals (e.g. neurotransmitter; see 1.2.7). Depending on 

selectivity and gating mechanisms, ion channels can be classified, and many kinds of ion 

channels have been identified. There are many ion channels of the same kind distributed 

over the membrane. For example, the estimated density of Na channels in the axon in 

several kinds of animals ranges from I 00 to 3,000 channels/)lm2 [8]. 

MOTOR NEURON 

PURKIN)E CELL 

~ 

~ 
t 
;it 
.•> 

J 

~
(\ 

i 

Side 

MITRAL CF.L!. FROM 
OUACIORY BULll 

PYRAMIDAL CELl 
H<OMCORTEX 

~Axon 

Figure l.I. Neurons of different kinds. Adapted from Figure 6 in Chapter I in [5] with 
kind permission from Sinauer Associates, © 1992 Sinauer Associates, Inc. 

1.2.4. Resting Potential. The membrane potential, when there is no net flow of 

ions (i.e., current) across the membrane, is called the resting potential of a neuron. It is 

known that the resting potential of a neuron is about -70 m V in physiologically normal 

conditions. There are two components of this phenomenon. First, there is a concentration 

difference of ions of a given kind between outside and inside. Types of ions critical for 
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neurons are N a+, K+, and cr, and they have definite patterns for the ratio of concentration 

outside and inside, although the specific ratio depends on the kind of neuron. For example, 

Na+ is more concentrated on the outside of neurons than inside, while the opposite is true 

for K+ (see Table 1.1 ). The other component is that ion channels have selectivity as 

discussed in 1.2.3. Due to these components, the resting potential is about -10m V, which 

would cause the flow of ions due to the electrical gradient. However, the net current across 

the membrane is zero because this ion flow counterbalances the flow due to the 

concentration gradients. This is explained in more quantitative way in 1.4.1. It is known 

that the concentration ratio of K+ is the major determining factor for the value of the 

resting potential [8]. 

Table 1.1. Ion concentrations at resting state. Reproduced from Table 6.1 (p.133) in [9] 
with kind permission from Elsevier, © 1999 Academic Press. 

Squid giant axon 

K+ 

Na+ 

cr 

Mammalian neuron 

cr 

Ion concentration 

inside the cell (mM) 

400 

50 

40 

135 

18 

7 

Ion concentration 

outside the cell (mM) 

20 

40 

560 

3 

145 

120 

1.2.5. Action Potential. When the membrane potential of a neuron is raised above 

some threshold due to either inputs from other neurons or experimentally delivered 

stimuli, there will be a sudden increase in the membrane potential which lasts on the order 

of milliseconds, which looks like a spike (Figure 1.2) This is called the action potential 
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(or informally often called spiking or firing). The generation of the action potential is 

often described as excitability from the perspective of nonlinear dynamics in the following 

sense: a perturbation to the membrane potential above the threshold leads to a large 

transient deviation from the resting potential (see 1.2.4), while a perturbation even slightly 

smaller than the threshold will not result in a large deviation. The comparison of the two 

curves in Figure 1.2 shows a clear difference. 

Current pulses in/ to the neuron 

----JR.__ __ _ 
;>+80 
5 

1) 

= ro 
i3 --40 
E 
1) 

~ --80L-----' 

0 5 20 25 30msec 

Figure 1.2. An action potential. The membrane potential of a neuron, stimulated with a 
current pulse, is plotted as a function of time. The top panel shows the current pulses 
injected to the neuron. Note that the bigger current pulse led to a spike called the action 
potential while the smaller one did not. The figure is adapted and modified from Figure 4 
in Chapter 1 in [5] with kind permission from Sinauer Associates, © 1992 Sinauer 
Associates, Inc. 

Hodgkin and Huxley did a series of experiments and came to the conclusion that 

the voltage-dependent changes in permeability of Na +and K+ are critical for the 

generation of the action potential [8]. The mechanism of the action potential can 

approximately be summarized as follows. When the membrane potential of a neuron is 

increased above threshold, the permeability of the voltage-dependent Na+ channel 
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increases rapidly. This causes the flow of Na+ into the neuron, due to both the higher 

concentration of Na+ outside and negative membrane potential, which is responsible for 

the upstroke of action potential. This is followed by the increase in the permeability of the 

voltage-dependent K+ channel, which causes outward current since K+ is more 

concentrated inside, which outweighs the effect of the electrical gradient that would make 

K+ ions tend to flow into the cell. A more quantitative explanation of the mechanism of 

action potential generation is given in 1.4. 

1.2.6. Ion Pumps. Ion pumps are membrane proteins that maintain the 

concentration gradient of a neuron. Although no consideration is given to ion pumps in 

this dissertation, their role is briefly summarized below because of their functional 

significance. 

When an action potential occurs, Na +ions move to the inside and K+ ions move to 

the outside of a neuron. Although the movement of the ions due to a small number of 

spikes may not affect the concentration gradient, without any restoration mechanism, the 

concentration gradient would eventually change, making the neuron unable to function 

properly. To maintain the normal (unbalanced) concentration gradient such as shown in 

Table 1.1, there is a mechanism for pumping ions against their electrochemical gradient. 

Ion pumps are membrane proteins like ion channels. A major difference between ion 

pumps and channels is that ion pumps use the energy of ATP (adenosine 5 '-triphosphate, 

which is the source of metabolic energy for all living cells) for transportation of ions, 

while transportation of ions through ion channels does not require the energy from ATP. 

The Na+-K+ pump transports Na+ ions out of the cell in exchange for pumping K+ into the 

cell in order to maintain a high Na+ concentration outside and a high K+ concentration 

inside. The significance of the Na+-K+ pump is shown by the fact that the Na+-K+ pump 

has been estimated to use nearly 25% of the ATP used in many animals [10]. 

In this dissertation, it is assumed that the amount of ion flow due to electrical 

activity of the neurons is so small that concentration of ions does not change. However, 

accumulation of K+ outside has been observed during epileptic seizures [ 11], possibly 

because the outflow of K+ due to intensive action potential firing exceeds the inflow of K+ 

due to the Na+-K++ pump. The reader is referred to, for example, [10,12] for further 

discussion of the mechanisms of ion pumps. 
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1.2.7. Neural Communication-- Synapse. Communication between neurons 

typically occurs through synapses, which can roughly be defined as a link between one 

neuron and another. There are two types of synapses: chemical and electrical. In electrical 

synapses, the transmission of a signal occurs through direct flow of current between two 

neurons while, in chemical synapses, transmission is mediated by a chemical molecule 

called a neurotransmitter. Major functional differences between electrical and chemical 

synapses include: 1) there is almost no delay in electrical synapses, while there is delay in 

chemical ones and 2) the flow of information is bidirectional in electrical synapses while it 

is unidirectional in chemical ones, as discussed below. The dissertation only considers 

chemical synapses, since chemical ones are more common than electrical ones in the 

nervous system, although electrical synapses have also been shown to be important in both 

brain function and pathology including epileptic seizures. 

At electrical synapses, two neurons are physically linked by one type of ion 

channel, which allows flow of ions from one to the other due to the difference in voltage 

between them. This is like connecting two neurons with a conducting wire. 

At chemical synapses, there is a space between two neurons called a synaptic cleft 

(see Figure 1.3). The direction of flow of a signal is unidirectional at chemical synapses. 

The neuron that sends a signal to the other is called a presynaptic neuron while the neuron 

that receives the signal is called a postsynaptic neuron. When an action potential (see 

1.2.5) in a presynaptic neuron reaches to its synaptic terminal (see 1.2.8 for description of 

propagation of the action potential along the axon), a chemical called a neurotransmitter is 

released into the synaptic cleft. The released neurotransmitter reaches the surface of the 

postsynaptic cell by diffusion. When the neurotransmitter molecules bind to a receptor, 

which is another type of ion channel, on the postsynaptic neuron, the receptor channel 

opens. The opening of the channel causes current through it and causes a change in 

membrane potential. The direction of changes in the membrane potential can be either 

positive or negative, depending on what kind of neurotransmitter a presynaptic neuron 

releases. This positive and negative change occurs by the activation of channels permeable 

to cations (e.g. Na+) and anions (e.g. Cr), respectively. A neuron that releases 
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Figure 1.3. Schematic diagram of a chemical synapse. Adapted from Box 2 in Chapter 1 in 
[5] with kind permission from Sinauer Associates, ©1992 Sinauer Associates, Inc. 

neurotransmitter causing a positive voltage change in postsynaptic neuron is called an 

excitatory neuron since it tends to facilitate action potentials in the postsynaptic neuron. 

The positive change in the membrane potential in the postsynaptic neuron due to this 

synaptic activity is called the excitatory postsynaptic potential (EPSP). On the other hand, 

a neuron causing a negative change is called an inhibitory neuron since it tends to suppress 

action potentials in the postsynaptic cell, and the negative change in the membrane 

potential in the postsynaptic neuron is called the inhibitory postsynaptic potential (IPSP). 

EPSPs and IPSPs last for about a few tens to hundreds milliseconds, depending on the 

type of the receptor on the postsynaptic neuron, which is much longer (though far smaller 

in amplitude) than the duration of the action potential. An example of EPSP is shown in 

Figure 1.4. Examples of neurotransmitters for excitatory and inhibitory neurons are 

glutamate and GABA (y-aminobut}'lic acid), respectively. 
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Figure 1.4. An example of the excitatory synaptic potential. Adapted from Figure 1 in [ 13] 
with kind permission from Wiley-Blackwell, © 1956 Wiley-Blackwell. 

1.2.8. Electrical Flows in a Neuron. Although a neuron model considered in this 

dissertation is assumed to be a point without physical size (so-called a single compartment 

model, see 1.4) for simplicity, this is not the case in a real neuron. Therefore, there is 

electrical flow within a single neuron. 

A simplified picture is as follows. Dendrites (see 1.2.1) which receive inputs from 

as many as 10,000 other neurons through chemical synapses (see 1.2.7) act as integrators 

of the inputs. The local membrane potential changes where there is current due to synaptic 

activities. This non-uniformity of the membrane potential causes diffusion of ions in the 

network of dendrites as well as diffusion between the inside and outside of the neuron 

through open ion channels. It is known that the likelihood of an action potential in the 

dendrite and cell body is small compared to that in the axon due to a different composition 

of kinds of ion channels from that in the axon. Therefore, while the propagation of an 

action potential along the axon is a nonlinear process as discussed below, the diffusion 

process in the dendrites can be modeled by the linear cable equation, which describes a 

diffusion process in a leaky cable [12]. 

When sufficiently large excitatory inputs (i.e., inputs that cause an increase in the 

membrane potential) are received over the dendrites to increase the membrane potential 

above the threshold, an action potential (see 1.2.5) initiates, typically at the initial segment 

of the axon from the cell body [14]. An action potential in one place causes an increase in 

the membrane potential in neighboring places in the axon through diffusion. This causes 

an increase in the permeability of voltage-dependent N a+ channels and, thus, triggers an 

action potential in the neighboring places. This process is a nonlinear process and can be 



modeled as a nonlinear cable equation, which can produce traveling waves of electrical 

excitation [ 12]. 

I I 

When an action potential propagates to the end of the axon, neurotransmitters are 

released into the synaptic cleft of the synapse at the axon terminal. This causes membrane 

potential changes in the dendrites onto which the axon makes its synaptic connections. 

1.2.9. Neocortex. Since Sections 3 and 4 focus on neocortical seizures, some 

facts about neocortical networks are provided in this section. The neocortex is the outer 

region of the mammalian brain and is responsible for higher functions such as sensory 

perception (i.e., interpretation of a sensory stimulus such as light and sound) and motor 

control (i.e., moving limbs and eyes). The name, neocortex, comes from the fact that it is 

part of the cerebral cortex which was most recently acquired in evolution. 

1.2.9.1 Laminar structure of neocortex. The neocortex consists of 

six layers, each of which spans in parallel to the brain surface and is numbered 

sequentially from the most superficial layer. The classification of the layers is based on the 

types of neurons in each layer (see Figure 1.5) and each layer has a different role [6]. In 

layer 1 there are few cell bodies of neurons. Layers 2 and 3 have mostly pyramidal 

neurons (explained in the next subsection), and make output connections to other cortical 

regions. Many non-pyramidal neurons are located in layer 4 and receive input primarily 

from the thalamus, a deeper structure in the brain whose role includes relaying sensory 

and motor information to the neocortex. The largest pyramidal neurons exist in layer 5 and 

their long axons make output connections to regions such as the basal ganglia and spinal 

cord. Layer 6 contains neurons whose output goes to the thalamus. 

1.2.9.2 Morphological classification of neocortical neurons. Neurons have 

been classified in terms of morphological and electrophysiological properties. From a 

morphological point of view, neocortical neurons can be classified into two categories: 

pyramidal neurons and non-pyramidal neurons [ 6]. Both types can be further classified 

into subcategories and the reader is referred to, for example, [ 15] for more detail. 

Pyramidal neurons have a pyramid-shaped cell body, from which the name derives 

(see Figure 1.5). The apex of their cell body is oriented toward the surface of the brain. 

The axons of pyramidal neurons make both local and long-range connections. The main 

trunks of their axons connect to a distant region of the neocortex, or to other structures in 
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the nervous system, while there are several branches from the main trunk which end near 

the cell body. All the output from the neocortex is through pyramidal neurons [ 15]. 
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Figure 1.5. The laminar structure and locations of pyramidal neurons in the neocortex. 
Adapted from Figure 8 (p.535) in [16] with kind permission from Springer Science and 

Business Media, © 1984 Plenum Press. 

Non-pyramidal neurons have round and smaller cell bodies. The axon of a non­

pyramidal neuron makes local connections: it usually terminates near its cell body and 

rarely goes further. Input from other regions of the brain is received by non-pyramidal 



neurons. Therefore, the main roles of non-pyramidal neurons are local information 

processing and receiving input from other regions in the brain. 
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1.2.9.3 Electrophysiological classification of neocortical neurons. It is a 

common experimental technique to apply a constant stimulus current to an isolated 

neuron. In such an experiment, without stimulus current, the neuron does not show an 

action potential and the membrane potential stays constant, called the resting potential (see 

1.2.4). When the stimulus is kept above some threshold, the neuron shows periodic action 

potentials. Based on its spiking patterns, neurons are mainly classified into four classes 

[17, 18]. 

Regular-spiking neurons are characterized by a tonic spiking pattern with higher 

frequency of spikes at the beginning of a stimulus. They are mostly pyramidal neurons. 

The majority of neocortical neurons are regular-spiking neurons. Intrinsically bursting 

neurons, which are pyramidal neurons, show clustered patterns of action potentials, called 

bursts, followed by a pause and a tonic spiking pattern. Fast-rhythmic-bursting neurons 

produce a sequence of bursts at 30-40 Hz and they are either pyramidal or non-pyramidal 

cells. Fast-spiking neurons give rise to a tonic spiking with much faster rate than regular­

spiking neurons and with a thin shape of action potentials. Among those four classes of 

neurons, only fast-spiking neurons are inhibitory neurons, while the rest are excitatory 

(see 1.2.7 for the definition of the excitatory and inhibitory neuron). Having said that 

neurons can be classified into the four classes, recent evidence has shown that firing 

patterns can be changed from one to another under some conditions [ 18]. 

1.2.9.4 Some statistics of neocortical neurons. Some statistics of neocortical 

neurons are briefly summarized. All the data here comes from [19], to which the reader is 

referred for more detail. 

The density of neurons in the brain varies from animal to animal, and from place to 

place. In general, the number of neurons per unit volume is lower in larger brains. In the 

mouse neocortex, the density of neurons is estimated to be 104 to 105 neurons/mmJ. The 

average number of synapses per neuron in the mouse neocortex is estimated to be 2,300 to 

8,000 while, in humans, it is estimated to range from 24,000 to 80,000. 

There are data which suggest that the estimated length of axons of the pyramidal 

cell in the mouse cortex ranges from less than 1 mm to 17 mm and that the most frequent 
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length range is 1 to 2 mm. However, the authors also warn that the result may change 

dramatically from the actual distribution because of the fact that they have to estimate the 

length of axons based on a correction formula since the thickness of their section sample is 

often much smaller than the length of axons. 

1.2.10. Synchronization in the Brain. Synchronization of electrical activity is 

ubiquitous in many aspects of brain function. Only a small fraction of synchronization 

phenomena are summarized below. For a more comprehensive review, the reader is 

referred to, for example, [20]. 

Many studies have suggested that synchronization of electrical activities are 

critical for normal brain function such as visual perception [21], associative learning [22] 

and memory consolidation [23], to name a few. 

It has been shown that neural synchrony may be critical in the development of the 

brain. There is synchronized spontaneous neural activity in the neonatal neocortex [24], 

while desynchronized neural activity is observed in the mature neocortex [25]. 

Although neural synchrony is crucial to brain function, it can also cause 

pathologies in the brain. There have been lines of evidence that show abnormal neural 

synchronization is associated with some brain disorders such as autism, schizophrenia, 

Alzheimer's disease and Parkinson's disease [20]. 

Epilepsy [26] has traditionally been considered to result from excess and/or 

synchronized electrical activity in the brain, although several studies have recently 

suggested that this may not necessarily be the case (see 3.1 for more discussions). 

1.2.11. Epileptic Seizures. Since Sections 3 and 4 concern one particular type of 

epilepsy which is artificially induced in the rat, some basic knowledge about epilepsy is 

provided in this subsection. The following subsection ( 1.2.11.1) explains a definition of 

epilepsy and epileptic seizures. Some facts and terminology are explained in 1.2.11.2. 

Animal models, which have been used to complement studies in human epileptic patients, 

are briefly summarized in 1.2.11.3. The primary focus of Sections 3 and 4 of this 

dissertation is a particular animal model in which a K+ channel blocker is locally applied. 

This particular animal model is described in 1.2.11.4. 

1.2.11.1 Definition of epilepsy. Epilepsy is not a specific type of disease, but a 

category of symptoms of disordered brain function [27]. According to the definition 
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proposed by the International League Against Epilepsy and the International Bureau for 

Epilepsy [28], an epileptic seizure is "a transient occurrence of signs and/or symptoms due 

to abnormal excessive or synchronous neuronal activity in the brain" and epilepsy is "a 

disorder of the brain characterized by an enduring predisposition to generate epileptic 

seizures and by the neurobiological, cognitive, psychological, and social consequences of 

this condition". 

1.2.11.2 Clinical aspects of epileptic seizures. The estimated average annual 

incidence of epilepsy is 28.9 to 53.1 per 100,000 population [29]. There are many factors 

that can cause epilepsy: brain injury, developmental malformation, genetic factors, and so 

on [27]. 

Characterization of epileptic seizures has been performed based on electrical 

activity in the brains of epileptic patients recorded with the electroencephalogram (EEG) 

[27]. Seizures are generally classified into two categories: focal and generalized seizures. 

Focal seizures (also called partial or local seizures) are those where the changes in 

electrical activity at clinical onset are confined to a local region in one cerebral 

hemisphere. Generalized seizures are those where the changes in electrical activity at a 

clinical onset occur in both cerebral hemispheres. Those two types are further categorized 

into subtypes, which is beyond the scope of this dissertation. The reader is referred to [27] 

for more detailed classification of seizures. 

1.2.11.3 Experimental animal models of epileptic seizures. To study the 

neurological mechanisms of epileptic seizures, research on human epilepsy would be an 

ideal approach and, in fact, extensive research has been done on human epileptic patients. 

However, the study of human epileptic patients has several drawbacks [30]. First, the 

application of invasive techniques in human patients is limited by ethical constraints. 

Second, it is difficult to have good controls of physiological variables. Finally, statistical 

analysis may require a larger number of patients than that in clinical studies. As alternative 

and complementary approaches, animal models of epileptic seizures, where epileptic 

seizures are artificially caused by a researcher, have been widely studied. Studies using 

animal models of epilepsy have also been used to investigate oscillatory neural 

mechanisms commonly seen in a normal brain [30]. 
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Animal models can be divided into two classes: acute models and chronic models. 

In acute models, epileptic seizures are induced in otherwise normal animals. Methods for 

acute animal models include the application of electroshock, and the application of 

chemicals that increase excitability of neurons [30]. Acute models can provide hypotheses 

about neural mechanisms of seizure events at molecular, cellular, and network levels. 

Chronic models are aimed to investigate long-term and progressive changes caused 

by chronic occurrence of epileptic seizures. Methods for chronic animal models include 

kindling (chronic application of electrical or chemical stimulations that causes progressive 

increase in the frequency and/or severity of seizures), application of metals such as 

alumina and cobalt acids, and other materials such as tetanus toxin. Genetic models have 

received increasing attention. Some genetic models are similar to human genetic 

epilepsies. 

1.2.11.4 4-aminopyridine epileptic seizures. This subsection is devoted to one 

specific type of animal epilepsy model which is used in Section 3, and of which a 

computational model is constructed in Section 4. 4-aminopyridine (4AP) is a blocker of 

K+ channels (see 1.2.3). At a single cell level, 4AP is known to increase the duration of the 

action potential (see 1.2.5) [31]. As a result of the prolonged duration of the action 

potential, there is an increase in the amount of neurotransmitter released at the synaptic 

terminals of both excitatory and inhibitory neurons, which leads to an increase in 

amplitude of both excitatory and inhibitory postsynaptic potentials (see 1.2.7) in 

postsynaptic neurons. At a network level, it is known to cause epileptic activity when 

applied to the brain in vivo or to brain slices [32]. 

1.3. MEASUREMENT OF NEURAL SIGNAL 

In this subsection, techniques to measure electrical activity which are relevant to 

this dissertation are described. 

1.3.1. Local Field Potential. The local field potential (LFP) recording is one type 

of measurement of electrical activity in the neural system, called the extracellular 

recording, and measures the electrical potential at one location in the brain with respect to 

a reference point. In extracellular recordings, the tip of an electrode in the brain is in the 

extracellular space, meaning that the tip is outside the neurons, while, in the intracellular 
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recording, the tip of the electrode is inside the neuron. In practice, in the case of a live 

animal as in Section 3, both measurements can be done by inserting an electrode in a place 

inside the brain while setting another electrode on somewhere in the animal's body as a 

reference. 

The local field potential is the low frequency component (less than 300Hz) of the 

extracellular recording. It is widely believed that the local field potential reflects mainly 

the electrical potential due to synaptic current (see 1.2.7) of a population of neurons, while 

the high frequency component (300-1 0,000 Hz) of the extracellular recording reflects the 

electrical potential due to action potentials (see 1.2.5). This is presumably due to the fact 

that the time scale of the synaptic potential (an order of 10-100 milliseconds) is much 

slower than that of the action potential (an order of millisecond). 

Although the intracellular recording is experimentally more delicate than the 

extracellular recording, it is relatively simple to interpret signals from the intracellular 

recording. The intracellular recording essentially measures the membrane potential of a 

cell into which an electrode is inserted. When an action potential (see 1.2.5) occurs, the 

signal from the measurement looks like the membrane potential simulated by a Hodgkin­

Huxley type model. While the extracellular recording is less delicate to perform, its 

interpretation is not straightforward, since it typically reflects the electrical activity from a 

population of neurons. Even when an extracellular recording is made from an isolated 

single neuron, its signal looks very different from that with an intracellular recording. For 

example, during an action potential in a neuron, the signals from the extracellular 

recording close to the neuron show a triphasic signal rather than a single spike-like signal. 

Although the theoretical basis for extracellular recording in the brain is yet to be 

understood, an extensive amount of research in from both theoretical and experimental 

aspects has provided some knowledge about extracellular recording in the brain. A most 

simplified model of the extracellular recording is briefly discussed below [33]. The first 

principle for the extracellular recording is the Maxwell equations. Several approximations 

are made for the model discussed here. First, since the physiologically relevant frequency 

range of the signals are low (less than 10,000 Hz), the effect of magnetic induction is 

negligible. Therefore, the problem can be treated as one of electrostatics. Second, although 

the cell membrane acts as a capacitor (see 1.2.2) and the role of the capacitance is very 
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critical in the dynamics of a neuron (see 1.4.4 ), some experimental data support that, for 

local field potential measurement, capacitive effects of the brain tissue are negligible and, 

therefore, the brain can be viewed as purely resistive. Third, conductivity of the medium is 

assumed to be homogeneous and isotropic. Finally, Ohm's law holds (i.e., J = aE holds). 

Consider a synapse where the excitatory synaptic activity occurs as shown in 

Figure 1.6 (see 1.2.7 for the explanation of the neuroscience terms). The excitatory 

Subeynaptlc 
Membrane 

Postsynaptic 
Neuron 

Figure 1.6. Membrane current caused by excitatory synaptic current. The inward current at 
the synapse causes outward current at distant places. Adapted from Figure 4-6 (p.l64) in 
[24] with kind permission from Oxford University Press, ©2006 Oxford University Press, 
Inc. 

synaptic current increases the membrane potential at the location where positive ions flow 

into the postsynaptic neuron. This creates the gradient in the membrane potential in the 

postsynaptic neuron. Positive ions diffuse to neighboring places and some of them leak 

out of the neuron (see 1.2.8) until the system comes back to the steady state (i.e., the 

membrane potential comes back to the resting potential, see 1.2.4). This process creates 

current sources and sinks distributed on the membrane of the postsynaptic neuron. 

Therefore, the electrical potential at a point in the extracellular space is determined by the 

summation of the potentials created by such current sources. Assuming that each current 
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source is spherically symmetric, the electrical potential at a given point in the brain can be 

expressed by the following equation 

<I>(r,t)=-1-II"(t), 
4,1l'(j n=J Rn 

(1) 

where (]'is the conductivity of the medium, In (t) is the n1
h current source, and R" is the 

distance between the point where the measurement is made and the point of the source. 

Therefore, by knowing the distribution of the current sources, the electrical potential at a 

given point can be calculated. However, the electrical potential at a given point is highly 

affected by the geometry of neurons, as discussed later. 

Consider the two different neural geometries shown in Figure 1. 7. In Figure 1. 7 A, 

neurons are lined up parallel to each other. In this case, the synchronized synaptic current 

forms a dipole layer, which creates a large electric field. On the other hand, when neurons 

are located in a radially symmetric manner as in Figure 1.7B, the electric field outside the 

population of neurons tends to be small. In the case of the neocortex, pyramidal neurons 

are aligned perpendicular to the surface of the brain. Therefore, a configuration like Figure 

1.7 A might give a good approximation. 

<t-t++++++-t 

B @ • -

Figure 1. 7. Different geometries of neurons and their corresponding electrostatic models. 
Adapted from Figure 3 (p.289) in [34] with kind permission from Springer Science and 
Business Media, ©1990 The Humana Press Inc. 
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Suppose that a microelectrode is placed above the layer of N neurons as in Figure 

1.7 A and that the dipole moment from each current source is changing periodically with 

the identical frequency. Consider two situations: all the dipole moments oscillate ( 1) in 

phase and (2) with random phases. Then, it is expected that the electrical potential in the 

case (1) is proportional toN, while the potential in the case (2) is proportional to .JN [35]. 

This indicates that the local field potential measurement may mostly reflect in-phase 

synchronous activity of neurons, if this activity is occurring. 

1.3.2. Voltage-Sensitive Dye Imaging. Voltage-sensitive dyes are molecules 

which sit in the cell membrane and emit fluorescence in response to changes in the 

membrane potential. 

Voltage-sensitive dyes have been widely used in the measurement of electrical 

activity in the neural system. At a single-cell level, it has been experimentally shown that 

the fluorescence correlates linearly with the membrane potential [28]. At a population 

level, several patterns, such as propagating waves, are observed [31]. 

The dye which is used in the experiment in Section 3 is called RH-1961. This dye, 

also called a blue dye, has been specifically developed for the measurement of electrical 

activity in in vivo brain imaging as an improvement from more traditional dyes such as 

RH-795. RH-1691 can be excited with a longer wavelength than the absorption 

wavelength of hemoglobin. Thus, using RH -1691 reduces the noise due to hemodynamics 

such as the changes in reflectance caused by local blood volume change more than older 

dyes [36, 37]. The use of such blue dyes is particularly important in seizure studies, where 

each seizure is a unique event, and thus imaging trials cannot be averaged in order to 

improve signal-to-noise ratio. 

1.4. BIOPHYSICS OF SINGLE NEURON DYNAMICS 

This subsection is devoted to explaining how a model for single neuron dynamics 

can be built. This formalism explained here was originally developed by Hodgkin and 

Huxley (known as the Hodgkin-Huxley equations) and called a conductance-based model, 

where the membrane potential dynamics is described by the change in current through ion 

channels (or changes in conductance of ion channels). 
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As mentioned before, in this dissertation, a single neuron is modeled as an object 

without size, in the sense that a single variable describes the membrane potential of an 

entire neuron, as opposed to an object where different places in a single neuron can have 

different voltages. This is called a single-compartment model. The focus of this subsection 

is restricted to a single-compartment, conductance-based model. There are other types of 

models such as multi-compartment, conductance-based models, where a single neuron is 

modeled with more than one segment [38], and population models, where the dynamics of 

activity of a local population of neurons is described as a function of time and space [39]. 

A single-compartment conductance-based model is equivalent to an electrical 

circuit with a capacitor and variable resistors. In the Hodgkin-Huxley model, voltage­

dependent Na + and K+ channels are essential for an action potential to occur. To 

understand how this circuit generates an action potential (see 1.2.5), several notions have 

to be explained. 

1.4.1. Nernst Potential. The selectivity of ion channels mentioned in 1.2.3 is the 

basis of electrical phenomena in neurons. Consider a system where a container of solution 

is separated into two compartments by a membrane, as shown in Figure 1.8. The container 

is filled with liquid containing two ions, K+ and A- (A- can be any monovalent anion). 

Each compartment has the same amount of K+ and A-, so that the total charge is zero in 

each container. However, the concentration of the salt is larger in one container (say, left) 

than the other (right). The membrane has pores that are permeable only to K+. At the 

beginning of this process, the electrical potential difference between the two 

compartments is zero. However, it is expected that K+ diffuses into the right side due to 

the concentration difference. Since A- ions cannot move through the membrane, diffusing 

K+ ions into the right side makes the electrical potential of the right side higher, which 

drives K+ ions to move toward the left. So, there are two opposing driving forces for the 

transfer of K+ ions, and the question of interest is what the equilibrium potential difference 

between the two compartments will be. 

Applying the Boltzmann distribution or equating the Gibbs free energy to zero for 

the system, the equilibrium potential VK is determined by the Nernst equation: 
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V = E . - E . = RT ln [ K ri!(ht ] 

K Left rl!(ht F [ K . } (2) 
Z left 

where R is Boltzmann's constant, Tis temperature, z is valence, and F is the Faraday 

constant. This means that, when the measured potential is equal to the equilibrium 

potential, there is no net flow of K+ ions between the two compartments. Based on the 

mammalian cell values in Table 1.1, the equilibrium potentials forK+, Na+, and cr are-

102, 55.7, and -75.9 mV, respectively. 
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Figure 1.8. A container with a permeable membrane only to K+. 

Although perfect selectivity is assumed in the neural models used in this 

dissertation, it is worth discussing the case of imperfect selectivity from the physics point 

of view. In reality, an ion channel is not perfectly selective to one kind of ion. Assume a 

collection of ions rather than K+ and A- and imperfect selectivity of pores. In this case, the 

final membrane potential where the net current is zero (the resting potential) has to be 

modified. Using electro-diffusion theory with a few assumptions [8, 12] and assuming that 



23 

only K+, Na+, and cr, which are physiologically relevant, are permeant to the membrane, 

the resting potential is give by the Goldman-Hodgkin-Katz (GHK) equation: 

(3) 

where Pi is the relative permeability for ion i (this has to be measured experimentally). 

Although the GHK equation looks similar to the Nernst equation (Eq. 2), the two 

equations are derived based on totally different principles [8]. The Nernst equation derives 

the voltage at equilibrium, which can be derived from thermodynamics (Gibbs free 

energy) or the Boltzmann distribution. On the other hand, when more than one kind of ion 

can go through the pores at the resting potential (see 1.2.4), the net flow of each ion 

species is not necessarily zero, even though the net flow of all the ions is zero. Therefore, 

this is a non-equilibrium problem and the treatment for the derivation of the GHK 

equation is far more complicated than the Nernst equation. The GHK equation is derived 

as the steady state for the net current in the differential equations that describe the 

dynamics of the current through pores based on electro-diffusion theory. The Nernst 

potential can also be derived from GHK equation as the special case of the pores being 

perfectly selective to only one kind of ion [ 12]. 

1.4.2. Dynamics of Voltage-Dependent Ion Channel. To model the current 

through ion channels, the dynamics of an ion channel must be considered. The ion 

channel of interest here is the voltage-dependent channel, whose dynamics of opening and 

closing depends on the membrane potential V. Consider a simple model which consists of 

two states of an ion channel, the open and closed state, 

C+==! Q, (4) 

where C and 0 refer to the closed state and open state, respectively. The transition 

between them corresponds to a conformational change in the channel protein. Assume that 

there are N channels of this kind on a neuron and define the number of open and closed 



channels at timet as No(t) and Nc(t), respectively. Since the total number of channels 

should be preserved, 
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(5) 

Since the ion flow is the sum of the currents through each ion channel as stated in Eq. 14 

below, an equation governing the time course of the fraction of open channels would 

determine the current through the channels at a given time. 

To obtain an equation for the dynamics of the fraction of open channels, the law of 

mass action, which is an empirical law which states that the reaction rate in a single-step 

reaction is proportional to the concentration of the reactants [ 40], is employed. It is natural 

to refer to the fraction of open channels as "concentration", denoted asj(=No!N). Then, 

from Eq. 5, the fraction of closed channels is given by 1-f By the law of mass action, the 

rate of transitions from the state C to 0, denoted as j+, can be written as 

where e is the proportionality constant for the transition rate. Similarly, the rate of 

transitions from the state 0 to C, denoted as J-, can be written as 

(6) 

(7) 

where k- is the proportionality constant for the transition rate. Then, the equation for the 

dynamics of the fraction of open channels becomes as follows: 

(8) 
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(Note that an implicit assumption made, in order to apply the law of mass action, is that 

the number of molecules involved is very large, which may not be necessarily the case for 

ion channels on a neuron. If the number of channels are not so large, some stochasticity is 

expected, rather than the deterministic dynamics described by Eq. 8. A stochastic version 

of the dynamics of this system is considered in Section 5.2 and it is shown that, in the 

limit of N ~ oo, the deterministic equation (Eq. 8) can be recovered.) Define 

r = 1 /(k- + k-) and f 00 = k + l(k- + k-) . For voltage-gated channels, k + and k- are a 

function of Vand, therefore, so are r and foo. Then, Eq. 8 becomes 

df - (f- foo(V)) 

dt r(V) 
(9) 

If Vis kept constant,! reaches f 00 with time constant r, which is similar to the dynamics 

of charge stored in a capacitor in the RC circuit. 

To see the explicit form of voltage dependence of r and f 00 

in Eq. 9, the 

dependence of k+ and k- on V should be determined. Using the Arrhenius equation2
, which 

is an empirical law to describe the temperature dependence of the reaction rate constant 

[8], the rate constants k can be expressed as 

(10) 

where Ea is the activation energy of the reaction. For a voltage-gated channel, the 

membrane potential V affects the rate constants for the transition between the open and 

closed states. Therefore, k + and k- can be written as 

(11) 

2 The rate constant can be obtained using a more theoretical approach, the transition state, which is beyond 
the scope of this dissertation 
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where k~, k~, a, and f3 are constants. Then, after some algebraic manipulation, r and 

1= can be written as [41]. 

f= =0.5(l+tanh(V -V0 )/2S0 ) 

r =-------'-¢ ___ _ (12) 

cosh((V- V0 )/2S0 ) 

where S 0 =11(/3-a) and V0 =ln(k~/k~)l(/3-a). 

1.4.3. Ionic Current. Based on the discussion of the Nernst potential ( 1.4.1 ), the 

simplest approximation for the current through a single ion channel, if it is open, is 

represented by Ohm's law, taking the difference in voltage with respect to the Nernst 

potential: 

· = sitz!ile(V _ V ) l gil ll (13) 

where n is the subscript for the nth kind of ion channel, lint;le is the conductance of the 

single ion channel and Vn is the equilibrium potential for the kind of ion permeant to the 

nth kind of ion channel. Assume that there is a collection of channels of the same kind with 

the number Nn. Letfn be the fraction of open channels (an implicit assumption here is that 

Nn is large enough to be able to treat the fraction as a continuous variable). The number of 

open channels is given by Nil f". Then, the total current through the nth kind of channel is 

/, = N J sill!ile (V _ V ) 
1 ll llgll ll 

(14) 

By defining the maximal conductance g11 as gil = Nllg;;ill!ile, Eq. 14 becomes 

Ill = g ll f" (V - Vll ) ' (15) 

which will be used for the equivalent electrical circuit in the next subsection. It is known 

that there is a deviation from the linear relationship between the voltage and current 



through ion channels (Eq. 15). The reader is referred to [8] for the discussion of 

nonlinearity in the current-voltage relationship. 
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1.4.4. The Membrane Model. It is widely accepted that the dynamics of the 

membrane potential can be reliably modeled by an equivalent electrical circuit (Figure 

1.9). In this circuit, the lipid double-layer cell membrane is modeled as a capacitive 

element and is arranged with the ionic currents discussed in 1.4.3. By Kirchhoff's law, the 

equation for the dynamics of the membrane potential is 

N dV 
Japp = Lfn +C-

n=l dt 
N dV 

= L g II fn (V - v/1) + c -d 
n=l t 

(16) 

where lapp is an externally applied current, C is the capacitance of membrane, and, for the 

second equality, Eq. 15 is used. Rearranging the equation to a more standard form gives 

membrane 

- -\-
capacitance 

v. 
In 

Figure 1.9. An equivalent electrical circuit to the membrane model. Adapted from Figure 
2.4 (p.27) in [ 41] with kind permission from Springer Science and Business Media, ©2002 
Springer-Verlag New York, Inc. 
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dV N 
C-=-L g 11 fn (V - Vn ) + f Uf'f' • 

dt n=J 

( 17) 

Eq. 17, with the differential equations for the fraction of open channels (Eq. 9), forms a 

model for the dynamics of a single neuron. 

1.4.5. "Canonical" Form of Conductance-Based Model. Based on the 

discussion up to this subsection, a single-compartment, conductance-based model can be 

written in the following "canonical" form: 

(18) 

dfL = (fL- ft(V)) 

dt TL (V) 

where L represents the number of kinds of ion channels (n=l, 2, ... , L), Vis the membrane 

potential, and gn andfn are the maximum conductance and the fraction of open channels 

for the nth kind of ion channel, respectively. The differential equation for Vis derived from 

Kirchhoff's law (Eq. 17) and the other equations are derived from the dynamics of ion 

channels (Eq. 9). One of the simplest conductance-based models is provided in the next 

subsection as an example. 

1.4.6. Example: Morris-Lecar Equations. The first and most famous 

conductance-based model is the Hodgkin-Huxley equations. In this subsection, however, a 

simpler model, the Morris-Lecar (ML) equations [ 42], is presented for illustration. The 

model is proposed for the electrical activity of the barnacle muscle fiber. Thus, it is not 

technically a neural model. However, the equation works in a very similar way to a neural 

model. 

The model consists of two kinds of ion channels, Ca2+ and K+. In the case of neural 

models with a minimal setting, Na+ and K+ are usually considered. Ca2
+ in this model 

qualitatively behaves in the same way as the Na+ current in neural models. The model has 



three kinds of ion channels: Ca2+, K+, and leakage channels. The equations have the 

following form: 

dV 
c dt = - g Ca m(V - v Ca ) - g K w(V - v K ) - g L (V - v L) + I app 

dm (m-m~(V)) 
--
dt rm (V) 
dw ( w - w ~ (V)) 
--
dt r w(V) 

where g; represents the maximal conductance for each kind of channel, as in Eq. I 5, 
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(19) 

m and ware the fraction of open channels for the Ca2+ and K+ channels, respectively, and 

m~ (V) and w~ (V) are the steady-state fraction of the Ca2+ and K+ channels, as explained 

in Eq. 9, respectively. A crucial approximation will be made to obtain a reduced set of the 

equations, which makes the analysis of this model more tractable. Based on the fact that 

the characteristic time scale for the dynamics of the Ca2
+ channel ( = r"' (V)) is much 

shorter than that for the K+ channel (=rw(V) ), i.e., m changes much faster than w, the 

assumption is made that the fraction of open Ca2
+ channels (=m) reaches its steady-state 

value(= m~ (V)) without a time lag. This can be done by replacing min the first equation 

in Eq. 19 by m ~ (V) . In words, the fraction of open Ca2
+ channels is no longer a function 

of time, but a function of the membrane potential. The reduced set of equations can be 

written as: 

dV 
C dt =-g cam~ (V)(V- Vca)- g K w(V- VK)- g L (V- VL) +I app 

dw ¢(w- w~ (V)) 
(20) 

-=------
dt r(V) 

where m,x. and Woo are defined as follows: 



m~ = 0.5(1 + tanh((V- v1) I v2 )) 

w ~ = 0.5(1 + tanh((V- v3 ) I v 4 )) 

r = 1 I cosh((V- v3 ) 1(2v 4 )) 
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(21) 

and the values of the parameters used here are taken from [41]. By the reduction of the 

dimension of the system from 3 to 2, the variables that describe the system can be plotted 

in a plane, which is called the phase plane, rather than a 3-dimensional space. 

One important feature of neural dynamics, excitability (see 1.2.5), can be observed 

in this model. Figure 1.10 shows the time course of the response of the membrane 

potential V to an injection of a brief current pulse for 10 msec with two different 

amplitudes 100 and 150 pA, i.e., set lapp=100 or 150 at t=300 to 310 and lapp =0, 

otherwise. The current injection can be assumed to be artificially given by an 

experimenter. The injection of a larger current pulse ( 150 pA, see Figure 1.10 right) leads 

to a large transient change in the membrane potential (action potential). Note that the 

transient change of the membrane potential lasts even after the injection of the current 

pulse. On the other hand, with an injection of a smaller current pulse for the same duration 

( 100 pA, see Figure 1.10 left), the membrane potential returns to the resting potential 

without a large deviation. The difference between the two conditions is prominent when 

the time course of the two variables (V, w) is plotted in the phase plane (Figure 1.11 ). 
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Figure 1.10. Response to a brief current injection in the ML model. Left: the top graph 

shows the time course of the membrane potential responding to a brief current pulse at 100 

pA while the bottom graph shows the timing of the current pulse. Right: the same graphs 

as the left are shown, except that the current pulse has an amplitude of 150 pA. 
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Figure 1.11. Variables of ML model in the phase plane. In the left and right graph, the 

variables (V, w) are plotted for the left and right graphs in Figure 1.10, respectively. 
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Consider another situation where a constant current is injected. The graphs of the 

numerical solutions for Eqs. 20 with different values of lapp are shown in Figure 1.12. As 

lapp increases above a certain value, V starts oscillating periodically. This is a bifurcation, 

where, due to the change in the value of lapp' the behavior of the solution of the differential 

equations qualitatively changes (see 1.5.3). When lapp is above the threshold, the solution 

of Eqs. 20 converges to a closed orbit in the phase plane. This is called a stable limit cycle 

(see 1.5.2). A detailed analysis shows that this bifurcation is a subcritical Hopf bifurcation 

(see 1.5.3.2). For more detailed analysis of this system, the reader is referred to [ 41, 43]. 

The changes in the ionic currents during the periodic spiking for I app = 150 are 

shown in Figure 1.13. The total current through the membrane is plotted on the middle 

panel (positive current is defined as inward current). One can see that there is inward 

current at the upstroke of an action potential while there is outward current at the 

downstroke of an action potential. The Ca2
+ current (solid line, positive is defined as 
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Figure 1.12. The time course of membrane potential responding to constant current with 

different values. Le-Ft: I = 60, Right: I = 150. 
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Figure 1.13. The time course of ionic currents. Top: membrane potential with (,,P = 150 

(identical to Figure 1.12 right). Middle: total ionic current through the membrane (positive 

is defined as inward current). Bottom: Ca2+ current (solid line) and K+ current (dashed 

line) through the membrane. 
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inflow of Ca2+) and K+ current (dashed line, positive is defined as outflow of K+ for 

presentation purposes) are plotted on the bottom panel. There is a slight time lag between 

inflow of Ca2+ and outflow of K+, which is crucial to generation of an action potential. The 

upstroke of an action potential is mainly due to the flow of Ca2
+ ions into the cell, while 

the decrease in the membrane potential at the last phase of an action potential is due to the 

flow of K+ out of the cell. 

In the case of the neural model, this description holds by replacing Ca2
+ with Na +: 

the upstroke of the action potential is due to the inflow of Na + ions, while the downstroke 

is caused by the outflow of K+ ions. 

1.5. NONLINEAR DYNAMICS 

In this subsection, background is provided on the aspects of nonlinear dynamics 

relevant to the problems discussed in the dissertation. For more comprehensive treatment, 

the reader is referred to [ 44-46]. 

The focus of this subsection is a set of ordinary equations: 

(22) 

where .X. = dx I dt. The space that consists of then variables is called the phase space and 
I I 

n is called the dimension of the system. The solution of Eqs. 22 is a curve in the phase 

space for the system. 

1.5.1. Linear Stability Analysis. In Eqs. 22, any x * = (x;, ... , <) for which all 

the i.s are zero is called a fixed point. How the solution for Eqs. 22 behaves near fixed 
r 

points can be studied by linear stability analysis. 

1.5.1.1 One-dimension case. Assume that x * is a fixed point for the equation 

i = f(x). Define7J(t) = x(t)- x·. Then 
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iJ=x=f(x)=f(77+x*) 

=J(x*)+ f'(x*)77+0(77 2
) 

= f' (x • )77 + 0(77 2 
). 

(23) 

For the last equality, f (x ·) = 0 is used. Ignoring the quadratic and higher order terms in 

77, 

(24) 

which is linear in 77. Therefore, iff' (x *) > 0, 77 grows exponentially, while, if j' (x ·) < 0, 

77 decays exponentially to zero3
. A fixed point of the former kind is called a stable fixed 

point while the latter is called an unstable fixed point. Iff' (x *) = 0, taking a higher order 

term in 77 will be necessary. It is also possible to determine the linear stability 

geometrically as illustrated in the example below. 

Example. Consider 

• 2 0 x=x +c, c< . (25) 

There are two fixed points: x • = ±~. At x • = -~, f' (x') < 0 and, therefore, the 

point is stable, while the other point is unstable. The graph of j(x) gives an intuitive 

picture about the stability of the fixed points (Figure 1.14 ). The solution starting in the 

neighborhood of the left fixed point approaches the fixed point, while that of the right 

fixed point goes away from the fixed point. 

1.5.1.2 Two-dimensional case. For n=2, the treatment is slightly more 

complicated than the one-dimensional case. Consider the set of equations 

x1 = f 1 (xp x 2 ) 

x2 = !2 (xi ,x2 ). 

3 The solution of dx!dt=cx is x(t)=x(O)exp(ct). 

(26) 



dx 

dt 

X 

Figure 1.14. The time derivative of x as a function of x for the system in Eq. 25. 
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Let (x;, x;) be a fixed point and u, = x 1 - x; and u2 = x2 - x;. Then the equation for u
1 

IS: 

(27) 

For the third equality, the Taylor series expansion was used and, for the last equality, 

j 1 (x;, x;) = 0 was used. The equation for u2 can be obtained in a similar fashion and, by 

ignoring the quadratic or higher order terms in u1 and u2 , the equations for u, and u2 

can be summarized in matrix form as follows: 

(28) 
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This is a two-dimensional linear equation. Note that the matrix in Eq. 28 is the Jacobian 

matrix of the vector-valued function F(x 1, x 2 ) = (j1 (x1 , x 2 ), f 2 (x 1 , x2 )) and the solution 

can be obtained by finding eigenvalues and eigenvectors of the Jacobian matrix. The 

stability of the fixed point can be classified based on the spectrum of eigenvalues of the 

Jacobian matrix, which is briefly summarized here. The real part of the eigenvalues 

determines stability. If the real part of both eigenvalues is negative (positive), the fixed 

point is stable (unstable). lfthe eigenvalues are complex numbers (purely imaginary), the 

fixed point is a spiral (center). See [44] for more detail. 

1.5.2. Stable Limit Cycle. A limit cycle is a closed trajectory in the phase space. 

A limit cycle is called stable if all the trajectories in the neighborhood of the limit cycle 

approach the limit cycle as time goes to positive infinity. A stable limit cycle implies a 

sustained oscillation. 

The set of equations below gives a simple example of a stable limit cycle [44]. 

2 • r = r(I - r ), B = 1 (29) 

where r ~ 0. Since r and B are not coupled, the dynamics of r and B can be studied 

separately. The linear stability analysis for r shows that r = 0 is an unstable fixed point, 

while r * = 1 is a stable fixed point. It is easy to see that B increases linearly in time. 

Therefore, trajectories starting from all points except the origin approach the unit circle 

(Figure 1.15). 

1.5.3. Bifurcation. A bifurcation can be said to be a qualitative change in 

the behavior of the solution of a system of differential equations due to changes of 

parameters in the system. This subsection discusses two types of bifurcation which are 

relevant to the subjects of this dissertation. 

1.5.3.1 Saddle-node bifurcation. Consider the equation 

• 2 
x=x +c (30) 
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Figure 1.15. An example of a stable limit cycle. 
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2 

where c is a parameter which can be any real number. When c is negative, as shown in the 

example in 1.5.1, there are two fixed points: one is stable and the other is unstable (Figure 

1.14). As cis decreased down to zero, the two fixed points merge into one fixed point 

which is half-stable (Figure 1.16, left). When c is positive, there is no fixed point (Figure 

1.16, right) and the solution with any initial value goes to positive infinity as time goes to 

positive infinity. The behavior of the solution for Eq. 30 is qualitatively different for c>O 

and c<O. It is said that, in this example, a bifurcation occurred at c=O. 

1.5.3.2 Hopf bifurcation. A Hopf bifurcation is characterized by the appearance 

of a limit cycle from a fixed point as a result of the change of a parameter in a system of 

differential equations. This bifurcation is mathematically described by the Hopf 

bifurcation theorem [ 45], which is not discussed here. Instead, two examples [ 44] of the 

Hopf bifurcation are discussed below. The first example is called a supercritical Hopf 

bifurcation. Consider the set of equations 

. ~ 

r = j.lr- r· 
. ~ 

B=OJ+br~. 

(31) 



For f.1 < 0, the origin is the only fixed point, and is a stable spiral (see 1.5.1.2 for the 

classification of fixed points). On the other hand, for f.1 > 0, the origin becomes an 

unstable spiral surrounded by a stable limit cycle with radius fji . 

dx 

dt 

X X 

Figure 1.16. An example of saddle-node bifurcation. Left: c = 0 . Right: c > 0. 

The second example shows another type of Hopf bifurcation, a subcritical Hopf 

bifurcation. Consider the system 
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. ' s r = f.ir + r· - r· 
• 2 

(32) 
e = (J) + br . 

After some algebra and linear stability analysis, one can find interesting changes in 

behavior of this system as f.1 varies. For f.1 < -1 I 4 , the origin is a stable spiral. There is no 

attractor (i.e., a set of points to which points in the neighborhood are attracted, such as a 

stable fixed point or stable limit cycle) in this phase space. For- 1 I 4 < f.1 < 0, the stable 

spiral at the origin is surrounded by an unstable limit cycle. This unstable limit cycle is 

further surrounded by a stable limit cycle. As f.1 increases toward 0, the unstable limit 



cycle shrinks and merges into the stable fixed point at the origin at /1 = 0. For /1 > 0, the 

origin becomes an unstable spiral. This fixed point is surrounded by a stable limit cycle. 
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As discussed in the next subsection, the subcritical Hopf bifurcation is one of the 

most common ways in which the periodic occurrence of action potentials initiates from a 

constant membrane potential as a response to an increased stimulus current in a neural 

model. 

1.5.3.3 Bifurcations in neural dynamics. As described before, it is common 

to study how a neuron responds to constant stimulus current in both experiments (see 

1.2.9.3) and neural models (see 1.4.6). What commonly happens is that the membrane 

potential shows periodic oscillations (i.e., repetitive action potentials) when the stimulus 

current is above some threshold, while the membrane potential stays constant for stimulus 

current below the threshold. In a neural model, this is a bifurcation, where the constant 

membrane potential below the threshold corresponds to a stable fixed point, while periodic 

oscillations correspond to a stable limit cycle. 

There are two common ways by which a stable limit cycle can emerge through 

bifurcation in a neural model: saddle-node bifurcation and Hopf bifurcation. Although the 

detail is not discussed here, one important implication for neuroscience of the differences 

between two bifurcations is discussed. For more detailed discussions, the reader is referred 

to [41, 43]. 

In the emergence of a limit cycle from a fixed point through the Hopf bifurcation, 

the Hopf bifurcation theorem says that the frequency of the limit cycle near a bifurcation 

point is the imaginary part of the eigenvalue of the Jacobian at the fixed point. This can be 

translated to a neural model in the following way: as the stimulus current is increased, the 

frequency of periodic oscillations at the point of transition from a constant membrane 

potential has nonzero minimum. On the other hand, in the case of the emergence of a limit 

cycle though the saddle-node bifurcation, the frequency of periodic oscillations near the 

bifurcation point can be arbitrarily small, which is often called the emergence of 

oscillations with zero frequency. See [41, 43] for such examples. In a real neuron, the 

emergence of periodic oscillations with both zero and non-zero frequency is observed, 

which presumably can be explained by the dynamical difference above. 



1.5.4. Phase Reduction. This subsection is devoted to the description of a 

method for reducing the dimension of a system with a stable limit cycle to a one­

dimensional variable, "phase". For a more complete discussion the reader is referred to 

[ 46, 4 7]. Throughout this subsection, the following n-dimensional differential equation 
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x = F(x) (33) 

is considered and it is assumed that this differential equation has a stable limit cycle with 

period T as a solution. 

1.5.4.1 Phase function and isochrons. Since a stable limit cycle is a closed 

periodic orbit in the phase space, it intuitively makes sense to define the phase of the 

oscillator. Let xo be a point on the limit cycle and define the phase function B on the limit 

cycle such that B(x0 (t)) = t mod T. This is just a parameterization of the limit cycle with 

respect to its period. 

It is possible to extend the phase function to some neighborhood of the limit cycle. 

Let Yo be a point in the neighborhood of the limit cycle such that y0(t) goes to x0(t) as t 

goes to infinity. Then, the phase of Yo can be defined as B( y0 ) = B(x0 ). This extends the 

phase function to some neighborhood in the basin of attraction of the limit cycle. 

The level sets of B (i.e., sets consisting of points in some neighborhood of the 

limit cycle such that the phase of the points in each set is the same) are called isochrons. 

The existence of isochrons was proved in [ 48]. Since the component function of the 

gradient of the phase function (=dB I dX;) gives the change in phase due to a small 

perturbation in the respective position coordinates, the graphs of those functions are often 

referred to as phase response curves, which play an important role for the study of weak 

perturbations to a limit cycle oscillator, as explained in the next subsection. 

As an example, the Stuart-Landau oscillator is discussed. The set of equations for 

the oscillator is given by 

x=x-coy-(x2 + l)(x-czy), 

y=c0x+ y-(x 2 + l)(c2x+ y). 
(34) 



By defining the coordinate (r, B) as [49] 

x = rcos(B + c2 ln r) 

y = rsin(B+c2 lnr), 

the solution with the initial point (r0 , B0 ) with r0 :t: 0 is represented by 
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(35) 

(36) 

This shows that there is a stable limit (a circle with r=1) and that (} is the phase function 

since it increases linearly in time. For a given point (x,y), the phase of the point can be 

obtained by solving Eq. 35. Isochrons for the Stuart-Landau oscillator with different 

parameters are plotted in Figure 1.17. 
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Figure 1.17. Isochrons for the Stuart -Landau oscillator for different parameter sets. The 

unit circles in both graphs represent the stable limit cycle solution for Eq. 34. Isochrons 

are plotted with dashed lines with time interval of 1t/8. Left: co=2, c2= 1 Right: co= 1, c2=0. 



1.5.4.2 First order phase reduction. It is easy to see why the derivatives of 

e are needed when studying weak perturbations of a stable oscillator described by 

x = F(x). Let such a perturbation be given by the new equation 

x = F(x) + tG(x,t), 

where£ is a small positive number. Then, using the chain rule, 

!!___ 8(x(t)) = V 8(x(t)) · x 
dt 

= V 8(x(t)) · F(x) + V 8(x(t)) · tG(x, t) 

= 1 + V 8(x(t)) · tG(x, t) 
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(37) 

(38) 

where v e is the gradient of the phase function. Writing Q,(!) = v 8(xo(t))' where Xo (t) is 

the point on the limit cycle on the same isochron as x(t) , then 

dB =1+£Q,(JJ ·G(x,t)+t:O~x(t)-x0 (t)\). 
dt 

(39) 

One then proceeds by discarding the term t:O~x(t)- x 0 (t)\) and analyzing the resulting 

system. Thus, implementing the phase reduction method in order 1 in ~(t)-xo(t)j requires 

finding the gradient of the phase function along the limit cycle of the unperturbed 

oscillator, denoted by Q,(!) in the last equation. 

One practical method for obtaining the gradient of 8 is by solving the equation: 

(40) 

where the dot indicates the time derivative and DF * (x 0 (t)) is the transpose of the 

Jacobian matrix ofF evaluated along the limit cycle. This procedure was suggested by 

Malkin [50] and later by others independently [51, 52]. The reader is referred to [50], 
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Chapter 9, for more details of Malkin's theorem and [ 46], Chapter 10, for a historical note 

on phase reduction. One can find Q,Ol by numerically integrating the equation backwards 

in time for any initial condition satisfying Q61
> • F(x0 (0)) = 1 (note that dB I dt = 1 by the 

definition of the phase function and that dB I dt = Q:l) · F(x0 (t)) by the chain rule) over an 

interval of time long enough to allow the solution to stabilize to a periodic orbit [53]. 

1.5.4.3 Two oscillator problem. Phase reduction has been applied to a 

synchronization problem of coupled oscillators. This method is used in Section 4. 

Consider a pair of weakly coupled identical oscillators indexed by i and}: 

dX; (t)/dt = F(X;) + tG(X; ,X;) (41) 

where the coupling between the two oscillators is given by the function G. Each oscillator 

can be reduced to the following phase equation: 

(42) 

where x
0 
(B) is a point on the limit cycle whose phase is B. Then, using averaging [50], 

the equation can be written as 

dB 
-' = 1 + H ( B - B; ), 
dt I 

where the function H is given by 

H ( B -B) = __!_ ( Q( 1
) (t)* G(x

0 
(t), x

0 
(t + B,. - B; ))dt. 

I I T 1 . 

Let ¢ be the difference between the phases of the two oscillators ( ¢ = B; - B; ). The 

dynamics of the phase difference between the two oscillators can be represented as 

(43) 

(44) 
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d¢; 
- = H(-¢;)- H(¢;). 
dt 

( 45) 

Note that the dynamics of the phase difference between the two oscillators is described by 

a one-dimensional differential equation and that, therefore, linear stability analysis in one­

dimension ( 1.5.1.1) can be applied. In short, a fixed phase difference is thus any value ¢;
0 

for which ~~ = 0. The slope of ~~ = 0 at ¢;0 gives the stability of the phase difference, 

with a negative slope corresponding to a stable, and a positive slope corresponding to an 

unstable, phase difference. 

1.5.5. Phase Synchronization Analysis. This subsection is devoted to explaining 

the motivation for, and methodology of, a measure to characterize one type of 

synchronization, phase synchronization, which is used for the data analysis of the voltage­

sensitive dye experiments discussed in Section 3. Synchronization is often evaluated with 

measures based on linear correlation such as cross correlation. However, the measure may 

not work for signals with certain properties. In the case where two signals are linearly 

correlated, linear correlation techniques such as cross correlation work perfectly. On the 

other hand, when the correlation of two signals is nonlinear, linear correlation techniques 

do not necessarily work even if the two signals are synchronized. Another situation where 

linear correlation techniques may not work is when the amplitude of signal is not 

correlated, while the phases of the signal are synchronized. Rosenbl urn et al. [54] have 

suggested an analysis technique, called phase synchronization analysis, to overcome such 

a difficulty. 

In phase synchronization analysis, the phase of a signal is extracted. This can be 

done by the application of the Hilbert transform to the signal to obtain the instantaneous 

phase of the signal via the construction of analytic signal 

~(t) = x(t) + ixH (t) = A(t)ei~(n (46) 

where xH (t) is the Hilbert transform of the original signal x(t) : 
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1 ~Jx( r) 
xH (t) =- P.V. --dr 

1r -~t-T 
(47) 

where P. V. means that the integral is considered as the Cauchy principal value. t/J(t) is the 

instantaneous phase of x(t) [55]. 

The phase difference between two signals is calculated as the difference between 

instantaneous phases from the two signals. To evaluate the degree of synchronization, a 

histogram for the phase difference is made within a time window. The synchronization 

index, which corresponds to the intensity of the first Fourier mode of the probability 

density of the phase difference, is calculated as 

(48) 

where fl.t/J(ti) is the phase difference at the ith time point in a time window and ( ) 

represents the average over time points in the window [56]. Note that synchronization 

index ranges from 0 to 1 and that higher value indicates more synchrony. For example, 

r = 1 if two signals are perfectly synchronized ( fl.t/J is constant in time), while r = 0 if 

two signals are not synchronized at all ( fl.t/J is uniformly distributed). 

1.5.6. Singular Perturbation. In this subsection, an approximation technique is 

explained for one class of the boundary value problem, which is relevant to Sections 1.7.7 

and 5.5. To illustrate the idea, consider the following boundary value problem [57]: 

cy" + (1 + £) y' + y = 0, 0 <X< 1 

y(O) = 0, y(1) = 1 
(49) 

where 0 < £ << 1. Although the analytical solution can be obtained for this equation, 

consider obtaining an approximate solution. To do so, the first thing one could think of is 

a perturbation series. Assume that the solution has a perturbation series: 
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(50) 

By substituting Eq. 50 into Eq. 49 and equating to zero the coefficients of each power 

of c, the zeroth-order term of c satisfies the following boundary value problem: 

Y~ +Yo= 0, 

Yo(O) = 0, Yo0) = 1. 

This already causes a difficulty. The general solution of Eq. 51 is 

(51) 

(52) 

To satisfy the boundary condition y0 (0) = 0, c has to be 0, which gives y0 (x) = 0. 

However, this solution does not satisfy the other boundary condition. On the other hand, 

applying y0 (1) = 1 to Eq. 52 gives y0 (x) = e 1
-', which does not satisfy the boundary 

condition at x=O. Therefore, the application of regular perturbation theory does not work 

for this problem. However, it can be still meaningful, as discussed below. 

The cause of the problem is as follows. Eq. 51 can be obtained by dropping the 

terms multiplied by c. By dropping the term cy", the problem becomes a first order 

problem rather than a second order one. This is only valid when y" is sufficiently small. 

To understand the problem better, compare the analytical solution of Eq. 49 with the 

approximate solution ofEq. 52 which satisfies the boundary condition y0 (1) = 1 (i.e., 

y 0 (x) = e1-x) . The analytical solution of Eq. 49 is 

y(x) = -1 1 -II< (e-x- e-xl<). 
e -e 

(53) 

The two functions are plotted in Figure 1.18. One can see that there are two regions: the 

one close to x = 0 where the analytical solution changes very rapidly and the other where 

the approximate solution matches well with the analytical solution. The former region is 



called the boundary layer while the latter is called the outer region. By calculating the 

second derivative of y(x) using Eq. 53, one can show that, in the boundary region, the 
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second derivative has an order of c-2 and, therefore, the term cy" cannot be neglected. On 

the other hand, in the outer region, the term cy" is small compared to the other terms and 

can be safely neglected. Therefore, the regular perturbation works in the outer region. 

3 

... ~Outer approximation y0(x) 
2.5 ~ 

2 

y 1.5 : Analytical 
~ 

l solution y(x) 

r Boundary layer 
0.5 

Outer region 
0 

0 0.2 0.4 0.6 
X 

0.8 

Figure 1.18. A comparison between the analytical and outer approximate solution for Eq. 

49. The solid and dashed lines represent the analytical and outer approximate solution, 

respectively. 

The discussion above indicates that an approximate solution of Eq. 49 has to be 

found separately in the boundary layer and outer region. To find an approximate solution 

in the boundary layer, so-called boundary layer analysis can be used. To concatenate 

continuously a boundary layer solution with an outer region solution, matching has to be 

done. However, in this dissertation, as only the determination of the outer region solution 

is required, those issues are not discussed. The interested reader should refer to [57]. 
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1.6. SOME CONCEPTS FROM PROBABILITY THEORY AND STOCHASTIC 
PROCESSES 

In this subsection, some notions from elementary probability (i.e., non-measure 

theoretic probability theory) relevant to this dissertation are provided in an informal 

setting. For more precise and comprehensive treatment, the reader is referred to [41]. 

1.6.1. Probability. Suppose that there is some experiment one would like to 

model. A sample space S is a set that consists of all the possible outcomes of the 

experiment. A point s in S corresponds to one possible outcome of the experiment. An 

event A is a subset of S, to which a probability is assigned. Events can be combined using 

the set operations. For example, Au B is the event that occurs if and only if A occurs orB 

occurs (or both occur). An B is the event that occurs if and only if A occurs and B occurs, 

and so on. 

Let C be a collection of all the subsets of S (i.e., a collection of all the possible 

events) and P be a real-valued function on C. Then Pis called a probability function when 

the following axioms hold 

1) P(A) ~ 0 for any event A 

2) P(S) = 1 

3) For any sequence of mutually disjoint events (i.e., {Ai }7=
1 

such that 

~ ~ 

Ai n Ai =¢when i :;t j), P(~A;) = LP(A;) 
i=l 

Then, P(A) is called the probability of the event A. 

1.6.2. Conditional Probability. Let A and B be two events such that P(A) > 0. 

Then the conditional probability of B given A, denoted by P(B I A), is defined as 

P(BnA) 
P(B I A)= . 

P(A) 
(54) 

To give a specific example, assume that there are two coins, each of which shows either a 

head or tail with equal probability (=1/2) and the outcome of one of the coins does not 

affect that of the other. Let A be the event where the first coin shows a head and B be the 



event where the second coin shows a head. Then, the conditional probability that both 

coins show a head given that the first shows a head can be denoted as P(A n B I A): 
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P(A (} B I A)= P((A (}B)(} A)/ P(A) 

= P(A n B) I P(A) 

= (1/ 4) /(1/ 2) 
(55) 

= 1/2. 

1.6.3. Independence. Let A and B be two events. Then the two events are 

independent if and only if 

P(A n B)= P(A)P(B). (56) 

In the example of two coins above, the independence of the events A and B is implicitly 

assumed by the statement of "the outcome of one of the coins does not affect that of the 

other". 

1.6.4. Random Variables, Distribution, and Density. A random variable X is a 

function from S into the set of real numbers such that, for - oo < x < oo , the set 

{ s : X ( s) ~ x} is an event in S. The distribution function F of a random variable X is the 

function 

It is not hard to see that 

F(x) = P(X ~ x),-oo < x < oo. 

P(a <X ~b)= F(b)- F(a), a-::;, b 

F ( -oo) = 0, F ( +oo) = I. 

(57) 

(58) 

Assuming F(x) is differentiable, the probability density function p(x) may be defined as 



It follows that 

p(x) = dF(x). 
dx 

[~ p(x)dx = 1 

P(a <X ~b)= f p(x)dx. 
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(59) 

(60) 

Note that, for an infinitesimal number Ax, p(x)Ax gives the probability that X is in the 

interval (x, x +Ax], i.e., 

P(x <X~ x +Ax)= p(x)Ax. (61) 

1.6.5. Expected Value, Variance, Moments. The expected value of a random 

variable X, denoted by E[X] or\X), is given by 

E[X] = f~ xp(x)dx. 

The variance of X, denoted by Var(X), is defined as 

Var(X) = El(x- E[XJY j 
= E[X

2
]- E[Xf 

The n1
h order moment of X is defined as 

(62) 

(63) 

(64) 
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1.6.6. Mean Square Limit. Let {X n } be a sequence of random variables. X II IS 

said to converge to X in the mean square sense if 

lim E[ (X" - X) 2 ] = 0. (65) 
n----1-oo 

1.6.7. Moment Generating Function. The moment generating function u(s) of a 

random variable X is given by the Laplace transform of the probability density function: 

00 

u(s) = E[e-sx] = Je-sx p(x)dx (66) 

where p(x) is the probability density for X. Then, the n1
h moment of X (Eq. 64) can be 

calculated as 

E [x II ] = c -I r a"~ 
as s=O 

1.6.8. Stochastic Processes. For an elements in the sample spaceS, define a 

function X (t, s) where tE T c 9\. Then, the set 

{X(t,s),tE T} 

is called a stochastic process [58]. Note that, for any particular value oft, the 

(67) 

(68) 

function X ( t, s) is a random variable. It is often unnecessary to write the argument s of the 

function X ( t, s) . Then the stochastic process can be written by 

{X(t),tE T}. (69) 

or more simply, X(t). 
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The joint probability density of the stochastic process X(t) is defined as follows: 

Similarly, the conditional probability (see 1.6.2) of the stochastic process X(t) can be 

defined as 

p(xi,ti; ... ;xk,tk lxk+I•tk+I; ... ;xk+N'tk+N) 

= p(xi 'ti; · · ·; xk+N 't k+N) I p(x k+I 't k+I; · · ·; x k+N 'tk+N ). 

(70) 

(71) 

1.6.9. Markov Process. The Markov property is the property that, given the 

present state, the states in the past do not have any influence on the future. A Markov 

process is a stochastic process which satisfies the Markov property. Using the conditional 

probability of a stochastic process X(t), the Markov property can be written as 

provided 

(73) 

1.7. STOCHASTIC DIFFERENTIAL EQUATIONS 

In Sections 4 and 5, stochastic differential equations (SDE), which are also known 

as Langevin equations, are used. In particular, an understanding of stochastic differential 

equations is crucial for the material presented in Section 5 below. A stochastic differential 

equation has the form of 

dx 
- = a(x) + b(x);(t) 
dt 

(74) 

where ;ct) is a Gaussian white noise term with mean zero and covariance is given by 
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(~(t)~(t')) = t5(t- t') (75) 

which has the pathology of having infinite variance. It turns out that the white noise is, in 

some sense, the derivative of the Wiener process, which is a mathematical model of 

Brownian motion, although the Wiener process is nowhere differentiable. This subsection 

provides some background about how Eq. 74 should be interpreted. Two common 

interpretations are called Ito and Stratonovich integrals (see 1.7.3). The scope of the 

discussion here is limited to one-dimensional SDE. For more comprehensive treatment, 

the reader should refer to, for example, [59, 60]. 

1.7.1. Wiener Process. Brownian motion is the highly irregular motion of 

particles in a liquid due to bombardment by smaller molecules of the liquid. Let W(t) be 

the location of a particle at timet. The Wiener process is a process W(t) that satisfies the 

following properties [ 61]: 

(1) W(O) = 0 

(2) W(t)- W(s) has a Gaussian distribution with mean 0 and variance t- s. 

(3) W(t2 )- W(t1), W(t3 )-W(t2 ), ••• , W(t")- W(tn-J) are independent for 

One realization of simulated Wiener process is shown in Figure 1.19. It can be shown that 

a Wiener process W(t) is a continuous process but is nowhere differentiable. 

1.7.2. White Noise. Although the Wiener process is nowhere differentiable, 

define the process Y(t) [58] 

Y(t) =lim W(t +h)-W(t). 
h--70 h 

(76) 

Then, the mean and covariance of Y(t) (interchanging the limit and the operation of taking 

expectation (see 1.6.5), which is integral, is assumed) are 

E[Y(t)] =lim E[W(t +h)-W(t)] 
11--70 h 

(77) 

=limO=O 
h--70 



and, by noting, when t < s, that E[W(t)W(s)] = ElW(t)(W(s)- W(t)) + W 2 (t)]= t, 

E[Y(t)Y(s)]~ \i~]E[(W(t+h~- W(t) )(W(s+h~-W(s) )] 

={0 iftt:-s 

00 if t = s 

which gives the required properties for Gaussian white noise. Therefore, although the 

Wiener process is nowhere differentiable, Gaussian white noise can be symbolically 

written as the time derivative of the Wiener process: 

15 

10 

W(t) "•, 
0 ~ ·, 

-5 

-10 
0 

;(t) = dW(t)l dt. 

,, 

20 40 60 

Figure 1.19. A realization of simulated Wiener process. 
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(78) 

(79) 

1.7.3. Stochastic Integrals: Ito and Stratonovich. Based on the discussion of 

white noise in the previous subsection, the integral of Eq. 74 can be symbolically written 

as follows: 
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II II 

x(t1)- x(t0 ) = Ja(x(t))dt + Jb(x);(t)dt 

II II 
(80) 

= Ja(x(t))dt+ Jb(x)dW(t), 
to to 

where Eq. 79 is used for the 2nd term in the 2nd line. Though written in integral form, one 

has to determine how the 2nd integral on the right hand side is to be interpreted. 

First, consider the following form of the integral 

I 

Jcu')dW(t') (81) 

where G(t) is an arbitrary function of time and W(t) is a Wiener process. Divide the 

interval [t0 , t] into n subintervals with a partition of [t0 , t] such that t0 :::; t1 :::; • • • :::; t
11

_ 1 :::; t. 

Define intermediate points T; such that 

(82) 

I 

The integral Jc(t')dW(t') can be defined as the limit of 

II 

Sn = _LG(T;)(W(t;)-W(t;_1)). 
(83) 

i=l 

For an ordinary Rieman-Stieltjes integral, Sn converges to the same limit independent of 

choices ofri. However, for Eq. 83, due to the stochastic nature of the Wiener process, the 

limit of 511 depends on the choice of T;, which is fundamentally different from a 

deterministic integral. To see this, let 
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(84) 

Then, using the properties of the Wiener process, one can show [ 60] that 

(85) 

where the convergence occurs in the mean square sense (see 1.6.6). Therefore, to uniquely 

define the integral, it is necessary to specify where intermediate points are chosen. Set 

a = 0 i.e., define Sn as , 

n 

s, = Iwui_1)(W(t;)-W(t;_1)). 
i=l 

The limit of Sn is called the Ito integral. In this case, From Eq. 85, 

t 1 1 
(Ito) fw ( t ')dW ( t ') = - ( w 2 

( t) - W 2 
( t 0 ) ) - - ( t - t 0 ) • 

2 2 
to 

Note that there is a deviation from the formal application of standard calculus, which 

would give 

t 1 f w (t')dW (t') = 2 (w 2 (t)- W 2 (t0 ) ). 

'" 

An alternative definition of a stochastic integral, which satisfies the ordinary 

integral rule, was suggested by Stratonovich: 

S" = :t W(t;-1); W(t;) (W(t;)-W(t;-1)). 
i=l 

(86) 

(87) 

(88) 

(89) 
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Here, the limit of Sn gives the same result as the ordinary calculus: 

t 1 
(Strat) Jw (t')dW (t') = 2(w 2 (t)- W 2 (t0 ) ). (90) 

lo 

In general, the Stratonovich integral satisfies the same rule as the ordinary calculus. 

However, there is a price for the convenience, which will be discussed in 1.7 .5. 

In a similar fashion, one can define the stochastic integral for the 2nd term on the 

right hand side of Eq. 80. The Ito integral is defined as 

G n 

(Ito) Jb(x)dW(t) =lim ,Lb(xH )(W(t;)- W(t;_1 )) , (91) 
i=l 

while the Stratonovich integral is defined as 

11 11 h(x)+b(x) 
(Strat) Jb(x)dW(t) =lim I ; 

2 
i-I (W(t;)- W(t;_1 )) 

t
0 

z=1 

(92) 

where xi=x(ti) and x(t) is a solution of the SDE in Eq. 74. In general, these two integrals 

give different values. However, the two stochastic integrals can be connected with the 

following formula [59]: 

1
' 

11 1 11 db( (t')) 
(Strat) Jb(x)dW(t) =(Ito) Jb(x)dW(t) +2 Jb(x(t')) ;x dt'. (93) 

t(l to lo 

This is equivalent to saying that the following Ito and Stratonovich SDEs give the same 

solution: 



(Ito SDE) dx = a(x)dt + b(x)dW(t) 

(Stratonovich SDE) dx = (a(x)- _!__b(x) db(x))dt + b(x)dW(t) 
2 dX 

or conversely, 

(Stratonovich SDE) dx = a(x)dt + fJ(x)dW (t) 

(Ito SDE) dx = (a(x) + __!__ {J(x) d{J(x))dt + fJ(x)dW (t). 
2 dX 

1.7.4. Change of Variables: Ito Formula. Let x(t) be a solution of the Ito 

stochastic integral: 

dx = a(x)dt+b(x)dW(t) 

and letf(x(t)) be a function of x(t). The question of interest is to obtain the differential 

equation for j( x( t)). 

df(x(t) = f(x(t) + dx(t))- f(x(t)) 

= f'(x(t))dx + ]_ J"(x(t))dx(t) 2 + ... 
2 

= f' (x(t))(a(x)dt + b(x)dW (t)) + ]_ f"(x(t))(a(x)dt + b(x)dW (f)) 2 + ... 
2 

= f'(x(t))(a(x)dt + b(x)dW(t)) + ]_ J"(x(t))(dW(t) f + ... 
2 

Here is the most crucial part. One can show 

1 G(x(t'))dW 2 (t') = 1 G(x(t'))dt' 

where the stochastic integral on the left hand side is interpreted in the Ito sense. This 

implies that one can symbolically write 

58 

(94) 

(95) 

(96) 

(97) 

(98) 
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(99) 

and one can consider that dW is of the order of dt 112
• Therefore, it turns out that all the 

neglected terms in the last line on Eq. 97 are of higher order than dt, and one can obtain 

df(x(t)) = [ J'(x(t))a(x) + ~ b(x(t))
2 
J'(x(t)) ]dt + b(x)J'(x(t))dW (t). (100) 

This is known as the Ito formula. Note the term with the 2nd derivative off ( = 1 /2b 2f" ), 

which deviates from the ordinary calculus, as in the example of the Ito integral (Eq. 87). 

Thus, changing variables in the Ito SDE does not follow ordinary calculus 

unless j"(x) = 0. 

On the other hand, with the Stratonovich interpretation, the change of variable 

formula follows the ordinary calculus rule. In other words, 

df(x(t)) = j'(x(t))a(x)dt + b(x)j'(x(t))dW(t). (101) 

1.7.5. Ito or Stratonovich. The discussions in 1.7 .3 and 1.7 .4 might lead one to 

conclude that the Stratonovich SDE is favorable to the Ito SDE, since Stratonovich 

follows the same rule as ordinary calculus. However, there is an advantage to the Ito SDE 

as well. As explained in the following two subsections, one of the major advantages, 

which is critical in Section 5, is that the Ito SDE is consistent with both forward and 

backward Fokker-Planck equations and, therefore, is also consistent with the first passage 

time problem. Using Ito's formula, one can show that the stochastic process that satisfies 

the Fokker-Plank equation is equivalent to the Ito SDE [59]. 

1.7.6. Forward and Backward Fokker-Planck Equations. It is known that 

one can obtain deterministic partial differential equations (PDE) for the conditional 

probability for a stochastic process described by an Ito SDE. One of the examples of this 

correspondence between the partial differential equation and the SDE is the diffusion 

equation and Brownian motion, as shown in an example below. 
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One type of such POE is called the forward Kolmogorov equation, which is also 

known as the (forward) Fokker-Planck equation, and can be derived using the Ito formula 

(see 1.7.4). Let x(t) be a solution of the following Ito SDE 

dx = a(x)dt + b(x)dW(t) ( 102) 

and suppose that x(t) has a conditional probability density p(x,tlxo, to) (see 1.6.8). Letfbe 

an arbitrary function. Then, using Ito's formula, the time development off( x( t)) satisfies 

df = [f'(x(t))a(x) + ~ h(x(t)) 2 j'(x(t)) }t + h(x)j'(x(t))dW(t) ( 103) 

or, equivalently, one can write 

df = J'(x(t))a(x) + _!_b(x(t)) 2 J"(x(t)) + b(x)J'(x(t))~(t) ( 104) 
dt 2 

where ~(t) is a Gaussian white noise term with mean zero and covariance 

\~(t)~(t')) = o(t- t'). Take the expected value of both sides above to obtain 

/ df(x(t))) = !!_(J(x(t))) 
\ dt dt 

= \ j'(x)a(x) + ~ b(x)' j'(x) + h(x)j'(x)/;(t)) 

= \f'(x(t))a(x) + ~ b(x(t))' j'(x(t))) 

(105) 

= 1( j'(x)a(x) + ~ h(x)' J'(x) )p(x,t I x0 ,t0 )dx 
-~ 

Note that, for the third equality above, the fact that 
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\b(x)f'(x)¢(t)) = 0 (106) 

is used and, for the last equality, the fact is used that, for a given function g, the expected 

value of g(x(t)) can be expressed as 

\g(x(t))) = [ g(x)p(x,t I x0 ,t0 )dx 

On the other hand, using the conditional probability density, dldt<f(x)> can be also 

expressed as 

d [ a -\f(x(t))) = f(x)-p(x,t lx0 ,t0 )dx 
dt 00 dt 

Therefore, using integration by parts and making the assumption that p(x) and dp!dx 

converge to zero faster than any other terms, the following equation can be obtained: 

(107) 

(108) 

[ f(x) ~ p(x, f I X 11 , t0 )dx = ( f(x)(-j_ (a(x) p(x, t I X 11 , f11 )) + _!_ b(x) 2 
:

2

2 
(b(x) 2 p(x, t I x11 , f 11 )) ldx ( 109) 

= dt dx 2 ox ) 

Therefore, since f is arbitrary, the following PDE for a conditional probability can be 

obtained: 

(110) 

This is known as the forward Fokker-Planck equation [59]. 

As an example [58], consider a Wiener process 

dx = ruW (111) 

with the initial condition, x(to)=xo, i.e., 
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(112) 

Then, the corresponding forward equation is 

(113) 

which is known as the one-dimensional heat equation. The following equation satisfies the 

PDE above 

The solution also satisfies the initial condition Eq. 112. 

One can obtain a similar equation, called the backward Fokker-Planck equation: 

Note the difference between the forward and backward equations. In the forward equation, 

to and x0 are fixed, and the partial derivatives are with respect to t and x. In the backward 

equation, t and x are fixed, and the partial derivatives are with respect to to and x0. 

Although one can show that they are equivalent to each other, they are used for different 

purposes. The forward equation is often used to obtain the probability density of a variable 

at time t. One of the major applications of the backward equation is the study of first 

passage time, which is explained in the next subsection. 

1.7.7. First Passage Time Problem. Consider the following 1-dimensionallto 

SDE: 

dx = a(x)dt + b(x)dW(t). (116) 
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One can imagine that x(t) represents the position of a particle at timet whose dynamics is 

described by Eq. 116. Assume that there are two absorbing barriers at A and B with 

A<x(O)<B. This means that, if the particle reaches A orB, the particle will be removed 

from the system. The problem of interest here is how long it takes for the particle to reach 

one of the two boundaries. This is called the first passage time problem. One can show 

that, using the backward equation (see 1.7.6), the mean first passage time starting from x 

at t=O, denoted as T(x), for the system of Eq. 116 with the above absorbing boundaries 

obeys the following boundary value problem [59]: 

(117) 

with the boundary conditions 

T(A) = T(B) = 0 (118) 

Similarly, the nth moment (1.6.5) of the first passage time, denoted as T,lx), satisfies 

a(x) dT,, (x) + _!_b(x) d
2

T,' (x) = nT _ (x) 
dX 2 dx 2 n I 

(119) 

which, in principle, allows one to determine all the moments of the first passage time by 

integrating Eq. 119 repeatedly. 

As an example, the following SDE is considered 

dx = adt + JiEdW(t), (120) 

where E is "small". Set two absorbing boundaries at -1 and 1. Then, the ODE for the mean 

first passage time is 
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d 2T(x) dT(x) 
t: 2 

+a =-1 
dx dx 

(121) 

with the boundary conditions 

T(-1)=T(1)=0. (122) 

The analytical solution for the boundary problem above is 

X 2 e-ax!E 1 ea!E + e-alc 

T(x) = ---- (ealc -ale) +--a,-E----al-c 
a a -e a e -e 

(123) 

On the other hand, the outer approximation in singular perturbation theory (see 1.5.6) 

giVes 

1-x 
T,,wer(x) = -- · 

a 
(124) 

Two solutions are plotted in Figure 1.20. Except for the region close to the left boundary, 

the outer approximation gives a good approximation to the analytical solution. 

T(x) 1 

0.5 

0 
·1 ·0.5 0 

X 
0.5 

Figure 1.20. The analytical (solid line) and approximate (dashed line) solution for the 

mean first passage time. 
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The analysis of neural signals has been of great interest in the fields of biophysics 

and neuroscience for more than six decades. The power spectrum is one of the most 

frequently used methods to detect periodicity from data, and thus is particularly useful for 

analyses of oscillatory and stochastic behavior of neural discharges [62, 63]. However, to 

understand the notion of the power spectrum, knowledge of Fourier analysis is required, 

which may be challenging for beginning undergraduate students who are taking 

introductory biophysics, as well as for students of neuro- or medical science who do not 

have experience with advanced mathematics. It will be shown that a statistical analysis 

technique called circular statistics (CS) can be applied to the important case of a time 

series of delta functions and yields the same information as the power spectrum, and thus 

might be a useful way of presenting the power spectrum concept at an introductory level. 

It will be shown that CS can be applied to analyze time series of action potentials 

(see 1.2.5), or spike trains such as those recorded in a variety of experiments in 

neuroscience. Such experiments often yield data that present some combination of 

periodic and random behavior, sometimes called "harmonic noise" [64]. Contemporary 

examples range from extensive work on the electroreceptor in a variety of fish [65-70], 

through thermal receptors in mammals [71], to the noisy oscillations of hair bundles and 

hair cells in vertebrate auditory organs [72, 73] to name only a few. In the aforementioned 

examples the noisy oscillations are inherent to the dynamics of the particular organ, but in 

some cases the noise is deliberately added to a periodic stimulus, as in the example of 

noise-enhanced transmission of weak stimuli through ion channels in the cell membrane 

[74 ]. These examples indicate a range of applications where circular statistics might be 

usefully applied. 
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Circular statistics is suitable for analyzing data that are distributed on a circle, such 

as the directions that animals take after release from a central fixed point. Since not all 

animals will move in precisely the same direction, a statistical analysis is necessary. In 

seminal books, Batschelet [75] and Mardia [76] develop the theory in detail and describe 

classical applications. Modern examples include the use of CS to analyze the directional 

motions of single-celled algae [77], phase clustering of gamma oscillations in the brain 

[78] and the analysis of phase clustering in coupled oscillators [79]. 

An example of the type of motion to which CS can be applied is shown in Figure 

2.1. Assume that one wants to know if there is a preferred direction in the behavior of a 

certain kind of bird when leaving its nest. To determine this, one first defines a circular 

boundary around the nest. If a bird crosses a point on the boundary, one puts a dot on the 

boundary at that point. If another bird crosses another point on the boundary, one also puts 

another dot at that point on the boundary, and so on. After many trials, the dots lying 

within bins of a small angular width can be counted. A histogram can thus be constructed 

on the circle (block bars in Figure 2.1) which immediately indicates the direction(s) 

preferred by the birds and their relative statistical strength(s). By applying this technique, 

one can obtain a simple, visual interpretation of the relative frequency of crossings in 

preferred directions, requiring only a basic knowledge of vectors and trigonometric 

functions. Below, it is shown how this simple construction can be used to analyze time 

series consisting of sequences of events that can be replaced with delta functions, and how 

it can reveal (sometimes hidden) periodicities within them. When the time series is a train 

of delta functions, it is shown that the technique reduces exactly to the power spectrum. 

The results of CS of simulated data sets are also compared with power spectra obtained 

using the discrete Fourier Transform (DFT). Finally, as a realistic example from 

neuroscience, it is shown how these techniques can be applied to neural spike trains from 

the crayfish photoreceptor. 

2.2. FORMULATION 

Formulations of the power spectrum and circular statistics of spike trains are 

discussed below. In both formulations, a spike train is considered as a sequence of events, 



since it is generally accepted that the sequence of temporal occurrences of the spikes, 

rather than their size or shape, conveys information [38]. 

North 

+ 

Figure 2.1. Circular statistics for detecting preferred direction. 
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2.2.1. Power Spectrum of a Sequence of Spikes. How to calculate the power 

spectrum of a signal is briefly explained below. For more rigorous and complete 

argument, see textbooks on signal processing such as [80] and [81]. Consider a collection 

(also called an ensemble) of signals { Xj( t)}. For each j, there exists a signal Xj(t) and, for 

different}, Xj(t) is not necessarily the same value. The statistical properties of the ensemble 

can be defined as the average over the ensemble (average over j). For example, the mean 

value of this process at timet, denoted as E[xj(t)], can be defined as the average of Xj(t) 

over the ensemble: 

1 N 

E[x; (t )]= ~i~ N ~X; (t) ( 125) 

In reality, N has to be replaced by a finite number, and larger values of N give a better 

estimate of E[xj(t)]. For a finite time interval 0 5 t 5 L, the Fourier transform of Xj(t) is 

defined as 
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L 

X (j, L, j) = J x/t) exp(-27Zift)dt. ( 126) 
0 

The power spectrum of the signal is defined as 

P(j) = lim_!_E[X(j,L, j)X * (j,L, j)] 
L-.~ L 

(127) 

where X*(j, L, j) and E[] represent the complex conjugate of X(j, L, j) and ensemble 

average discussed above, respectively. Again, L has to be finite in reality. There are 

technical issues about how accurate the estimate would be for a given Nand L, which are 

beyond the scope of this paper. An interested reader should see [80] and [81], and, for 

more neuroscience-oriented readers, see [82]. 

To consider the power spectrum for a spike train, assume a signal consisting of N 

spikes in the interval 0 to L, and let tk be the time of the kth spike. If the spikes are replaced 

by delta functions, the time series x(t) becomes, 

~ 

N 
x(t) = 'f.t5(t-tk) 

k=J 

( 128) 

where fb'(t- tk )j(t)dt = j(tk) for any well-behaved function [83]. Thus, the Fourier 

transform of the spike train is 

N 

X (f)= JI b'(t- tk )exp( -27Zift)dt 
k=l 

N 

= :Lexp(-27Zift~;.) 
k=l 

N 

= L [cos(2Jift k)- i sin(2Jift k) J 
k=l 

(129) 
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The power spectrum of the spike train is 

P(J)=-
1 

(X(f)X*(f)) 
La 

~ L ( {t. [cos(2J!fr,)- i sin(2J!fr, ll}{ t. [cos( 271ft,)+ i sin(271ft,) 1}) ( 130) 

= -
1 /[f cos(27ift k )] 

2 

+ [f sin(27ift k )] 

2

) 

La \ k=I k=I 

where Lo and brackets<> denote the length of each periodogram and average over 

ensembles, respectively. To apply the Fourier transform to a recorded or generated spike 

train, the delta function will be "discretized" and the discrete Fourier transform (OFT) will 

be used to calculate the Fourier transform of the signal, which will be explained in 2.3.1. 

2.2.2. Circular Statistics. In order to apply circular statistics to a data set, the 

time series data is first divided into time intervals T, which corresponds to the period of 

interest (Figure 2.2). Second, each segment is made into a circle with circumference T, 

and each spike is replaced by a unit vector on the circle. The resultant vector from all the 

circles is 

N N 

C(T) = ,Lcos(2mk IT)x + ,Lsin(2mk IT)y (131) 
k=l k=l 

where tk is the time when the k1
h spike occurred. A simple geometrical interpretation is the 

following. If spikes are totally periodic with a time interval T, one will obtain a large 

magnitude of the resultant vector because every unit vector occurs with the same phase, 

and hence at the same place on the circle (Figure 2.2A). On the other hand, random spike 

trains will produce a resultant vector of smaller magnitude, since the vectors are now 

distributed uniformly on circles and cancel each other when pointing in opposite 

directions (Figure 2.2B ). Therefore, the magnitude of the resultant vector from circles with 

circumference T indicates the measure of periodicity of the signal at time interval T. By 
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finding the magnitude as a function ofT, one can detect the degree of periodicity from the 

spike trains. The squared magnitude of the resultant vector is represented by 

C(T) = [{~cos( 2m, IT) r + { t. sin(Zm, IT) n 
= [ {t,cos(2Jift,) r + {t,sin(2Jift, f] (132) 

where f = liT is frequency of interest. Note that the magnitude of the resultant vector can 

also be considered a function of frequency. Therefore, by dividing by the length of each 

data set and taking the ensemble average, circular statistics is identical to the power 

spectrum of sequence of delta functions. 

(A) 
• lsec • 

I I 
................................................................................... 

(B) 

I I I II I I I II I I I I 
.................................................................................... 

O+O+Q /CJ +Q =d 
Figure 2.2. Schema of circular statistics. A: periodic and B: random spike trains. The time 

interval Tis indicated by the dotted line segments. 

To apply CS to a time series, the set off has to be chosen. In this paper, in order to 

compare the results obtained using CS to those obtained with DFT, the same set of fused 

for DFT is used for CS (see the next section for more detail). 
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2.3. APPLICATIONS 

Three kinds of spike trains were used for comparison between circular statistics 

and power spectrum: (A) Spike trains with a uniform distribution of interspike intervals, 

(B) periodic spike trains with a certain "spiking probability", and (C) spike trains from the 

crayfish photoreceptor. A "raw" signal consists of a sequence of spike times. 100 10-

second realizations of the signal were generated for cases (A) and (B) and, for the 

experimental example (C), a 120 second time series was divided into 12 data sets for 

averaging. For each of the three examples, the power spectrum (using the discrete Fourier 

transform) and circular statistics were calculated as follows: 

2.3.1. Discrete Fourier Transform (DFT). To calculate the discrete Fourier 

transform, the signals were digitized at 1 O,OOOHz and each spike was replaced with a 

pulse with a height of 10,000. The total number of data points was set at 100,000 points 

since the time interval for one signal was at I 0 sec. The frequency bin size for the power 

spectrum is 

1 1 
D.f=-=-= =0.1Hz. 

Lo N D.t 1 00 000 x ·· 1 .. 
' 10,000 

(133) 

The power spectrum was calculated using Eq. 130. All calculations were performed using 

Matlab (The Mathworks, Inc) and the built-in script was used for DFT. 

2.3.2. Circular Statistics (CS). As in Eq. 132, the squared magnitude of the 

resultant vector was determined for each frequency. The squared magnitude was divided 

by the time length of the data windows Lo for the purpose of comparison with DFT. The 

same set of frequencies as that for DFT were chosen. 

Example 1. Time sequence is generated as follows: 

(134) 



72 

where tk is a time when the kth spike occurs and (n is random number with uniform 

distribution from 0.0095 sec to 0.0105 sec. This signal may be considered as a noisy spike 

train with a mean frequency of 100 Hz. 

Example 2. A set of periodic spikes with a certain probability was generated as follows. 

Let P(t) represent the spiking probability at time t. Suppose 

P(t) = p (every 1/lOOsec) 
= 0 (otherwise) 

If p = 1, the set of spikes will be a complete! y periodic spike train with a spiking 

frequency of 100 Hz. p = 0.2 were chosen. 

(135) 

Example 3. As an example of biological data, the neural activity of the crayfish 

photoreceptor is utilized [84, 85]. The crayfish has two light sensitive neurons in its sixth 

caudal ganglion (i.e., in layperson's terms, "in a nerve in its tail"). These neurons fire 

periodically, and their firing rate is substantially increased when the cells are exposed to 

visible light. Furthermore, photoreceptors receive inputs from mechanoreceptors in the tail 

which are sensitive to periodic hydrodynamic motion (such as, in the wild, the periodic 

disturbances of the water made by the swimming motions of a predator). It has been 

observed that the response of the photoreceptors to a weak periodic hydrodynamic 

stimulus of the tail is enhanced by light [84, 85]. Both OFf and CS are used to calculate 

the frequency of photoreceptor spike trains in the presence and absence of light, recorded 

during the mechanical stimulation of the saline-immersed mechanoreceptors with small­

amplitude (- 400 nm) mechanical vibrations at 10.5 Hz. 

2.4. RESULTS 

The results for CS and DFf are shown in Figure 2.3. In Example A, both CS and 

the power spectrum showed the largest peak at 100 Hz, and smaller peaks at multiples of 

the fundamental frequency (Figure 2.3A, left panel). 
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Figure 2.3. Comparison between CS and PS. (A) Circular statistics (diamonds) and the 

power spectrum (solid lines) of the signals from Example 1. (B) Difference between 

circular statistics and the power spectrum from (A). (C) Circular statistics (diamonds) and 

the power spectrum (solid lines) of the signals from Example 2. (D) Difference between 

circular statistics and the power spectrum from (C). (E) and (F) Circular statistics for the 

spike trains from the photoreceptor in the crayfish without and with light stimulus, 

respectively. 

In contrast, in Example B, peaks of equal height at all multiples of 100 Hz are 

observed (Figure 2.3C). The reason for the difference in peak heights between the two 

examples will be addressed in 2.5. In both examples, CS and DFT showed almost identical 

results and the difference between two techniques was less than 1 o-9 (Figure 2.3B and D). 

The small error is likely the result of computer round-off error. In Example C, circular 
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statistics is plotted for experimental spike trains recorded both in the dark (Figure 2.3E) 

and in the light (Figure 2.3F). Note the peak at the stimulation frequency ( 10.5 Hz in this 

experiment), the broad peak between 14 and 20Hz in under light stimulation (Figure 

2.3F), which results from an increase in the photoreceptor's (noisy) mean firing rate, and 

the increase in the height of the 10.5 Hz peak in when the photoreceptor is stimulated by 

light. These results are essentially identical to the power spectra shown for the same data 

set in [84]. 

2.5. DISCUSSION 

The present study has demonstrated that circular statistics provides a simple 

geometrical interpretation of the power spectrum of spike trains. In addition, it is also 

suggested that CS can be helpful in explaining to students some of the qualitative features 

of the power spectrum. An example is illustrated in Figure 2.4. Consider a completely 

periodic spike train at 100 Hz. It is obvious that one can expect to see a peak at 100 Hz in 

its power spectrum. Besides that, by using circular statistics, one can see that one should 

also expect peaks at multiples of 100Hz (200, 300, 400, ... Hz). To see this, consider 

what happens if one calculates the resultant vector for 200Hz (i.e., T=0.005 s), as shown 

in Figure 2.4A. Now, the spike appears at the same phase, but only on every other circle. 

On the other hand, one does not expect to see peaks at 100/2, 100/3, 100/4, ... Hz, as 

illustrated in Figure 2.4B. If one finds the resultant vector for 50 Hz (T=0.02 s), for 

example, one can see that each pair of spikes cancels each other on each circle (Figure 

2.4B). Indeed, the power spectrum of a periodic spike train at 100Hz is precisely what 

one would predict using this argument from circular statistics (Figure 2.4C). This is a 

straightforward way to introduce students to the idea of why higher harmonics occur, but 

lower harmonics do not. 

An argument using CS can also be used to illustrate the fact that the higher 

harmonic peaks can have lower amplitude than the peak at the fundamental frequency. 

This can be illustrated with Example A in Figure 2.3A, where the peaks become smaller as 

the frequency increases. This can be understood in the following way using circular 

statistics as shown in Figure 2.5. Since the spike train can be considered one at 100Hz 
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Figure 2.4. Diagrams of circular statistics. Circular statistics is applied to a periodic spike 

at 100Hz with circumference (A) 200Hz and (B) 50 Hz. (C) The power spectrum for a 

periodic spike train at 100 Hz. 

with some jitter (noise) in the frequency, each unit vector is not be at exactly the same 

phase on the circle, even though one obtains a large resultant vector at 100 Hz (Figure 

2.5A). At 200 Hz, one uses circles with half the circumference at 100 Hz (i.e., T =0.005 s 

instead ofT =0.01 s). As a result of this, unit vectors on circles for 200Hz have a wider 
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distribution of phases than that for 100 Hz (Figure 2.5B), which results in smaller resultant 

vector at 200Hz than that at 100 Hz. At larger multiples of 100 Hz, the distribution of unit 

vector phases becomes even wider, and, as a result, the resultant vector becomes smaller. 

(A) 

(B) 

(C) 

Figure 2.5. Circular statistics applied to spike trains with noise in the frequency. The 

circumference corresponds to (A) 100 Hz, (B) 200 Hz, and (C) 300Hz. 

In Example B, a periodic spike train is generated with a certain "spiking 

probability". Definite peaks of equal height at multiples of 100Hz (Figure 2.3B) are 

observed. In this example, there is no jitter in the spike times, and thus every spike occurs 

at exactly the same phase on any circle, regardless of its circumference, and thus the effect 

illustrated in Figure 2.5 does not occur, and all the peaks have the same height. Note that 
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the height, however, is considerably lower than in Example A, due to the overall lower 

number of spikes. This can be seen explicitly from Eq. 132. Here, in the case where spikes 

always occur at the same phase, the CS value for the corresponding frequency is 

proportional to the squared number of spikes for a given time interval over which CS is 

determined. Since p was set at 0.2, the expected number of spikes is 0.2N where N is the 

number of spikes for the completely periodic spike train (p=1.0). Therefore, the ratio of 

the peak height in this example to the peak height in the completely periodic case is 

expected to be approximately (0.2N)2/N2=0.04. In fact, the ratio of the value calculated is 

0.041 (=4.09x103/l.Ox10\ which is approximately as predicted. 

2.6. CONCLUSION 

In the present study, it is shown that circular statistics can be applied to spike 

trains, and demonstrated its equivalence to the power spectrum. Circular statistics requires 

only a knowledge of vectors and trigonometry, while calculating the power spectrum 

requires a knowledge of Fourier analysis. It is suggested that circular statistics may be a 

useful tool for introducing the concept of the power spectrum in introductory biophysics 

and neuroscience courses, as well as for helping undergraduate physics students in the first 

few years of their studies to understand the concepts of frequency analysis. 

2.7. SUGGESTED PROBLEM: POISSON SPIKE TRAINS 

Construct a spike train as follows. Divide the total time interval T bins of size M. 

Make sure that M is small (say M= 1 o-3 s ). For each bin, assign a spike with probability p. 

Adjust p so that the mean spike frequency is, say, 10Hz (The expected spike frequency is 

p/M). 

1) Calculate the mean and variance, and generate a histogram of inters pike intervals. 

2) Find the circular statistics. Generate a number of sets of spike trains (say, 100) and 

calculate the circular statistics for each. Then take the overall average circular statistics. 

Note that the power spectrum is constant except around 0 Hz. 

This process is called a Poisson process [ 61, 86] and can be constructed as follows 

[38]. Divide the time interval T into M bins with length M=TIM. Let the probability of the 



occurrence of an event within each bin be p and the expected number of occurrences per 

unit time be r=pl!3.t. Then the probability of having n events within a time interval Tis 
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( M ~ ( ) (rAt)" (1 - rAt t ". 
M-n! n! 

(136) 

By taking the limit !3.t~o, one can show that the number of events within a time interval T 

is a random number with a Poisson distribution with a parameter rT. The decay of 

radioactive particles is a well-known example of a Poisson process [61, 86]. Stochastic 

neural firing has also been modeled by a Poisson process [38, 87]. In the suggested 

problem, the process is approximated by small M. The distribution of inter-event intervals 

is an exponential distribution with mean 1/r. Alternately, setting a time of the nth event as 

a sum of n random numbers from an exponential distribution with mean llr gives a 

Poisson process with parameter rT. For more discussion of a Poisson process, see [ 61, 

86]. It can be shown that the power spectrum of a sequence of delta functions with 

exponential interval is constant except at zero frequency where there is a delta function 

singularity because of the nonzero mean of the signal [86]. 
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3. SYNCHRONIZATION ANALYSIS OF VOLTAGE-SENSITIVE DYE IMAGING 

DURING DRUG-INDUCED SEIZUERES IN THE RAT NEOCORTEX 

3.1. OBJECTIVES 

The traditional view is that epileptic seizures (see 1.2.11 for some background on 

epileptic seizures) are defined by excess and/or synchronized electrical activity in the 

brain [26]. However, the results from some previous studies have challenged the 

traditional view. For example, lower synchrony is observed during seizure events than 

during pre-seizure states with whole cell patch clamp in rat hippocampal slices [88]. A 

few studies have shown decreases in synchrony during seizures in EEG 

(electroencephalography) and MEG (magnetoencephalography) recordings in human 

patients, compared to a pre-seizure state [89, 90]. Further motivating the need to study 

synchrony during seizures are recent studies which have shown that there is a decrease in 

synchrony prior to seizure onset in EEG recordings from human patients [91, 92]. 

Therefore, to study synchrony in detail may be crucial to understanding epilepsy. 

The purpose of the present section is to investigate how spatiotemporal patterns of 

synchronization change during drug-induced in vivo neocortical seizures in rats. Focal 

seizures were caused by the potassium channel blocker 4-aminopyridine (4AP). See 

1.2.11.3 and 1.2.11.4 for the discussion of usage of animal models and 4AP-induced 

epileptic seizures. Electrical activity in the neocortex during 4AP-induced seizures is 

measured using voltage-sensitive dye imaging (VSD, see 1.3.2). Data obtained from 

voltage-sensitive dye imaging are analyzed using phase synchronization analysis (see 

1.5.5). 

3.2. EXPERIMENTAL METHODS 

The experimental procedure for voltage-sensitive dye imaging is described in this 

section. In short, the brain surface of an anesthetized rat is exposed and stained with the 

voltage-sensitive dye. An injector of potassium channel blocker ( 4-aminopyridine) and 

local field potential recording (see 1.3.1 for local field potential recording) were inserted 

approximately in the center of the exposed area. Changes in reflectance in the brain 

surface were measured using a CCD camera. The detail of each process is provided in the 

following subsections. All experiments described here were performed according to 



Animal Protocol 05-03-06, approved by the University of Missouri at St. Louis's 

Institutional Animal Care and Use Committee (IACUC) on March 29, 2005. 
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3.2.1. Surgery and Staining. Adult male Sprague-Dawley rats (241-573 grams) 

are used in the present study. The rat is initially anesthetized with intraperitoneal ketamine 

(90 mg/kg) and xylazine (4.0 mg/kg) and then sustained with urethane (1.25g/kg). 

Temperature is maintained at 3rC with a heating blanket (Harvard Apparatus, Holliston 

MA). Heart rate, 02 saturation and PC02 are monitored (SurgiVet, Waukesha, WI) and 

maintained stable. The electrocardiogram (EKG) is monitored between leads attached to 

the right hindlimb and the skin of the scalp. To control the timing of respiration for artifact 

reduction (see 3.3.1.4 ), the rat is artificially ventilated with an animal respirator (Kent 

Scientific, Torrington CT). 

The rat is placed in a stereotaxic frame, the skin above the skull shaved, and the 

scalp incised along the midline. A cranial window ( -5 by 9 mm) is made over one 

hemisphere, between lambda and bregma. This is translated, in layperson's language, to "a 

rectangular hole is made in the skull to expose the brain surface with reference to some 

anatomical landmarks on the skull of the rat", as shown in Figure 3.1. 

The dura (thin membrane-like structure between the brain and skull) over the 

window is removed for dye staining. The solution of the voltage-sensitive dye, RH-1691 

(Optical Imaging, Inc., 1.0-2.0 mg/ml in I% NaCl solution) is applied to the cortex for 1-2 

hrs. After staining, the cortex is washed by NaCl solution for 15 min. 

3.2.2. Electrophysiology. A glass micropipette filled with 1% NaCl is 

positioned with its tip in the dural slit, approximately 500 !lm below the neocortical 

surface, for the local field potential recording. The field potential and EKG are recorded 

using a DBA-S system (World Precision Instruments, Sarasota FL), digitized at 2000Hz 

by aCED Power 1401 (Cambridge Electronic Design, Cambridge UK), and recorded onto 

a PC using Spike 2 software. 

3.2.3. Drug Administration. The injection of 4AP was performed in a similar 

method to that by [93]. A glass pipette, filled with a solution of 4AP, and attached to a 

Nanoject II Auto-Nanoliter injector (Drummond Scientific, Broomall PA), is positioned 

less than I mm from the field potential electrode. One set of injections contained 0.5 Ill of 

4-AP (25 mM in I% NaCl), which was injected into cortical layers approximately 11-111 
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(see 1.2.9.1 for the laminar structure of the neocortex), in increments of 50 nl. Seizures 

occurred multiple times without additional injection, although time intervals between 

seizures tended to become longer at later stages of the experiment (see 3.4.1 for more 

description of this). When no seizure occurred for more than 20-30 minutes, an additional 

set of injections of 4AP was performed. 

f Tail Skull 

(\ 
! Mouth 

Surface of neocortex 

Injector of 
4-aminopyridine 

Local field 
potential (LFP) 

Figure 3. 1. Cranial window on the skull of the rat. Left: The position of craniotomy 
window. Right: The arrangement of electrodes in the neocortex. 

3.2.4. Recording. A schema of the recording setup is shown in Figure 3.2. Agar 

( 1.5% in 1% NaCI) and a glass cover slip are placed over the cortex. The cortex is 

illuminated using a lOOW tungsten-halogen bulb. The light is passed through a 

macroscope and 630 ± 20 nm interference filter (Optical Imaging Inc) and reflected down 

onto the cortex via a dichroic mirror (Optical Imaging Inc). The fluorescence of the dye 

from the stained cortex is ftltered by a 695 nm long-pass filter (Optical Imaging Inc), and 

projected to the a 16-bit CCD camera, which is placed over a tandem configuration of two 
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50 mm lenses [94]. The camera is focused about 300-500 J.tm below the cortical surface in 

order to de-emphasize the changes in reflectance from the surface blood vessels in 

preference to the neocortical layers. The camera images are synchronized with the 

recorded field potential via a TTL pulse. 

CCD camera 

Emission 
Filter 

(695nmLP) 

Dichroic 
rrurror 

LFP 

. 
• 

Excitation 
Filter 

(620+ 20 run) 

~~········ 61 
4AP 

Figure 3.2. A schema of the recording setup. 

3.3. DATA ANALYSIS 

The analysis of VSD imaging is divided into three components: (1) the reduction 

of noise and artifact, (2) determination of seizure area, and (3) synchronization analysis. 
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3.3.1. Noise/Artifact Reduction. There are several sources for noise and artifact: 

drift of signal baseline, random noise inherent to photon counting and measurement with 

the CCD sensor, and artifacts due to respiration and heattbeat. The detail is discussed in 

the following subsections. Figure 3.3 shows a comparison among raw signal and 

processed signals from voltage-sensitive dye signal, and local field potential signaL While 

it is hard to see the correspondence between the raw YSD signal and the local field 

potential, there is a sufficiently clear correspondence between the proces ed YSD signal 

and local field potential signal. Note that the VSD signal will be filtered further for phase 

synchronization analysis as discussed in 3.3.3 

VSD (%) 
(raw signal) 

VSD(%) 
(processed) 

-1 

-0.5 

0.8 I 

LFP (m V) o.
4 

, 

(sign inverted) 
Or 

0 2 3 4 5 

Time (sec) 

Figure 3.3. Comparison among the raw and processed voltage-sensitive dye signals, and 
local field potential during a seizure event. The VSD signals are plotted as the percent 
change with respect to the averaged intensity over the time interval shown. 

3.3.1.1 Baseline drift. It is known that the recording time of voltage-

sensitive dye imaging is limited by dye bleaching l95]. In the case of in vivo imaging, dye 

may get washed away due to blood circulation [96]. These factors cause a drift in the 

baseline in measured fluorescence intensity. It is critical to remove the drift especially 
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since the recording time of imaging during one seizure event is much longer than that of a 

single trial performed in studies of cognitive functions, where voltage-sensitive dye has 

been often used. The baseline drift was removed using regression by a 1 01h order 

polynomial. In addition to the baseline drift, a large oscillation at very low frequency (less 

than -0.2 Hz) was observed associated with seizure events. This is likely to be 

contamination due to hemodynamics and was removed with high-pass filtering at 0.2 Hz. 

3.3.1.2 Random noise. There was random fluctuation which was possibly caused 

by the statistical fluctuation of the number of photons arriving at the CCD (called photon 

noise) and by the process of quantifying the electronic signal on the CCD (called read 

noise). This noise was reduced by spatial averaging over neighboring 3 by 3 pixels at 

each frame. This is reasonable, assuming that the noise of this kind is statistically 

independent (or uncorrelated) between signals from different CCD sensors. 

3.3.1.3 Heartbeat artifact. Although RH-1691, which is the voltage-sensitive 

dye used, has been developed to reduce contamination due to hemodynamics (see 1.3.2 for 

more discussion), a very sharp peak in the power spectrum was observed at the rate of the 

heart beat. A previous study has suggested that this might be caused by physical 

movement (e.g., movement of blood vessels caused by the heartbeat) rather than 

absorption of light by the hemoglobin [96]. 

To reduce the heartbeat artifact, a template of the artifact was constructed using the 

triggered averaging of the voltage-sensitive dye signal was performed with reference to 

EKG signal as suggested by [96, 97]. The signal is concatenated using weighted averaging 

to avoid discontinuity in the signal. 

3.3.1.4 Respiration artifact. After removing the dura, the movement of the 

brain surface synchronized with the respiration of the rat was often clearly visible, even to 

the naked eye. Corresponding periodic oscillations at the frequency of the respiration were 

observed in the voltage-sensitive dye signals. This artifact was removed by triggered 

averaging similar to the removal of heartbeat artifact. Averaging was triggered by 

electrical pulses received from the ventilator (see 3.2.1 ), corresponding to the timing of 

the animal's respirations. 



85 

3.3.2. Determination of Seizure Area. Each pixel at every time instant from the 

imaging signal during a seizure event was determined whether "epileptic" or not based on 

the value of power spectrum of the signal before a seizure event. The method developed 

by [93] was modified for this purpose. The power spectrum was calculated, using a 

sliding window of 1,000 data points (about 10-13 seconds) with 100 point shift, for 

voltage sensitive dye recordings both before and during the seizure event. For a each 

window, the sum of five largest peak values in the frequency range of 1-1 0 Hz in the 

power spectrum was determined. This frequency range was chosen based on the 

observation that the peaks in the power spectrum during seizure events appear in this 

frequency range. Each pixel at each time window was classified as part of the seizure 

event if the sum of the five largest peak values exceeded a threshold value determined 

from the pre-seizure state. The threshold value was determined for each pixel as 1.5 times 

the maximum of the summed peak values from sliding time windows in pre-seizure state. 

3.3.3. Synchronization Analysis. Phase synchronization analysis (see 1.5.5) was 

applied to the voltage-sensitive dye signals. After the noise/artifact reduction process 

described in 3.3.1, the time course of light intensity from each pixel was filtered using a 

zero-phase band-pass digital filter (Butterworth 41
h order, 1-10Hz). As described in 3.3.2, 

this frequency range was chosen based on the observation that the peaks in the power 

spectrum during seizure events appear in this frequency range. Phase synchronization 

analysis was performed, using a sliding window of 1,000 data points (about 10-13 

seconds) with a 100 point shift. For a given set data, a pixel which was estimated to be the 

place of injection of 4AP was chosen as a "reference" pixel. For each sliding window, the 

synchronization index was calculated for every pixel with respect to the reference pixel. 

All the analysis was performed using custom-written programs in MATLAB (The 

Math works). 

3.4. RESULTS 

A complete set of experiments were performed for six rats. However, the results 

from only three rats are shown below. In two of the three rats not used for the results, the 

data from the voltage sensitive dye imaging were contaminated with unknown large 

signals. Since the amplitude of the signals was much larger than those from seizure 
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activity, it is unlikely that the artifact is due to electrical activity in the brain. In the other 

rat, respiration artifact was not able to be removed by the triggered averaging discussed in 

3.3.1.4. Therefore, the data from these three rats were excluded from the results below , 

although further signal processing might be able to be utilized to remove the artifacts. 

3.4.1. Description of Seizure Events. Seizure events are defined by sustained 

activity of large oscillations in the local field potential recording (see the top panel in 

Figure 3.4). The first seizure after the first set of injections of 4AP usually occurred within 

a few minutes from the injection. Seizures occur multiple times without additional 

injection of 4AP. The duration of seizures varied both within the same rat and among rats. 

Seizure duration tended to be short (about 10-60 seconds) right after injection of 4AP and 

to become longer and, eventually, to reach a plateau (about 200-300 seconds) without 

additional injection of 4AP, although short seizures sometimes appeared between long 

ones even at later stage of an experiment. A typical time interval between seizure events 

was a few minutes although, in some cases, it was as short as a few seconds. The time 

intervals between seizure events tended to be longer at later stages of an experiment, 

which was as long as 20-30 minutes. 

3.4.2. Patterns of Local Field Potential during Seizure Events. In this 

subsection, typical patterns of the signals from local field potential during seizure events 

are described (see the bottom panels in Figure 3.4). However, it is important to note that 

there is variability among seizure events and rats. Seizure events often begin with a large 

spike followed by relatively fast oscillations with increasing amplitude (see the panel 

showing the time interval 77-82 sec in Figure 3.4 ). In the middle of a seizure event, 

periodic spiking with constant large amplitude is observed ( 100-105 and 160-165 sec in 

Figure 3.4). As the seizure event nears its end, firing becomes irregular and bursting 

patterns are often observed (230- 235 sec in Figure 3.4). 

3.4.3. Change of Seizure Area over Time. An example of the changes in seizure 

area determined by the method in 3.3.2 is shown in Figure 3.5. The epileptic area typically 

increases quickly at the beginning of a seizure event and stays almost constant throughout 

the duration of the seizure. A sudden decrease of the area is observed at the end of each 

seizure event. In this particular example, the area drops around 200 seconds and stays 

almost constant from 200 to 250 seconds, while the amplitude of the local field potential 



shows an increase during this time interval. Within this time interval, the local field 

potential shows irregular bursting pattern (see right bottom panel in Figure 3.5). This 

might relate with the smaller seizure area, although more careful analysis would be 

necessary to support this claim. 
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Figure 3.4. Example local field potential patterns during a seizure event. Top: Local field 

potential for the entire duration of a seizure. The arrows indicate the beginning and ending 

of the seizure event. Bottom: Blowups of the top panel. 
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Figure 3.5. Time course of eizure area. Top right: The changes in the local field potential 

and seizure area over time. Bottom right: the blow up of local field potential toward the 

end of the seizure event. Left: The patterns of seizure area in space. The white regions are 

classified to be "epileptic" using the criterion described in the main text The red number 

in each picture represents the time in the right panel. 

3.4.4. Phase Synchronization. An example of the changes in synchronization 

indices over time from multiple pairs of pixels throughout the seizure area is shown in 

Figure 3.6. As seen from this example, a dramatic increase in synchronization during 

seizure events is observed. One can also observe that closer pai rs of pixels show stronger 

synchronization than pairs separated by a larger distance. Even widely separated pairs of 

pixels within the seizure area, however, show a significant increase in synchronization 

during the seizure event. 
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Figure 3.6. LFP andy (synchronization index) before and during seizure event. Lower 

panels show LFP and y; upper panels show the seizure area. Synchronization index in the 

bottom panel is shown for the pixel pairs corresponding to the colored line in the seizure 

maps. The pixel pairs chosen always included one pixel approximately at the 4AP 

injection site. 

To investigate the time course of spatially averaged synchronization behavior, the 

averaged synchronization index is calculated as the average of synchronization indices 

over all the pairs, one member of which is always a pixel located at or near the 4AP 

injection site. A dramatic increase in the averaged synchronization index is observed 

during seizure events (see the right panels of Figure 3.7 and Figure 3.8). 

The changes in spatial distribution of synchronization indices over time are shown 

in the left panels of Figure 3.7 and Figure 3.8. As time increases from the onset of the 

seizure events, the synchronized region increases in both area and degree of 

synchronization. In the middle of seizure, most of the pixels in the recorded area are well 
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synchronized with the 4AP injection site. At seizure termination, the synchronized region 

decreases in both area and degree of synchronization. 
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Figure 3.7. Changes in overall synchronization index and spatial map of synchrony. Left: 

color map of synchronization indices of each pixel with reference to the 4AP injection 

site. The color scale is shown at the end of the sequence of the color maps. The black 

number in each figure indicates time in the right panel. Right: changes in LFP and overall 

synchronization index over time. 

Two things are worth commenting from these examples. In the case of Figure 3.7, 

there is a slight decrease in the averaged synchronization index (around 70 sec). The local 

field potential recording at the corresponding time shows a decrease in the amplitude. In 

the case of Figure 3.8 (see the 2"d row in the color maps), at the beginning of the seizure 
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event, there are two clusters of synchronized regions. One of these encloses the pixel of 

the injection site, while the other is distant from the injection site. Although these 

observations are quite intriguing as a collective phenomenon in an excitable system, more 

detai led analysis will be necessary to make a general conclusion. 
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Figure 3.8. The same plot as Figure 3.7, but showing a seizure event in another rat. Note 
the two areas of high synchronization early in the seizure (33 seconds- 44 seconds). 

In order to perform a statistical analysis, the maximum spatially averaged 

synchronization index before and during each seizure event was calculated as the 

maximum spatially averaged synchronization index over time (over sliding windows) in 

the respective time periods (Figure 3.9). A paired t-test was performed for 37 seizure 



events from the 3 rats, in order to compare the maximum synchronization index prior to 

each seizure with that during the seizure. The p-value from the statistical test was very 

small (p<O.OOOO I ). Therefore, the maxi mum averaged synchronization index during 

eizure events was ignificantly larger than that before seizure events. 

3.4.5. Phase Maps. In addition to measurements of the synchronization index. 
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the collective behavior of the neocortical tissue during the seizure event can be visualized 

by mapping the phase derived from the Hilbert transform ( 1.5.5) at every pixel in the 

recorded image, as a function of time. A typical example of the distribution of the pha cs 

i. shown in Figure 3. 10. The distribution of the phase over space at a given time shows a 

clear difference between the periods before and during the seizure event. Before the 

seizure event, the distribution of phase looks almost random. On the other band. during the 

seizure event, most of the pixels show an in-phase pattern, al though it is often observed 

that one region is slightly advanced in phase wi th respect to the rest of the seizure area. 
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Figure 3.9. Maximum averaged synchl'onization indices before and during seizure events. 

As discussed in the main text, the difference is statistically significant. 

The degree of the concentration of the distribution of the pha eat a given t1me is 

evaluated by the following measure (see Eq. 146 in 4.3.4 for more detail): 

I N 
R1 (f)= - L:exp[i¢k (1) • 

N H 
( 137) 
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where ¢!(I) is the phase of the signal from the kLh pixel at timet and N is the total number 

of pixels in a two-dimensional image. There is a clear increase in R1(t) during seizure 

event, which indicates in-phase activity (Figure 3. 1 0, right). 
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Figure 3. 1 0. Phase map of voltage-sensitive dye imaging during a seizure. Left: the phase 
of the signal from each pixel is coded in color. The number in black in each figure 
corresponds to the time in the right graphs. Right: the local field potential and R, (t) as 

defined in Eq. 137. 
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3.5. DISCUSSION 

3.5.1. Comparison with Previous Studies. Some previous studies have shown 

that, in some situations, synchrony between signals from two distant locations in the brain 

was lower during the seizure event than before the event [88, 89, 98]. As far as the 

averaged synchronization index in the present study is concerned, greater synchrony 

during the seizure event than pre seizure state was observed in all the 37 seizure events 

from 3 rats analyzed in the present study. 

However, it is important to note that the differences in the results might be caused 

by the systems studied. For example, Netoff and Schiff studied synchrony using whole­

cell patch recording from a pair of pyramidal neurons in hippocampus [88]. Their 

recording technique measures electrical activity at a single neuron level, while the voltage­

sensitive dye imaging performed here measures activity at a population level. 

Furthermore, in [88], seizure-like events were caused 4AP in hippocampal slices in the rat, 

where 4AP is globally applied to the brain slice. On the other hand, in the present study, 

4AP is locally applied through an injector in vivo neocortex in the rat. 

In [98], phase synchronization analysis was applied to MEG 

(magnetoencephalography) recordings from human patients with generalized seizures (see 

1.2.11.2 for generalized seizures). Their results show that, while the local synchrony 

(between neighboring pairs with distance less than 4 em) increased during seizures, the 

distant synchrony (>4 em) sometimes showed lower synchrony during seizures than 

during states between seizures. They commented about this lower synchrony that 

"although not uncommon, this marked desynchronization between particular channels 

during the ictal [seizure] period was not the rule in the patients studied". Again, there are 

important differences: seizures they studies are generalized seizures while the animal­

seizure model in the present study is a model for the focal seizure. 

In [89], a measure for the overall synchrony among multivariate signals was 

developed based on the random matrix and was applied to signals from epileptic patients 

recorded with EEG (electroencephalogram) and ECoG (electrocorticogram). The authors 

reported that there are relatively more cases where the overall synchrony decreased during 

seizures. It may be possible that the measure in [89] is more sensitive to subtle changes in 

the overall synchrony than the averaged synchronization index used in the present study 
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and that decrease in the overall synchrony during seizure events could be observed in the 

present study using the measure developed in [89]. 

3.5.2. Future Work. There are several aspects which have not been investigated 

in the present study. In studies with epileptic patients, it has been reported that there is a 

dependence of the degree of synchrony on the frequency band of signals studied [98]. 

Note that the frequency range of epileptic activity investigated in the present study (1-10 

Hz) is much smaller than that in [98] (3-55Hz). It is possible that increased synchrony 

may occur during seizures in certain frequency ranges and not in others, and that this may 

underlie some of the disparate results within the literature. 

Another problem for further investigation is the correlation between synchrony and 

spatiotemporal evolution of the seizure event. For example, one could ask whether there 

are differences in synchrony during different time stages of the seizure event such as 

beginning and ending. In the present study, the synchronization index was calculated for 

pairs of pixels, one of which was always from the estimated injection site of the seizure­

inducing drug, 4AP. However, synchrony with respect to a distant pixel from the injection 

site may reveal different patterns of synchrony. 

The local field potential recording during seizures shows a variety of firing 

patterns such as periodic spiking and bursting (see Figure 3.4).Another subject for further 

investigation is the relationship between field potential oscillation patterns (amplitude, 

frequency and irregularity) and synchrony. 

3.5.3. Limitation of the Present Study. The voltage-sensitive dye imaging used 

in the present study mainly reflects the electrical activity from a population of neurons (as 

does the local field potential) rather than single cells (action potentials). It would be 

intriguing to simultaneously measure signals in both a population and single cell levels 

from multiple places, using an array of multi-electrodes. This may reveal how the activity 

at a population level is related with the activity of individual neurons during the seizure 

event. 

The preliminary experiments performed have shown that the presence of the 

voltage-sensitive dye itself alters the dynamics of the seizure event. Seizures induced by 

4AP injection without the presence of the dye occur much more frequently than when 

neocortex is stained with RH-1691. This may be due to phototoxic effects on the neural 
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activity [95]. A recent study has shown that some voltage-sensitive dyes, including the one 

used in the present study, affect the function of GABA-A receptors, which are receptors 

for an inhibitory neurotransmitter (see 1.2.7 for basic terminology) [99]. Therefore, the 

results from the present study should be interpreted with some caution. 

3.6. CONCLUSION 

The present study has focused on 4-aminnopyridine induced seizures in the rat 

neocortex. The results show that there is significant increase in the overall synchrony 

during seizure events and that synchrony was greater between closer pixel pairs during a 

seizure event. The entire "epileptic" region is synchronized almost in phase. 
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4. MODELING SEIZURE DYNAMICS 

The study in this section is reprinted with some modifications with permission 

from Daisuke Takeshita, Yasuomi D. Sato, Sonya Bahar, Physical Review E 75, 051925, 

2007. ©2007, American Physical Society. 

4.1. OBJECTIVES 

In addition to synchrony, another interesting dynamical aspect in epileptic seizures 

(see 1.2.11 for some basics about epileptic seizures) is that changes in amplitude and 

frequency of electrical activity are often observed during seizure events in both human 

patients [100, 101] and animal models [102]. Various computational models of seizure 

onset and progression have been developed [103, 104], but many questions remain 

unanswered. 

In this section, a possible dynamical mechanism for seizure initiation, and for 

dynamical changes in electrical activity during seizure events is reported. A model of a 

neocortical network based on a nonlinear model suggested by Wilson [105], (Eqs. 1-4 

below) is developed. The effect of the potassium channel blocker 4-aminopyridine (4AP, 

see 1.2.11.4), used experimentally to induce seizures [93], is simulated by decreasing the 

model's maximal K+ channel conductance ( gk ). Phase reduction analysis [50, 106] (see 

also 1.5.4) is used to demonstrate that the phase relationship of a pair of synaptically 

coupled neurons undergoes a bifurcation as gk is varied. Multi-stability is observed in the 

stable fixed phase difference, and a dramatic increase in the activity of a larger network of 

neurons correlates with the bifurcation. 

4.2. NEOCORTICAL NEURAL MODEL 

The dynamics of a single neuron is represented by a set of nonlinear ordinary 

differential equations [I 05], which belongs to a class of conductance-based models 

explained in 1.4: 



dR 1 
-=-(-R+R~(V)) 
dt rR 

dT 1 
- = -(-T + T~(V)) 
dt rr 

dH 1 
-=-(-H+3T).t 
dt T11 
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( 139) 

(140) 

(141) 

where V is the membrane potential, and R, T, and H are the conductance variables for 

K+, Ca
2
+, and Ca2+-mediated K+ hyperpolarizing currents, respectively. The following 

variables depend on V: 

m~(V) = 17.8 + 47.6V + 33.8V 2 

R~ (V) = 1.24 + 3.7V + 3.2V 2
, T~ (V) = 8(V + 0.725) 2

• 

(142) 

(143) 

System parameters are given as follows: C = 1.0 J1 Fern -2
, I = 0. 7 nA, r r = 14 ms and 

r 11 = 45ms. The first term in Eq. 1 represents the Na+ current; the Na+ channel dynamics 

is incorporated into m~ (V) instead of using a conductance variable. In the model 

equations, V is scaled by 1/100 with respect to realistic membrane potential values in 

order to keep the constants in m~ etc. within a reasonable range. In the figures below, Vis 

rescaled by 100 ( m V) in order to return to biologically realistic values. The model can be 

tuned to exhibit the behavior of the three major subtypes (regular spiking, bursting, and 

fast spiking inhibitory) of neocortical neurons by changing g x, gP and g 11 [ 105]. 

However, only a single subtype, the regular spiking mode ( g x = 26.0, gr = 0.1, and 

g 11 = 5.0 ), which corresponds to the largest population of neocortical neurons [ 19], is 

considered in the present study. 

Chemical synaptic coupling (see 1.2.7 for chemical synapse) is modeled using an 

alpha function [ 107]: 



df I 
-=-(-j+Hvs(V -Q)) 
d pre 

t r.,yn 

dS 1 
-=-(-S+j) 
dt rnll 
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where Vpre represents the voltage of the presynaptic neuron, r,,." = 0.5 ms, Q = -0.2 m V, 

and the Heaviside function Hvs(Vpre- Q) = I for V,,e- Q > 0 and 0 for V,,.e- Q ~ 0. The 

effect of synaptic coupling is incorporated into the dynamics of each neuron by adding the 

term - SgSYil (V- vsyn) to Eq. 1' where gs\'n ' the synaptic strength, is set at O.I' and V,,ll' the 

synaptic reversal potential, is 0 m V, which mimics the effect of an excitatory synapse 

(see 1.2.7). 

4.3. RESULTS 

4.3.1. Phase Reduction. Phase reduction analysis ( 1.5.4.3) is performed for a pair 

of model neurons with bidirectional synaptic connections. Plots of d¢ I dt as a function of 

¢ are shown in Figure 4.1. At normal g K ( g K = 26.0), the stable phase difference is small 

(filled circles, inset, Figure 4.1A), but nonzero, so that the neurons are almost, but not 

exactly, in phase. In fact, two stable states coexist, one where neuron i fires first and 

neuron j fires shortly afterwards, and vice versa. Since the two neurons are identical, this 

bistability is trivial in the sense that, if ¢ is stable, then so is 2Jr- ¢. The time delay in 

firing between the two neurons corresponds to r,yn . A similar "trivial bistability" was 

observed by Van Vreeswijk et al. in the Hodgkin-Huxley neural model with synaptic 

coupling [ 108]. 

At high values of g K , only the "trivial" bistability is observed. At g K ""5.0, a 

subcritical pitchfork bifurcation (see 1.5.3 for some discussions about bifurcation and 

[44] for pitchfork bifurcation, in particular) occurs, as a result of which an antiphase firing 

pattern becomes stable (Figure 4.2). Also at g K ""5.0 , the "trivial" bistable states 

coalesce into a single stable branch (at ¢ = 0) corresponding to exactly in-phase firing. 
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Figure 4.1. Results of phase reduction applied to the neocortical model. A: df/J I dt at 

g K = 26.0; B: df/J I dt at g K = 0. Open and filled circles correspond to unstable and 

stable fixed points, respectively. Phase difference is normalized to [0, I]. The inset shows 

a blow-up around ¢; =0. 

Thus, for low conductance, there exists a "non-trivial" bistability. These results were 

confirmed by numerical integration (4th order Runge-Kutta, dt = 0.01 ms), using a variety 

of different initial conditions (data not shown). 
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Figure 4.2. Bifurcation diagram. Thick and thin lines represent stable and unstable fixed 

phase differences, respectively. Phase difference is normalized to [0, 1 ]. 
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4.3.2. Effect of Noise-- Two Neuron Case. To study the effect of noise on the 

behavior of a pair of neurons, an independent Gaussian white noise term ¢(t) was added 

to each dV/dt equation; the noise was defined such that (¢(!)) = 0 and 

(¢(t)¢(s)) = Db(t- s), where D is the noise intensity. The stochastic differential 

equations (see 1.7 for some basics about stochastic differential equations) were solved by 

the Heun method [109] with dt = 0.01 ms. Transitions between the bistable states were 

observed for g K = 0, as illustrated by the mean field (average voltage from the two 

neurons) in Figure 4.3. At normal gK (Figure 4.3A), transitions between the "trivial" 

bistable states are observed, which do not significantly affect the mean field. Since the 

spikes from the two neurons rarely coincide in time, the mean field has an amplitude half 

as large as the transmembrane potential of a single neuron throughout most of the 

simulated time series. The sharp spikes in the mean field corresponds to the moments 

when the two neurons fire simultaneously. At g K = 0 (Figure 4.3B), noise-induced 

transitions between in-phase and antiphase states were observed; these transitions 

significantly affect the mean field, in contrast to the case of normal g K • 

4.3.3. Network without Noise. In order to investigate the role of decreased g K 

on the activity of a larger array, a square lattice of 20 by 20 neurons is constructed with 

bidirectional nearest neighbor synaptic coupling. It is suggested that the results of phase 

reduction analysis for two neurons can give a qualitative explanation of the network 

behavior as shown in Figure 4.4. When g K was decreased to zero (Figure 4.4 A, 2.5 x 1 o~ 

ms), to simulate the addition of 4AP, a dramatic increase in the mean field amplitude was 

observed (Figure 4.4 A). A raster plot (Figure 4.4 B) shows that, before decreasing g K , 

the neurons do not all fire in phase, which results in a small mean field amplitude. It is 

suggested that this corresponds to the case of two neurons, in which a non-zero phase 

difference is stable, whereas in-phase is unstable. In contrast, after decreasing g K , where 

in-phase is stable, the neurons fire in phase, leading to large-amplitude mean field 

oscillations. These results, in a spatially extended array of neurons, are consistent with the 

result of phase reduction analysis for a pair of neurons. 
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Figure 4.3. Mean field for a pair of coupled neurons. A: gK = 26; B: gK = 0. 

D = 1.0 x 10-4 in both cases. 
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Figure 4.4. Mean field and raster plot of netwwork without noise. A: Mean field of 

network. B: Raster plot corresponding to the time interval represented by the dashed 

rectangle in A. 
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4.3.4. Network with Noise. The effect of noise on the network firing pattern is 

investigated by adding an independent Gaussian white noise term to each dV/dt equation 

(Figure 4.5). As in the case without noise (Figure 4.4 ), a dramatic increase of the 
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amplitude of the mean field was observed by decreasing gK to 0 (data not shown). With 

g K = 0, modulations in the amplitude and frequency of the mean field was observed 

(Figure 4.5A). During the intervals when the mean field amplitude is relatively large, most 

of the neurons fire in phase (Figure 4.5D). 

On the other hand, when the amplitude is relatively small, some groups of neurons 

fire in phase with each other, but these small sub-populations are often out of phase with 

other sub-populations Figure 4.5C). This suggests that there are similar noise-induced 

transitions between "in-phase" and "antiphase" as in the case of two neurons. It is 

emphasized that both the in-phase, large amplitude activity and the antiphase, low­

amplitude activity occur during a simulated "seizure", i.e., when gk = 0. 

Clustering is a phenomenon in which multiple populations, each exhibiting in­

phase synchronization, but not in phase with each other, emerge from a larger group of 

oscillators. Clustering has been observed in theoretical studies of coupled oscillators 

[ 110] and might play a role in neural systems [Ill]. To quantify the degree of clustering 

in the network, the distribution of the phases of all the neurons was measured. The 

instantaneous phase of the i th neuron was defined as fA(t) = 2Jr(t- ti_, )l(ti_,+1 - ti_,), where 

· h th . k . f h . th d < < [ 112] Th b I 
ti.n IS t e n sp1 e time o t e z neuron an ti.n _ t _ ti.ll+l . e measure e ow 

was calculated: 

(146) 

which can be used to detect them-modal distribution of a circular (periodic) variable as 

follows [ 113]. For a given timet, a unit vector is assigned for each neuron with the phase 

mf/J(t) in the Gaussian plane. Then the magnitude of the resultant vector, normalized by 

the total number of neurons, is represented by Rm(t). For m = 1 , the magnitude of the 

resultant vector would be high (close to 1) in the case of in-phase synchronization, 

whereas, in the case of antiphase clustering, the two populations would form vectors with 

opposite directions, resulting in a small resultant vector. For m = 2, two anti-phase 

clusters would have vectors in the same direction, leading to a large resultant vector. 
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Figure 4.5. Mean field, clustering index, and raster plot of network with noise. A: Mean 

field of network D = 5.3 X 1 o-4 with, g K = 0. B: Measures for clustering. Top: Rl' 

middle: R
2 

, and bottom: R2 - R 1 as defined in the text. C: Raster plot corresponding to 

the time interval represented by the left rectangle in A. D: Raster plot corresponding to the 

time interval represented by the right rectangle in A. 

Therefore, a relatively large positive value of R2(t)-R 1(t) is a signature of anti-phase 

clustering. As shown in the bottom graph of Figure 4.5B, this occurs during the interval of 

lower-amplitude firing (compare Figure 4.5A, between 420 and 460 seconds, and the 

raster plot in 5C). 

The transitions between mean field firing patterns observed in the network 

simulation were able to capture the qualitative aspects of transitions observed in local field 
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potential in 4AP-induced seizures in the rat neocortex (see 1.3.1 for the local field 

potential 1.2.11.4 for 4AP seizures, and 1.2.9 for the neocortex). The comparison between 

the network simulation and local field potential recording is shown in Figure 4.6. Figure 

4.6A shows such a transition in the simulated mean field from the present network model, 

in comparison with segments of field potential recording in the rat neocortex in vivo 

(Figure 4.6B and C), following the focal injection of 4AP [102]. Based on these 

observations, it is suggested that neural activity during 4AP-induced seizures may be 

caused by a bifurcation in the stable phase difference between neurons. Furthermore, the 

present results suggest that changes in amplitude and frequency of the field potential, 

reminiscent of the transitions between so-called spike-and-wave (SW) and low voltage 

fast activity (LVFA), seen in human patients [100, 101] may be explained by noise­

induced transitions among multiple stable states. 

4.4. DISCUSSION 

4.4.1. Comparison with Previous Studies. Recently, several dynamical system 

models have been proposed to describe seizure dynamics [103, 104]. Suffczynski et al. 

suggest one possible mechanism of seizure initiation where transitions between bistable 

states (epileptic and non-epileptic) are caused by noise. (In contrast, the present model 

relates such transitions to shifts between firing patterns during a seizure.) Wendling eta/. 

show that various firing patterns of the EEG signal can be produced by tuning the synaptic 

"coupling strength". These models suggest different mechanisms from ours for the 

initiation and development of seizure dynamics. However, none of these models need be 

mutually exclusive. Since seizures can arise via a vast array of biological mechanisms, it 

is probably reasonable to assume that the underlying dynamical mechanisms of their onset 

and development can also fill a wide spectrum. 

4.4.2. Limitations and Shortcomings of the Present Model. It is important to 

note that the present model is vastly simplified than the actual neocortex. In this 

subsection, the limitations and shortcomings of the present model are discussed. 

The network built in this study is constructed on a much smaller scale than an 

actual neocortical network. For example, the number of synaptic connections in the model 

network is only 4 while, in the real neocortex in rodents, it is of the order of 1,000 (see 
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1.2.9.4). The total number of neurons is 100 to 200 in the model. Based on the density of 

neurons in 1.2.9.4 (10
4-105 neurons /mm\ this corresponds to 10-3-10-2 mm3, which is a 

tiny fraction of the volume in the rat neocortex. A model with a closer scale to an actual 

neocortical network may change the results dramatically. In the future work, a large scale 

model (or mean field type model) will be used. 
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Figure 4.6. Comparison between simulation and experiment. A: Mean field from 

simulation. Note that the sign is inverted with respect to the previous figures for 

comparison with extracellular recordings. B, C: Extracellular field potential recordings. 

The bottom two graphs in each panel (A, Band C) zoom in on intervals within the top 

graphs, showing examples of high-amplitude field potential spikes (left column), and low­

amplitude activity (right column). 

All the synaptic connections in the model used here were bidirectional, for a 

simple coupling scheme allows more direct interpretation of the results. In the neocortex, 

however, the percentage of unidirectional excitatory synapses outweighs that of 
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bidirectional excitatory synapses [91, 114, 115]. However, it has been reported that, for a 

subtype of pyramidal cells in the neocortex, the proportion of bidirectional coupling is 

much larger than that expected from random network and the synaptic strength is stronger 

in a pair of neurons with bidirectional synaptic coupling than unidirectional coupling 

[ 115]. A further simplification in the present model is that inhibitory neurons were not 

considered. Although a large percentage of neocortical neurons and synapses are 

excitatory [ 19] and disinhibition resulting from the blockage of GABA receptors by drugs 

such as bicuculline and picrotoxin has been known to cause seizures [116], the activity of 

inhibitory neurons has been shown to be important for synchronous neural firing during 

various seizures induced by other drugs, including 4-AP [117] . A critical next step will 

be to add inhibitory neurons to the present model. 

The increase of extracellular potassium concentration has been observed during 

epileptiform activity [11]. Several modeling studies predict that the increase of 

extracellular potassium concentration can play a role in transitions and synchronization in 

epileptic activity [ 118, 119]. In the present model, however, the changes in the 

concentration of extracellular potassium were not taken into account, again in order to 

develop a preliminary, simplified model. Besides those omissions mentioned above, other 

complex effects, like the role of astrocytes and long-range neocortical connections, will be 

addressed in future expansions of the current model. 

4.5. CONCLUSION 

The present study proposes a possible dynamical mechanism for seizure initiation 

as a bifurcation, and suggests that experimentally observed changes in field potential 

amplitude and frequency during the course of a seizure may be explained by noise­

induced transitions among multistable states. Despite its Imitations and shortcomings, the 

synaptically-connected excitatory network model presented here provides testable 

hypotheses of bifurcation and noise-induced transitions as the mechanisms underlying key 

elements of neocortical seizure dynamics. 
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5. STOCHASTIC ANALYSIS OF LIMIT CYCLE OSCILLATOR 

5.1. OBJECTIVES 

In this section, theoretical aspects of a limit cycle under stochastic perturbation are 

studied. The ultimate goal of the project is to develop a practical numerical method to 

reduce a system with a stable limit cycle to normal form, which would be applied to the 

study of synchronization of coupled oscillators. 

In 5.2, the original motivation for the project, which is to study the effect of 

stochastic dynamics of ion channels on the statistics of the firing period in a neuron 

model, is stated. A two-state continuous time Markov chain model for ion channel 

dynamics will be approximated by stochastic differential equations which consist of 

deterministic neural models with multiplicative (state-dependent) noise. Therefore, the 

study is converted into the study of a limit cycle under stochastic perturbation. Below, the 

approach taken to this problem is outlined (see also Figure 5.1 ). 

n-dimensional 
SDE 

1-dimensional 
SDE 

BVP for moment 
generating function 

Statistics for 
period 

Stochastic 
phase reduction 

First passage 
time analysis 

Singular 
perturbation 

Figure 5.1. Diagram of the approach taken. 

In 5.3, a stochastic version of phase reduction is discussed (see 1.5.4 for phase 

reduction). It turns out that the second derivative of the phase function is necessary even 

for the lowest approximation, which motivated the study in the next subsection. 

In 5.4, a numerical method is developed to obtain partial derivatives of any order 

of the phase function for a stable limit cycle, which is necessary for higher order phase 

reduction. In particular, the second order partial derivatives can be applied to stochastic 

perturbation of a limit cycle. 
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In 5.5, a framework to obtain the moments of the period of a limit cycle under 

stochastic perturbation is developed by solving the boundary value problem for the 

moment-generating function of the first passage time problem. 

The development of the numerical method described in 5.4 has been submitted and 

uploaded on ArXiv.org [4]. 

5.2. MOTIVATION: STOCHASTIC NEURAL MODEL 

Consider the Morris-Lecar oscillator (see 1.4.6). The equations are repeated below: 

dw ¢(w~(V)- w) 
= (148) 

dt 

where V and w represent the membrane potential and the fraction of open potassium 

channels, respectively. A stochastic version of Eq. 148 is constructed below (see 1.4.2 for 

a deterministic case). Start from a two-state Markov process (see 1.6.9) for a model of a 

single ion channel: 

c~o, ( 149) 

where C and 0 represent the closed and open state, respectively. Let k0 (V) and kc(V) 

be the reaction rates for the formation of the open and closed states, respectively. Then, by 

the property of Markov chain [ 120]: 

# {Close to Open in[t, t + ~t)} = P((N- N 0 (t))k0 (V)~t) 

# {Open to Close in[t,t + ~t)} = P(N 0 (t)kc(V)~t), 

(150) 

(151) 



110 

where N 0 (t) is the number of open channels at time t and P(A) is a Poisson random 

variable with mean A. For a large number of channels, P(A) can be approximated by a 

Gaussian random variable with mean and variance A : 

P(A) "'='A+JIZ(0,1) 

where Z(O, 1) is a Gaussian random variable with mean and variance 1. Then, 

N 0 (t + !!.t)- N 0 (t) = (N- N 0 (t))k0 (V)!!.t- N 0 (t)kc (V)!!.t 

+J(N -N0 (t))k 0 (V)!!.tZ1 -JN0 (t)kcl!.tZ2 

= { (N- N 0 (t))k0 (V)- N 0 (t)kc(V) }M 

+ J{(N- N 0 (t))k0 (V) + N 0 (t)kc }MZ. 

(152) 

( 153) 

By dividing both sides by the total number of channels N, the stochastic equation for w 

can be obtained as follows: 

dw = { (1- w)k
0

- wkc }!!.t + ( 1- w(t))ko (V) + w(t)kc dW, ( 154) 
N 

where W is a Wiener process (see 1.7 for how this equation should be interpreted). Note 

that, by taking the limit of N ~ oo and following the process discussed in 1.4.2, Eq. 154 

takes the same form as Eq. 148. 

5.3. STOCHASTIC PHASE REDUCTION 

The stochastic differential equation of the following form is studied: 

X= F(X)+G(X);(t), (155) 

where X E 9\N and;(t) is a Gaussian white noise term such that (;en)= 0 and 

(;ct);(t')) =2Dt5(t-t') (see 1.7 for background on stochastic differential equations). In 
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[ 49], where a stochastic version of phase reduction in the first order is formulated, the 

authors start from Eq. 155 with the Stratonovich interpretation and obtain the Ito 

stochastic equation for the phase variable (see 1.5.4 for phase reduction and 1.7.3 for 

interpretation of the stochastic integral). Additional algebraic manipulation of their phase 

equation gives 

(156) 

where all the terms on the right hand side above are evaluated on the limit cycle. A 

comparison of Eq. 156 with the deterministic version of phase reduction discussed in 

1.5.4.2 (Eq. 39) shows that, in the stochastic version, the extra terms, 

( 157) 

appear in the deterministic part on the right hand side of Eq. 156. Therefore, even within 

the framework of first-order phase reduction, the second order partial derivatives have to 

be obtained for the stochastic version of phase reduction, which motivated the 

development of a theoretical framework for a numerical algorithm to obtain higher-order 

partial derivatives of the phase function, explained in the next subsection. 

It is worth commenting on the choice of the interpretation of SDEs, Eqs. 155 and 

156 (see 1.7 .5 for some discussions about the choice of Ito and Stratonovich 

interpretations). The Stratonovich interpretation is preferred in Eq. 155 for the change of 

variables from 9\" to the phase variable, since the rules of ordinary calculus hold for the 

Stratonovich interpretation. On the other hand, the Ito interpretation is preferred in Eq. 

156 since this equation will be used for the first passage time analysis in 5.5, with which 

the Ito interpretation is consistent. 
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5.4. HIGER ORDER APPROXIMATION OF ISOCHRONS 

One limitation of the method for phase reduction described in 1.5.4.1 is that it is 

only valid to first order. To develop higher order phase reduction, it is necessary to obtain 

higher order partial derivatives of B. In addition, as discussed in the previous subsection, 

to obtain the second order partial derivatives of B is necessary even for the lowest-order 

stochastic phase reduction (Eq. 156). However, to the best of our knowledge, an approach 

to higher order approximations of B similar in spirit to the one due to Malkin (see Eq. 40 

in 1.5.4.2) for finding the gradient of B has not been described so far in the literature. 

In this subsection, a theoretical basis is developed for a numerical algorithm to 

obtain partial derivatives of the phase function to arbitrary order. Only the outline of the 

method is provided. The full mathematical detail of the method is in [4]. In 5.4.1, some 

notions from differential geometry are explained since the result can be described in a 

more compact way with those notions. The main result is stated in 5.4.2. An example of 

the application of the result is given in 5.4.3. The reader interested in applications may 

jump directly to 5.4.3 and use the preceding subsections as references. 

5.4.1. Some Definitions and Notations. Let v = ( v1, ••• , v") be any vector in 9\" 

and f any differentiable real-valued function in xi' ... ,X11
• Given a multi-index 

J = ( j
1

, ••• , j") , i.e., an n -dimensional vector with non-negative integer entries, write 

v1 = v;
1 

••• v;" and f 1 = D1 f = D/1 ... D,:" f, where D; denotes the partial derivative with 

k • f(k) h . k 
respect to X; and D; = D; ... D; ( k times). Let represent t e symmetnc -

multilinear map on 9\" characterized (via polarization of polynomial maps) by 

f<kl(v, ... ,v)= LfJv; 
[l[=k 

(158) 

for all v E 9\". The sum is over all multi-indices J of order I 1 I= j 1 + ... + jn = k. Here, 

and often later, reference to the point x, where the derivatives are taken, is omitted. When 

necessary, this point is indicated as a sub-index; thus J,<2
l(v, w) is the bilinear map 



113 

evaluated at the vectors v, w regarded as tangent vectors at x E R", where x is the point 

where the partial derivatives of f are calculated. 

Now define 

(159) 

for some fixed x E 9\n, where ¢
1 

is the flow of F. pCkl is defined similarly, which is now 

a vector-valued, symmetric, k -multilinear map. (A convenient alternative description of 

8(kl and p<kl, and more generally of the higher order derivative forms associated with 

tensor fields, will be given below.) In particular, pOJ is the linear map which for v E 9\" 

gives the directional derivative ofF along v, i.e., F 0 J(v) = D,.F ="" v D F, where 
~, 1 .I 

D,.F is defined by this identity. 

Another general concept needed below is the symmetric composition of multilinear 

maps, which is defined as follows. Let Q by a symmetric s -multilinear map on 9\" 

taking values in 9\, and H a symmetric k -multilinear map on 9\ 11 taking values in 9\". 

Then the symmetric composition of Q and H is the symmetric s + k -1 -multilinear map 

on 9\ n , denoted Q • H and given by 

where the sum is over all permutations of the set { 1 ,2, ... , s + k -1 } . Finally, given a co­

vector Q on 9\" (a linear map from 9\" to 9\ ), the k -multilinear map is defined as 

(Q ® ··· ® Q)(v1 , ... , vk) = Q(v1 ) ... Q(vk )(the k- fold tensor product.) (161) 



5.4.2. The Main Results. The theoretical basis for the numerical algorithm to 

obtain partial derivatives is summarized as the theorem below. The proof is given in [4] 

and is not repeated in this dissertation. In 5.4.3, the use of the theorem with the Stuart­

Landau oscillator is illustrated. 

II4 

Theorem: Let x E C , x(t) = ¢', (x), k 2:: I , and Q,'k) the k -multilinear map defined in Eq. 

161. Then, the following hold. 

1. Q,<k> satisfies the differential equation in A,<kl given by 

k-1( k J A (k) + kA (k) • F (I) =-""' Q(k-1) • F (/+1) 
t r x(t) ~ [ + 1 t x(t) ' 

1=1 
(162) 

where the right-hand side contains the Q,<il for j < k, and equals 0 if k =I. 

2. Let A be any k -multilinear map, N a positive integer, and A,.N the solution 

to Eq. 162 for 0 ~ t ~NT such that ANT.N =A. Then there exists aT-periodic 

solution A such that A,.N converges exponentially to A for 0 ~ t ~ T as 

N---? oo. More precisely, there are constants C > 0 and 0 <A< I so that 

sup I At.N -A, I~ cA_N. 
O~t~T 

3. If A,u > is any T -periodic solution of Eq. I62, then 

Q,<k> = A,u> + J.LQ/1) ®···®Q,'I) 

where f1 = Tk [Q~k) (F,, ... , F,)- ~k) (F,, ... , F, )]. 

(163) 

(164) 

4. The term Q~k) ( F,, ... , F,) has an a priori expansion as a linear combination of 

compositions of the lower order terms Q61
) and F:n for l ~ k -I. This 

expansion is described in section 2.5 in [4]. 
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The equation for the standard (Malkin's) method of phase reduction for obtaining 

the gradient of e is the equation in part 1 of the theorem when k = 1 : 

Q·oJ+Q<IloF<IJ =0 
I I x(t) • 

( 165) 

Furthermore, Q,< 1
l is the unique periodic solution such that Q~ 1 >(F,) =liT. This 

unique solution can be found numerically, according to part 2, by the following procedure: 

Let a covector A (i.e., a linear map from 9\ 11 to 9\) at p be a choice of initial condition 

for Eq. 165 which is arbitrary except for the normalization A(F
1
,) =liT. One then 

integrates Eq. 165 for t < 0 (backward integration) until the solution stabilizes to a 

periodic (co)-vector-valued function on the limit cycle. Stabilization is assured to happen 

for sufficiently large I t 1. This periodic function is the solution desired in order one. The 

general order case is then given recursively by the successive applications of the theorem. 

5.4.3. The Stuart-Landau Oscillator: an Illustration. To illustrate the method, 

the case k = 2 is considered. From the general definition of symmetric composition 

introduced in Eq. 160, Q
1
<2> • F<I> and Q

1
<I> • F< 2> are given by 

Qi 2
) • F<ll (vi' v

2
) = ~ (Q

1
<
2>(F(!) ( v1 ), v2 ) + Q/ 2> (Fn> (v2 ), V1)) 

( 166) 

QnJ • F< 2>(v v ) = Q0 >(F< 2 >(v v )) 
1 I' 2 t I' 2 • 

( 167) 

Suppose that Q,< 1
> has already been obtained (say, by the standard method) and wish to 

find Q,<2
> • According to the main theorem, this second order term satisfies the non­

homogeneous differential equation 

( 168) 



where the FU> are evaluated at x(t) on the limit cycle. The equation can be solved as 

follows: Let A
1
(2) be a solution to Eq. 168 obtained by backward integration for an 

arbitrary initial condition. For large enough It I this solution stabilizes to a periodic 

(tensor-valued) function along the limit cycle, which is still denoted by Ai2
). Then, by 

item 3 of Theorem 1.1, 

II6 

Q(2) = A<2l +T2(Q<2l(F F)- ..1<2l(F F )\r.<l) ®Q(I) 
( ( 0 X' X ' '() X ' X f':.Lt t (169) 

expansion referred to in item 4 of the theorem amounts in this case to 

Qrzl (F F ) = -Q0 l (F 0 l (F )) . Therefore 
0 X' X 0 X X ' 

(170) 

is the desired solution. 

Recall the Stuart-Landau oscillator (see 1.5.4.1). Define 

_ [ 1 -a] A - . 
a a 1 

(171) 

Regard points of 9\ 2 as column vectors: x = (x1, x2 ) 
1

, where t indicates the transpose 

operator. Let a,b be real constants and p(r) a smooth function of r > 0 such that 

p( I)= I and p'( I)= X> 0. Now define a vector field on 9\
2 

by 

F(x) = Aax- p(l x I)A,,x. (172) 



Then it is easy to check that the differential equation i = F(x) has a hyperbolic 

stable limit cycle given by S 1 = {x E 9\ 2 :I xI= 1}. In fact, r =I xI satisfies: 
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r = r(I- p(r)) = -x(r-l)+o(r-1 ), ( 173) 

showing that the limit cycle is approached for t > 0 with Lyapunov exponent -%. In the 

special case of p(r) = r 2
, then r = r(l- r 2

) is easily solved: 

(174) 

where r0 = r(O) . With the coordinate change x1 = cos( rp + b ln r) and x 2 =sin ( rp +bIn r) , 

one can write the solution to i = F(x) explicitly in the new variables r,rp by setting 

rp(t)=rp0 +(a-b)t, (175) 

as can be easily checked. Therefore, 8(x) = qi2n modulo integer translations. For this 

example, one can calculate the derivatives of 8(x) explicitly, and then compare them 

with the numerical values derived from Theorem 1.1. 

Implicit differentiation gives the first and second order derivatives of 8 along the 

limit cycle. Write 8 = D 8, 8 = D D .8, where D is the partial derivative in xi. Then 
I I 1/ I .J I 

(176) 

Identifying 8(2) with the Hessian of 8 , one can write 



2x1x2 -b(x; -x;) 

2Jr I X 14 
2bx1x2 + x; - x1

2 

2Jr I X 14 

2bx1 x2 + x; - x1
2 

2Jr I X 14 
_ 2x1x2 - b(x;- x1

2
) 

2Jr I X 14 
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(177) 

The tensors Q1°l and Q?l are similarly written. Let ((t) = cp
0 

+(a -b)t +bIn r(t). Then 

( 178) 

and 

Q?)= Q,l(t) Ql2(t) = 2Jrr
2
(t). 2Jrr\t). (179) 

[ 

bcos(2( (t)) + sin(2( (t)) - cos(2((t)) + b sin(2((t))j 

[Q, (I) Q, (t)] -cos(2\(l)) ~bsm(2\(l)) _ bcos(2((t)) +sm(2\(t)) · 

2Jrr-(t) 2Jrr 2 (t) 

For any vectors v, v1, v2 E 9\2
, 

F = Aax-lxl
2 Ahx 

F 0l(v) = Aav-2x·vAhx-lxl2 A"v 

(180) 

(181) 

(182) 

Let the components of these tensors relative to the standard basis e1, e2 of 9\2 
be denoted 

as follows: 

(183) 

where the entries are obtained from Eqs. 180, 181, and 182. For example, from Eq. 182, it 

follows that F2~(x) = ~;(x) = e2 • F<2l(e"e2) = -2(x1 +bx2 ). The other entries are: 
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[ F,'(x) 
pl2(x) 

Fi (x)] _ [ 1- 2x, (x, -bx,)-1 xI' -b- 2x2 (x1 -bx,) +b I xI'] 
F2

2
(x) - b-2x1(hx1 +x2)-b/x/2 1-2x

2
(bx

1 
+x

2
)-/x/2 

( 184) 

[ F,: (x) 
F2\ (x) 

F,: (x)] = [ -6x1 + 2bx2 

F22 (x) 2bx1 - 2x2 

2bx1 -2x,] 
-2x1 +6bx2 

( 185) 

[F,i(x) F,! (x)] = [ -6bx, - 2x2 -2x -2bx] I 2 ( 186) 
F2~ (x) F22 (x) - 2x1 - 2bx2 -2bx -6x I 2 

The differential equations for Qi and Qii (Eqs. 165 and 168; all summations are 

over s = 1,2) can be written as: 

(187) 

(188) 

The first equation is the one used in Malkin's standard approach. Once it is solved by the 

already indicated procedure, its solution enters as the non-homogeneous term for the 

second equation. 

The result of the numerical calculation is shown in Figure 5.2. The initial condition 

for At,NT was chosen from a set of random numbers and numerical integration of Eq. 168 

was done backward in time (data not shown). Then, Q
1
(
2

) was obtained using Eq. 170 

(solid line in Figure 5.2). Convergence of Q1(
2
l, obtained numerically, to the analytical 

solution (dashed line in Figure 5.2) is clearly observed. 

5.5. DETERMINATION OF MOMENTS OF PERIOD 

5.5.1. First Passage Time Analysis. To determine the statistics for the period of 

a limit cycle, the differential equation for the phase (Eq. 156) will be used. A framework 

to determine the moments of the first passage time (see 1.7 .7) is applied to this problem. 
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Eq. 156 can be written in a more general form as follows: 

iJ =a+ DJ(B) + J2i5g(B)~ (189) 

where D is "small". The problem of interest is, for the system described by Eq. 189, to 

obtain the moments of the first passage time through a boundary starting from the initial 

point B . In particular, the period of an oscillation in the original limit cycle is assumed to 

be the first passage time through B = T starting from B = 0 . The moment generating 

function u(s, B) of the first passage time starting at B is defined as 

u(s, B) = [e-st p(t, B)dt, (190) 

2 

2~·-······f~~~>~ 0~:~ 
0 1 2 3 4 5 

10 • ::l 
"!~,:~··· ·······•; .. ·· ·····1······ ···· · r··········i ~3 

-
20o 1 2 3 4 5 

Time (sec) 

Figure 5.2: Determination of Q?) for the Stuart-Landau oscillator. a= 2,b =I. Each 

component of the tensors is plotted as a function of time. Numerical integration is done 

backward in time using the Euler method with dt = 10-3
• Solid line: Q/ 21 determined from 

A · dashed line· Q(2
) found analytically. To clearly show convergence of the 

t.NT' • I 

numerically obtained Q?) to the analytical solution, Ar.NT was not plotted and the period 

of the simulation was set at only 0.8T. 
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where p(t, B) is the probability density for the first passage time starting from B (see 

1.6.7 for the moment generating function). It is known that u(s, B) satisfies 

Dg(B) 2 u" +(a+ Dj(B))u'- su = 0 
' 

(191) 

where u' = au I a B [ 121]. Since Eq. 191 is a second order differential equation, two 

boundary conditions are necessary, although the first passage time of interest is the one 

through only one point. To handle this issue, two absorbing boundaries are set at two 

points, B = ±T. This corresponds to the boundary values u(±B) = 1. The crucial two 

assumptions made here are that the drift term ( = a ) in Eq. 189 is large enough compared 

to the diffusion term ( = J2i5 g (B)) and that the left boundary ( B =-T) is "far away" from 

the starting point, so that it is unlikely to reach the left boundary. This justifies the 

application of the outer solution in boundary layer theory (see 1.5.6 for boundary layer 

theory and 1.7.7 for the application of the outer solution in a first passage time problem). 

Then, the n1
h order moment of the first passage time Trp can be determined by 

E[rn]=(-1)"~ 
fp asn 

s=O 

(192) 

To solve Eq. 191, if g(B) :f:. 0 for all B, one can solve the linear equation 

u +(a+ Dj(B))u 8 _ su =O. 
88 Dg(B) 2 Dg(B) 2 

(193) 

However, since g(B) can be 0 for some B, which would bring discontinuity in Eq. 193, 

there is an issue with solving Eq. 191. Although the existence and uniqueness are 

unsolved issues, the attempt here is to obtain an approximate solution to this equation by 

applying regular perturbation to the outer solution of boundary layer theory. 



Assume u can be written in the following form: 

Substituting into Eq. 191, 

Dg (B) 
2 

(u17 ((J) + Du;(B) + D
2 u; (B)+···)+ (a+ Df(B))(u~ (B)+ Du; (B)+ D 2 u; (B)+···) 

- s(u 0 (B) + Du 1 (B)+ D 2u2 (B)+···) =0 

Equate the coefficients of powers of D to be zero to obtain 

D 0 
: au~ - su0 = 0 

D 1 
:au;- su1 + g 2 (B)u; + f(B)u~ = 0 

By the boundary conditions u(±T) = 1 , 

u0 (-T)=u 0 (T)=1 

u1 ( -T) = u1 (T) = 0 

Tedious but straightforward calculation gives the solutions for Eq. 196 

Therefore, u can be written as 
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( 194) 

(195) 

( 196) 

(197) 

( 198) 
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u(B) =ex{'(B: T)) 

+ ~ exp("'(B: T) )[C r [ g 2
(B)dB+ C)ft(B)dB ]+ O(D 2

) 

(199) 

Using Eq. 192, the first and second moments for the first passage time can be obtained as 

follows: 

E[T ] 
T - () D Tf , , 2 

.fp =----2 
j(8XJ8 +O(D ), 

a a e 

The variance for the first passage time is 

Var[Tr,,] = ElT1~ J- E[T1i, ]
2 

2D T 

= -
3 
f g 

2 (8')d8' + O(D 2 
). 

a e 

(200) 

(201) 

(202) 

5.5.2. Numerical Results. To study the validity of the approximation by the outer 

solution, the first passage time of a one-dimensional SDE is numerically obtained for a 

comparison. Let x0 be the position of a particle at t=O. Assume that the position of the 

particle at t is determined by the following SDE: 

i =a+ D cos 2 2m+ J2i5 cos( 4m);(t) (203) 

Two absorbing boundary BLand BR are set such that BL S x0 S B R. To obtain one 

realization, Eq. 203 is numerically integrated with the Euler method and the time required 

for x to pass either one of the two boundaries is obtained. 100,000 realizations are 

simulated to obtain the moments for the first passage time. 
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The mean first passage time from the outer solution (Eq. 200) and that from the 

numerical integration of Eq. 203 results are shown in Figure 5.3. Although both the 01
h and 

1st order outer solution have a good agreement with the numerically obtained value, the 1st 

order solution is closer to the numerically obtained value in the region close to x=O. Figure 

5.4 shows the comparison between the variance of the first passage time obtained the two 

methods above (the one from Eq. 202 and numerically obtained one). Both values are in 

good agreement. Therefore, these results suggest the validity of the application of the 

outer solution approximation to the boundary value problem (Eq. 191) for the first passage 

time problem of the !-dimensional SDE of the form in Eq. 189. 

2 
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1.6 

1.4 

0.8 

0.6 

0.4 

0 
0 0.2 0.4 0.6 0.8 

1
" 
76.·03 0.04 0 05 0.06 0 07 0 Cfl 0 09 0 , 0.11 

0 75 

'U 

048 05 052 054 056 058 06 

x, 

Figure 5.3. <T rp> is plotted as a function of starting point (xo). a=0.5, D=0.05. Right two 

figures are blow-ups of the left. The solid, dashed, and dotted-dashed line represent 

numerical, 01h order, and 1st order solutions, respectively. 
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5.5.3. Application to a Limit Cycle Oscillator. Since the application of the outer 

solution in boundary layer theory to the first passage time problem of a one-dimensional 

SDE is justified in the previous subsection, this subsection discusses how this approach is 

valid for the determination of the moments of the period of a stable limit cycle oscillator 

under stochastic perturbations. For this purpose the Stuart-Landau oscillation (see 1.5.4.1) 

is used since the partial derivatives of the phase variable can be analytically obtained. 

0.08 

0.07 

0.06 

0.05 

VAR(~ 

0.03 

0.02 

0.01 

0 
0 0.2 0 4 06 08 

Figure 5.4. V AR(T fp) is plotted as a function of starting point (xo). a=0.5, D=0.05. 

The Stuart-Landau equations (see 1.5.4.1) with multiplicative noise of the 

following form is considered: 

x = x- c
0
y- (x 2 + /)(x- c2 y) + J2i5x~(t), 

y = c0x + y- (x 2 + / )(c2x + y), 
(204) 

where ~(t) is a Gaussian white noise term with (~Ct)) = Oand (~(t)~(s)) = t5(t- s) ·Using 

Eq. 156, the set of equations can be reduced to 

(205) 
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where xo(t) is a point on the limit cycle and all the partial derivatives above are evaluated 

at xo(t). Below, for simplicity, the case of the period without noise is 2n (i.e., 1 c
0

- c
2 

I= 1) 

is considered (see Eq. 36 in 1.5.4.1 how the two parameters determines the period). From 

Eqs. 35, 200, and 202, the mean and variance of the period of the limit cycle can be 

obtained 

(T)=2tr-D I -2 cos2 B+-cose e, 
2;r(a2e ae } 
0 ax ax 

(206) 

2;r(ae )2 
Var(T) = D I -cos e dB. 

0 ax 
(207) 

By the application of the chain rule to Eq. 35, the partial derivatives of e used above can 

be obtained: 

ae e . e - = -c 2 cos - sm , 
ax 
a2e 
--

2 
= c2 cos 28 +sin 28. 

ax 

From Eqs. 206,207, and 208, the mean and variance can be determined analytically: 

(208) 

(209) 

From the numerically integrated solution of Eq. 204, the periods of oscillations are 

determined by thresholding of the y-value of the data. The mean and variance of the period 

from the numerical integration and analytical calculation are compared in Figure 5.5. In 

both the mean and variance, the numerical and theoretical results are consistent with each 

other, except that the variance from the numerical one is twice as large as the theoretical 



one at D=O.l. This may improve when the theoretical variance is calculated to higher 

orders in D. 
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Figure 5.5. A comparison between the numerical and analytical results of the mean (left) 

and variance (right) of the period of the Stuart-Landau oscillator. 

5.6. CONCLUSION 

In this section, a theoretical framework to obtain the statistics for the period of a 

limit cycle oscillator under stochastic perturbation is developed. It is shown that the 

second partial derivatives of the phase variable are necessary for the stochastic version of 

phase reduction studied, which is not the case for the deterministic case. A theoretical 

underpinning to numerically obtain the partial derivatives of the phase variable is 

developed. Using first passage time analysis, a theoretical framework to determine the 

moments of the period is obtained. The method obtained is applied to the Stuart-Landau 

oscillator. The result agrees well the numerical results in the weak noise regime. The 

method presented here can be applied to any system with a stable limit cycle. If the phase 
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variahk can he analytically ohtained. the llll'thod ~in·, ;Ill anal~t~~·;d tl''lllt !111 the 
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moments of the period can he ohtainl'd hy thl' numl'ncd 111ll'~t;ttll'n 11! the (lht.tJned p.1111.tl 

derivatives. 
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