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Cosmological and wormhole solutions in low-energy effective string theory
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and INFN, Sezione di Cagliari, Via Ada Nevi 18, I-09187 Cagliari, Italy

Marco Cavaglia~
Sissa In—ternational School for Adoanced Studies, Via Beirut 8-g, I-9401$ 1Heste, Italy

and INFN, Sezione di Torino, Torino, Italy
(Received 9 June 1994)

We derive and study a class of cosmological and vrormhole solutions for lour-energy effective
string Beld theory. We consider a general four-dimensional string effective action vrhere moduli of
the compacti6ed manifold and the electromagnetic Seld are present. The cosmological solutions of
the taro-dimensional effective theory obtained by dimensional reduction of the former are discussed.
In particular are demonstrate that the taro-dimensional theory possesses a scale-factor duality in-
variance. Euclidean four-dimensional instantons describing the nucleation of the baby universes are
found and the probability amplitude for the nucleation process is given.

PACS number(s): 11.25.Mj, 04.20.Jb

I. INTRODUCTION

During the last years low-energy effective string field
theory has been widely investigated in connection with
its black hole [1—6] and cosmological [7—9] solutions. In
particular, critical and noncritical string cosmological so-
lutions have been discovered and analyzed in detail. The
typical features of these solutions such as the scale-factor
duality or the relationship with the corresponding black
hole geometries have been also investigated [7—9]. The
general idea underlying these investigations is that the
short-distance modifications of string theory to general
relativity could be crucial in order to understand long-
standing problems of quantum gravity such as the loss of
information in the black hole evaporation process or the
nature of the singularities in the Einstein theory. After
all, string theory is the only consistent framework which
we presently have for quantizing gravity and it seems very
natural to look at it in order to solve these problems.

If the gravitational field is correctly described by a
quantum theory, such as string theory, the topology
of spacetime is expected to Buctuate on Planck length
scales. This is the old idea of spacetime foam [10]. Mi-
croscopic connections between large regions of spacetime
[wormholes (WH's)] and the chaotic formation of Planck
scale universes [baby universes (BU's)] branching ofF, or
joining onto, a region of spacetime can have important ef-
fects on physics, even at low-energy scales [11].Semiclas-
sically, WH's are described by instantons which represent
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a tunneling between two asymptotic four-dimensional re-
gions of spacetime. If a WH can be joined at the throat
to a hyperbolic universe whose spatial section is compact,
then the instanton can be interpreted as nucleating a BU
with a well-defined semiclassical amplitude.

Even though a large number of Euclidean instantons,
and the corresponding cosmological solutions describing
BU's, have been found in the context of the Einstein
gravity theory [12—14], up to now very little is known
about WH's and BU's nucleation in the framework of
the low-energy efFective string theory. This situation is
somehow uncomfortable because if string theory has to
solve the puzzles of quantum gravity it should also pro-
vide us the natural &amework for studying processes such
as the formation of WH's and BU's. A first attempt in
this direction was made by Giddings et al. in Ref. [12].
Using a lowest-order eS'ective string action they found
an axionic WH which, however, has an infinite Euclidean
action. More recently an instanton has been found which
describes a t»~~cling between zero-energy vacua of string
theory [15]. Finally, the existence of quantum WH solu-
tions in the &amework of the Jordan-Brans-Dicke the-
ory predicted by string efkctive actions has been demon-
strated in Ref. [16].

In this paper we shall derive and study four-
dimensional cosmological solutions of the low-energy
string effective action of Refs. [5,6]. This action takes into
account, apart &om the dilaton and the EM Beld, a mod-
ulus Beld which acquires nonminimal couplings to the
gauge Belds owing to string one-loop eKects. The theory
can be identified as a Jordan-Brans-Dicke gravity theory
with Brans-Dicke parameter ru taking values in [—1,oo[
and contains, as particular cases, both the dilaton-gravity
theory of Refs. [2,3] and the Einstein-Maxwell theory.
The cosmological solutions describe universes filled with
the EM and the dilaton field. Even though these solu-
tions do not seem to correspond, at least in the general
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case, to exact conformal string backgrounds, they are in-
teresting &om two different points of view. First, the
dimensional reduction of the four-dimensional theory on
the background defined by the magnetically charged solu-
tions produces a two-dimensional effective theory whose
solutions have all the features of two-dimensional string
cosmological solutions. Second, the four-dimensional cos-
mological solutions can be interpreted as BU's nucleated
by Euclidean WH's.

The outline of the paper is the following. In the next
section we Gnd and discuss the cosmological solutions
of the four-dimensional action with both a purely mag-
netic and electric Geld. In Sec. III, we study the two-
dimensional effective theory obtained by dimensional re-
duction of the four-dimensional one. In particular, we
demonstrate that this theory possesses a scale-factor du-
ality invariance and that its time-dependent solutions de-
scribe the region between the horizon and the singularity
of the corresponding black hole geometry. In Sec. IV,
we find the Euclidean instantons of the four-dimensional
theory. These solutions can be joined at t = 0 to their
analytic continuations in the hyperbolic spacetime de-
scribed by the cosmological solutions of Sec. II and then
we are led to interpret the instantons as nucleating BU's.
The probability amplitude for this process is calculated
and using Coleman's mechanism we find that the proba-
bility distribution for the coupling constant ~ is strongly
peaked at the value ~ = oo corresponding to general rel-
ativity. Finally we state our conclusions in Sec. V.

II. COSMOLOGICAL SOLUTIONS

S= d x ge ~B+4V —— V

&—(/)sty
]

+2 d3x he 24' K —Kp . (2.1)

Here B is the curvature scalar, P is the dilaton field, g a
modulus field, F„„is the usual EM Geld tensor, and q is
a coupling constant. We have put 16mG—:MP2i/16m = 1,
then measuring all dimensional quantities in these units.
The boundary terin is required by unitarity [18];K is the
trace of the second fundamental form K;~ of H and Kp
is that of the asymptotic three-surface embedded in Sat
space. The latter contribution must be introduced if one
requires the spacetime to be asymptotically Hat. We will
see that the surface term in (2.1) plays a very important

Let us consider a four-dimensional hyperbolic mani-
fold 0 with metric g„„and topology R x H, where H is
a three-dimensional compact Riemannian hypersurface
with metric h, ~ (here and in the following Greek indices
run from 0 to 4 and Latin indices run Rom 1 to 3). Our
starting point is the four-dimensional low-energy string
efFective action of [5,6] which generalizes the usual low-

energy string effective action [2,3,17] for the case when a
modulus is taken into account. Owing to string one-loop
threshold effects this modulus is coupled to the EM Geld.

The action reads

role in the computation of the probability amplitude for
BU formation.

Following [5,6] we choose for the modulus field the
ansatz

3—(2j3)qg —2P
g2

(2.2)

Using (2.2), the action (2.1) reduces to the form

+2 d x he ~K —Kp, (2.3)

where

(2.4)

We have several interesting cases according to the value
of k. For k = —1 (i.e. , q i oo) the action reduces to
the usual low-energy string action when the modulus @
is not taken into account; (2.3) describes then the four-
dimensional dilaton-gravity theory considered in [2,3].
For k = 0 we have a four-dimensional action whose two-
dimensional reduction gives the Jackiw- Teitelboim the-
ory [6]. The case k = 1 looks singular. However, inserting

q = 0 in the action (2.1) and using the equations of mo-

tion that force the dilaton to be constant, we recover the
usual Einstein-Maxwell theory. Using the ansatz (2.2)
exact solutions can be obtained for any value of the cou-
pling constant k E [

—1, 1].
One can easily realize that the action (2.3) describes a

Brans-Dicke theory coupled to the electromagnetic field.
Indeed the redefinition 4 = exp( —24)) brings the action
(2.3) in the Jordan-Brans-Dicke form with a Brans-Dicke
parameter ur = 2k/(1 —k). As expected we recover gen-
eral relativity (u = oo) for k = 1.

Since the EM field prevents spatially homogeneous and
isotropic solutions of the Geld equations, we look for so-
lutions of the form

(2.5)

I" = Q sin8d&h dp, (2.6)

where Q is the magnetic charge. Equation (2.6) de-
scribes a purely magnetic Geld. Later in this section we

will consider a purely electric field with only nonvanish-

ing components along the y direction [14]:

where y is the coordinate of the one-sphere, 0 & y & 2m,

and d02 represents the line element of the two-sphere.
%(t) is the lapse function. The line element (2.5) is
known as of the Kantowski-Sachs type [19] and describes
a hyperbolic spacetime 0 whose three-dimensional spa-
tial hypersurfaces H have topology S x S .

Now, we have to consider a form of the EM field com-
patible with the topology of the spacetime. A suitable
configuration is given by the magnetic monopole on the
two-sphere:
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A = A(t)dq, (2.7)

where A is the EM potential one-form. As we shall see,
the solutions corresponding to (2.6) and (2.7) are related
by a duality transformation.

It is stra)ghtforward (but not so easy; see the Ap-
pendix) to fihd the magnetic charged solution of the equa-
tions of motion derived &om the action (2.3):

ds' = dt —+ Q sin'(t/Q) dg'1+cos t Q)
2

+Q'dO' (2.8a)

2(~ 4, )
1 + cos(t/Q)

2
(2.8b)

where we have redefined the magnetic charge Q through

Q = 2i/1 —kQ. (2 9)

ds' = —dt'+ t'd~'+ Q'd022. (2.10)

The topology is locally R ' x S and the three-
I

The previous solution exists and is well defined for any
—1 & k & 1. For A: = 1 the redefinition of the magnetic
charge (2.9) becomes singular. This is not surprising be-
cause the ansatz (2.2) is singular for k = 1 (i.e., q = 0);
so, the solutions for this particular case have to be de-
termined by starting directly &om the action (2.1) with

q = 0. One can easily verify that the corresponding so-
lution is described by (2.6)—(2.8) where now k = 1 and

Q =Q.
Let us study the properties of the solution (2.8). The

line element (2.8a) describes a universe whose spatial sec-
tions are compact with topology S x S . The scale fac-
tor of the two-sphere is constant, while the radius of the
one-sphere is periodic in time. The behavior of the line
element (2.8a) depends on k, so it is convenient to study
separately the following cases.

(a) k = 1, the Einstein-Maxwell theory. In this case
the line element reduces to the one found in [14] for the
Einstein gravity. The radius a of the one-sphere takes
values in the range [0, Q] and the line element is singular
at t = nmQ, n=0, kl, +2, , . . ., where the scale factor a
vanishes. This singularity can be removed by a different
choice of coordinates [14]. This can be easily seen noting
that in the neighborhood of t = 0 the line element (2.8a)
reduces to the forxn

—2P Ap+pv ~ 2e egav +%pi 4' ~ 4'& gc + gct (2.11)

when expressed in terms of the canonical metric g, =
e 2&g, . Transformation (2.11) relates magnetically to
electrically charged solutions. This invariance also holds
for the theory described by (2.3) when the action is ex-
pressed in terms of the canonical metric g, [6]. Using
the duality invariance (2.11) of the equations of motion,
it is straightforward to obtain in the string frame the
electrically charged solution

dimensional spatial hypersurface becomes homotopic to
S2 and a point. Thus (2.8a) rePresents a imiverse which
periodically reproduces itself with period zQ. In this
case the di1aton is constant.

(b) 0 & k & 1. Contrary to the previous case, when
k takes values in the interval ]0, 1[, the metric has a cur-
vature singularity for t = (2n + 1)n Q, where the dilaton
diverges and the theory becomes strongly coupled. At
t = 2nmQ there is a coordinate singularity analogous to
case (a). The radius of the one-sphere vanishes for t =
nn Q and has a maximum for cos(t/Q) = (k —1)/(k+ 1).
In this case (2.8a) describes a universe whose two-sphere
scale factor remains constant, whereas the radius of the
one-sphere vanishes at t = 0, grows until a maximum
value and becomes again zero after a time t = n Q.

(c) k = 0. In this case (2.8a) describes a periodic uni-
verse with period 2+Q. The scale factor a vanishes for
t = 2nxQ, where there is a coordinate singularity analo-
gous to case (a), and takes its maximum value a = 2Q
when t = (2n+ 1)nQ. Note that even though there are
no curvature singularities, the dilaton diverges and the
theory becomes strongly coupled for t = (2n+ 1)vrQ.

(d) —1 & k & 0. The scale factor a vanishes for t =
2nxQ, where the metric shows a coordinate singularity,
and goes to the infinity for t = (2n+ 1)z Q where the line
element has a curvature singularity. Hence the radius of
the one-sphere starts with zero at t = 0 and grows to
infinity at t = vrQ. Note that k = —1 corresponds to the
usual dilaton-gravity theory.

As we shall see in Sec. IV, Vk C [—1, 1] the solution
(2.8) can be joined at t = 0 with a Euclidean asymptot-
ically flat instanton and then (2.8a) can be interpreted
as the line element of a BU nucleated starting from an
asymptotically Hat region.

To conclude this section, let us briefiy discuss the so-
lutions obtained &om the purely electric field (2.7). It
is well known that the equations of motion for four-
dimensional dilaton gravity coupled to the EM Geld are
invariant under the discrete duality transformation [3]

d8 = e4 ' + (/Q) ~ ~ . ~ + o (/Q)dt + sin t— (2.12a)

Il = 2v'1 —ke ~'sin(t/Q)dt Ady, (2.12b)

2(~ 4, ) 1+cos(t/Q)
2

(2.12c)
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where Q is related to the electric charge by the same rela-
tion as in (2.9). Note that for k = 1 (2.8a) and (2.12a) co-
incide after taking Po ——0; indeed, in this case the dilaton
is constant and the duality invariance holds also in the
string frame. So!ution (2.12) has properties analogous
to solution (2.8). The line elements (2.8a) and (2.12a)
dier only for a conformal factor because of the duality
relation. The most striking difference between the two so-
lutions resides in the fact that difFerently &om (2.8) the
scale factor for the two-sphere in (2.12a) is not constant.
As we shall see in the following, the two-dimensional sec-
tion of the magnetic solution (2.8) can be described in
terms of an efFective two-dimensional theory obtained
by dimensional reduction of the action (2.3). This is of
course not possible for the electric solution (2.12).

III. THE TW'0-DIMENSIONAL EFFECTIVE
THEORY

AND DUAL SOLUTIONS

where A2 = (1 —k)/2Q2. This two-dimensional action
has been. studied in connection with its black hole solu-
tions and its duality invariances in [6,20]. In this section
we will study (3.1) from the cosmological point of view.
As shown in [20] considering space-dependent field con-
figurations, action (3.1) possesses a duality symmetry. It
is easy to see that this duality invariance also holds for
time-dependent con6gurations. Let us consider the met-
ric and the dilaton 6eld of the form

ds = dt + e ('ldx, —p = p(t), (3.2)

where 0 & x ( oo. The action becomes

S= die ~~ 2 p+p + +~
)

(3.3)

where the overdots represent time derivatives. One can
easily check that the transformation

The metric part of the magnetic solution (2.8) has the
form of a direct product of a two-dimensional solution
and a two-sphere of constant radius. Thus, it is useful
to study the two-dimensional effective theory obtained
by retaining only the time-dependent modes of the four-
dimensional theory. This two-dimensional theory is ex-
pected to describe the essential four-dimensional physics
for perturbations around the background solution (2.8).
The action (2.3) can be dimensionally reduced by taking
the angular coordinates to span a two-sphere of constant
radius Q. The resulting two-dimensional action is

theory [7,9]. Indeed, for k = —1 we get the standard
scale-factor duality transformation p -+ —p, P —i P —p
which exchanges the radius of the two-dimensional uni-
verse with its inverse.

Let us now discuss the cosmological solutions of the
two-dimensional theory and their behavior under the du-
ality transformation (3.4). The time-dependent solution
of action (3.1) is easily found to be

ds = dt +—sin (t/2Q)[cos (t/2Q)]"dx,

e2(f—$0) [cos2(t/2Q)](k
—1)/2

(3.5a)

(3.5b)

(3.6b)

The dual solution corresponds of course to a solution of
the four-dimensional theory (see the Appendix). More-
over, for k = 1 (3.5) and (3.6) are the same, i.e. , the solu-
tion is self-dual. Comparing Eq. (3.5) with Eq. (3.6) and
keeping in mind the discussion of the previous section,
one easily realizes that the efFect of the duality transfor-
mation (3.4) on the solutions with k g 1, 0 is to exchange
the coordinate singularities at t = 2nn. Q with the curva-
ture singularities at t = (2n+ 1)xQ. For k = 0 there are
no curvature singularities and the duality transformation
simply exchanges strong string couplings with weak ones.

The previous cosmological solutions are a further ex-
ample of the two-dimensional string cosmologies studied
in [7—9]. They exhibit all the peculiar properties of string
cosmological solutions such as the above-discussed dual-

ity invariance. In particular, for k = —1 solutions (3.5)
and (3.6) correspond to well-known D = 2 cosmological
conformal string backgrounds [7—9]. However, for generic
k we do not know if the interpretation of (3.5) and (3.6)
as conformal string backgrounds can be maintained. In
this context the case k = 0 seems very interesting. As we

have seen, the cosmological solution describes a universe
which periodically reproduces itself without encounter-
ing a singularity, thus avoiding the singularity problem
which afFects the models with k g 0, 1.

To conclude this section, let us discuss the relation-
ship between the two-dimensional cosmological solutions
and the corresponding two-dimensional black hole ge-
ometries. For the particular case k = —1, it has been
already shown that the cosmological solution (3.5) de-

scribes the region between the horizon and the singularity
of the black hole geometry [9] derived from (3.1):

Considering a periodic space, i.e. , setting z = 2Qy,
0 & y & 2x, the solution (3.5) coincides with the two-
dimensional section of solution (2.8). The effect of the
duality transformation (3.4) on the solution (3.5) is to
exchange the sine and cosine everywhere:

ds = dt + c—os (t/2Q)[sin (t/2Q)]" dx, (3.6a)

k —1
p m kp —2(k+ 1)(t, P m p —kP

2
(3.4)

ds = —4Q tanh (x/2Q)dr + dx,

e2(~ ~'~ = [cosh(x/2Q)]

(3.7a)

leaves the action invariant modulo a total derivative. The
duality transformation (3.4) is the generalization for the
action (3.1) of the scale-factor duality symmetry of string

(3.7b)

This construction can be easily generalized for arbitrary
k. Consider the metric (3.5a) expressed in terms of the
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+X v e& X
7

1 dt

2Q sin(t/2Q) coss (t/2Q)
y(i "l~2 (1 —k 3 —k

(s.8)

where E is the hypergeometric function and y
cos2(t/2Q). The line element (3.5a) becomes

k

d" = -4q'('
tCV

(s.9)

An identical form for the metric can be obtained starting
from the black hole solution of the action (3.1) [6],

periodic coordinate g = x/2Q and choose the new coor-
dinates

IV. EUCLIDEAN INSTANTONS

Let us now discuss the action (2.3) in the Riemannian
space. In order to do this, we have to deal with the
ambiguity in the choice of the sign for the action of the
EM field. Indeed, the EM Geld in the Euclidean space is
not analytically related to the EM field in the hyperbolic
space; i.e., the two Gelds are not related by the coordi-
nate transformation t ~ i~: a real electric field in the
hyperbolic spacetime gives, once continued in the Eu-
clidean space, an imaginary electric Geld. Using a more
or less ad A,oc rule, one normally requires the Euclidean
EM field and its action SE to be real; i.e., one uses the
hyperbolic expression of the action with an overall mi-
nus sign (the discussion about the Euclidean formulation
of the Maxwell theory can be found in Ref. [21]). Of
course, other prescriptions are possible. We will consider
the Euclidean version of the action (2.3) in the general
form

ds = —4Q sinh (z/2Q)[cosh(x/2Q)] "dr + dx,
(3.10a)

d4~ g e
8k 3+ k

—2 dx he @K—Kp, (4.1)
e (~ ~'l = [cosh(2:/2Q)]" ',

and introducing the coordinates

'Q=e S=e

(3.10b)
where e = kl. The meaning of the parameter e can
be understood looking at the EM Geld. According to
the sign of e, the electric and the magnetic fields in the
hyperbolic and Euclidean space are related by

1 dx

2Q sinh(z/2Q) cosh" (x/2Q)

3-k ~

k —1
(3.11)

but now with y = cosh (x/2Q). In (3.8), y takes val-
ues in the interval [0,1], whereas in (3.11) 1 ( y ( oo.
Hence, solution (3.9) describes the region between the
horizon and the singularity of the black hole solution
(3.10). Strictly speaking, because we are working with

y periodic, this correspondence holds for a wedge in the
region between the horizon and the singularity (see [9]).

As shown in Ref. [9] for the case k = —1, one could
continue the time past the singularity at t = vrq to get
an identical copy of the interior of the black hole where
the Universe now starts at the singularity and evolves
until it reaches zero size at t = 2wq. By continuing this
procedure, i.e., not identifying t ~ t + 2vrq, we end up
with a»niverse which undergoes infinitely many oscilla-
tions. This construction cannot be taken too seriously
because near the singularity, where the size of the Uni-
verse becomes infinitely large, one cannot trust anymore
the low-energy string efFective action (3.1) and one should
consider the exact theory. We will not discuss this point
further, we just note that our model with k = 0 avoids
the singularity problem. Indeed, for this value of k the
scalar curvature stays everywhere finite and only the dila-
ton diverges at t = (2n+1)mq indicating that the theory
becomes strongly coupled.

2 = 2 2 = 2
gyp ~ Eucl & gyp Eucl '

ds2 —d~2 + 2(' —»q'
&2 + Q2

~ g 2 + Q2~

+(~' + Q')dO'„

dx'

(4.2a)

F = Q siil HIN A dip,
2

(4.2b)

(4.2c)

Thus, if we require the analytical continuations of real
hyperbolic fields to be real fields in Euclidean space, we
must choose e = —1 for the purely magnetic configura-
tion (2.6) and s = 1 for the purely electric configuration
(2.7). Another argument that supports the above choice
relies on the duality invariance (2.11). One can easily
see that (2.11) does not hold for the Euclidean EM the-
ory. This is essentially due to the fact that the Euclidean
EM energy is proportional to exp( —2$)(E2 —H2), thus
changing sign under the transformation (2.11). Hence, in
order to maintain the duality relation (2.11) in the Eu-
clidean space we must reverse the sign of e in the action
in passing from the purely magnetic configuration (2.6)
to the purely electric configuration (2.7).

Let us first consider the purely magnetic ansatz. We
have to choose s = —1 in (4.1) and the Euclidean equa-
tions of motion are solved by



MARIANO CADONI AND MARCO CAVAOLIA

Let us study the properties of the solution (4.2). In the
asymptotic regions v —+ +oo, the line element becomes

ds2 ifr2 + 2(i iI)Q2d/2 + 7.2dfI2 (4.3)

Thus, the asymptotic Riemannian space is Bat with
topology Rs x Si. At w = 0, Vk g [

—1, 1], the metric
is singular. This singularity is only due to the choice of
the coordinates that cover only half of the manifold de-
scribed by the line element (4.2a). Indeed, it is possible
to find a new chart that covers the whole space (for the
case k = 1, see [14]). One can easily verify this, observing
that in the neighborhood of 7 = 0, (4.2a) becomes

ds =dr +7 dy +Q dA&., (4.4)

As stated in the Introduction, the existence of WH
solutions for Jordan-Brans-Dicke theories have already
been demonstrated in [16]. In particular, solutions of
the Wheeler-DeWitt equations describing quantum WH's
have been found in the absence of matter, even though an

I

hence, the singularity at T = 0 can be removed going to
Cartesian coordinates in the (7, y) plane and adding the
point ~ = 0. Thus, in the neighborhood of ~ = 0 the
topology is locally R2 x 8 with R contracting to zero
as v. ~ 0. This particular case has been classified by
Gibbons and Hawking [22] as a "bolt" singularity.

The asymptotic behavior of solution (4.2) and its regu-
larity allow us to interpret the instanton (4.2a) as a WH
that connects two asymptotic Bat regions. Moreover, the
instanton (4.2) can be joined at v = 0 with the cosmolog-
ical solution (2.8). Thus, (4.2) describes the nucleation
of a BU starting &om an original Hat region. Let us see
this in detail.

As one can easily see, solutions (4.2) with —oo & 7 ( 0
and (2.8) with t ) 0 satisfy Darmois conditions for
change of signature at t = r = 0 [23]; indeed, at t = r = 0
both the Euclidean and hyperbolic manifolds are well
defined and the first and second fundamental forms of
the three-dimensional hypersurfaces coincide smoothly
for w ~ 0 and t + 0+. The dilaton is continuous with
its derivative on the hypersurface t = v = 0, where the
change of signature occurs. Therefore, the asymptotic
behavior for w ~ +oo of the Euclidean solution (4.2)
allows us to interpret (4.2) as an instanton which pro-
vides a tunneling between a Bat vacuum region and the
universe described by (2.8a).

In conclusion, solution (4.2) describes the nucleation of
a nonisotropic BU at t = 0 starting &om an original Bat
spacetime and it is the generalization to eH'ective string
theory of the solution found in [14]. The hypersurface of
signature change is two dimensional: this corresponds to
the particular situation of a BU nucleated in a phase of
maximum shrinlm, ge of the spatial metric. Once the BU
is nucleated then it evolves according to (2.8) and even-
tually ends in a singularity depending on the parameter

explicit analytic form is not given. However, it is difBcult
to compare our solutions with those of [16] because in
our case the electromagnetic field plays a crucial role.
Solutions (4.2) do not exist for Q = 0.

Let us now discuss the amplitude probability of nu-
cleation of a BU. In the semiclassical approximation, the
amplitude probability in a Planck volume and in a Planck
time is given by [24]

I'=e Is[ (4.5)

where 8 represents the Euclidean action evaluated on
the solutions of the classical equations of motion. Af-
ter a straightforward calculation and taking into account
the boundary terms to cancel the divergent contribution
coming from the asymptotic region, one finds

I' = exp[ —8vr e ~oq (k + 1)]. (4.6)

For k P —1, in order to have a probability of the order
of unity, the charge Q appearing in the solution must be
of the order of the unity, so the nucleation probability is
maximum for BU's with dimension of order of the Planck
length. Conversely, for the usual dilaton-gravity theory
(k = —1), the semiclassical amplitude probability (4.6)
does not fix the dimension of the BU, because one obtains
I' = 1 for any value of the charge Q. In this case, in
order to fix the amplitude probability one must consider
higher-order contributions in the string tension n to the
low-energy string effective action.

Following Coleman's argument for the vanishing of the
cosmological constant, in [16] it was argued that the most
probable value of the efFective Brans-Dicke parameter is
~ = oo, i.e. , general relativity is the low-energy efI'ec-

tive theory of gravity. The demonstration was performed
using a Jordan-Brans-Dicke theory with a cosmological
constant; however, one would expect this result to hold
independently of the details of the matter action to which
gravity couples. Let us prove that this result indeed holds
for the theory defined by action (2.3). Using a dilute WH
approximation and taking into account that the main
contributions to the path integral come &om the classical
Euclidean action evaluated at its saddle point, Coleman's
mechanisin gives for the probability distribution Z(k) of
the parameter A:

( 2 2y 2 1+k)
lnZ(k) = exp

~

32vr e ~'q
1 —k)

(4.7)

where me made use of Eq. (2.9) to reinstate the full

dependence of the action on the parameter k. The prob-
ability distribution for the coupling constant k is strongly
peaked at k = 1; i.e., the most probable value for the ef-

fective Brans-Dicke parameter is u = oo according to the
results of [16].

To conclude this section, let us discuss the Euclidean
instanton for the purely electric field (2.7). Now we have
to choose e = —1 in action (4.1) and we Bnd

d8' = e4~' q
~ '+q') + 2&' —")q 1+~2+ Q2 ( g 2+q2)

(4.8a)
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~2+ 2 2/2

) (1—k)/2

e2($—+) 2(k —1)/2
2+ Q2)

(4.sb)

(4.Sc)

Analogously to the purely magnetic configuration, one
can easily verify that solution (4.8) can be joined at
t = r = 0 to the electric cosmological solution (2.12),
so (4.8) can be interpreted as an instanton nucleating a
BU with metric (2.12a). The amplitude probability for
this process coincides with (4.6).

V. CONCLUSIONS

in detail. The calculations for the Euclidean solutions of
Sec. IV are analogous.

Our starting point is action (2.3). The calculation
is much simpler if we express the action in terms of
the canonical metric. Rescaling the metric as g„„
exp(2$)g„„we get the action in the canonical frame:

In this paper we have derived and studied a class of cos-
mological solutions for a low-energy efFective string field
theory which coincides with a Jordan-Brans-Dicke grav-
ity theory coupled with an electromagnetic field. These
four-dimensional solutions describe universes filled with
the dilaton and a purely magnetic or a purely electric
field. They are characterized by a parameter k, related
to the Brans-Dicke parameter u, and their behavior de-
pends crucially on this parameter. In particular, in the
purely magnetic case, for k = 1 (the Einstein-Maxwell
theory) and for k = 0, the solution describes a universe
which periodically reproduces itself without running in
a singularity. For k P 0, 1 the solution describes a uni-
verse which ends in a singularity. This behavior holds
in particular for k = —1 which is the case of the usual
dilaton gravity coupled to the EM field. We have also
shown the theory can be dimensionally reduced to a two-
dimensional theory. The two-dimensional theory exhibits
a scale-factor duality symmetry which is a generalization
of the duality symmetries found for exact cosmological
conformal string backgrounds. For k = —1 the two-
dimensional solution reduces to a well-known string con-
formal background [7—9]. Finally, the two-dimensional
time-dependent solutions describe the region between the
horizon and the singularity of the black hole solutions of
the two-dimensional theory. This feature has been found
also for exact conformal string backgrounds.

The four-dimensional cosmological solutions can be
also interpreted as BU's nucleated starting from a Bat
spacetime region. The Euclidean instantons describing
this process have been found and the amplitude proba-
bility of nucleation has been calculated. Finally, using
Coleman's mechanism, we have shown that the proba-
bility distribution for the efFective coupling constant k is
strongly peaked at k = 1, i.e., at the value cu = oo of the
efFective Brans-Dicke parameter corresponding to general
relativity.
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8 = d4Z g R-2 V 2+ le24F2
0

+2 d x hK —Ko. (A1)

The equations of motion are

Vv&V 4' 2g~-(V—4)'

+e (FppFv~ —4gpvF ) (A2a)

V2y 1 —2/F2 (A2b)

V„(e ~F"")= 0. (A2c)

(ASa)

(A3b)

b a ab bN aN—+ —+ ——
b a ab bN aN

N2
~
jP+Q e ~

~

(ASc)+

Using the ansatz (2.6) for the EM field, we can easily see
that Eq. (A2c) is identically satisfied. Substitut1ng the
line element (2.5) and (2.6) in the other equations, (A2)
reduce to

We wish to thank S. Mignemi for interesting remarks.
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APPENDIX dt (N ) b2
(ASd)

Here we deduce solution (2.8) and its dual of Sec. III.
Since computations are not trivial, we shall show them

where the overdot represents the derivative with respect
to the time. The Lagrangian density in the minisuper-
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space is (we neglect the surface terms since these do not
affect the equations of motion)

v = —,'[(1 —k)~t + (3+ k)g] + b, (A10b)

I =2 ab2 2abb +Na
1 4Q

y = lnP —ln cosh[P(t —te)] ——ln, (A10c)
2 (1 —k)be4

(A4)

Solving the equations of motion in the from (A3) is very
hard. Equations (A3) and the Lagrangian density can be
greatly simplified using the new variables

where P, p, h, and to are integration constants. Substi-
tuting (A9) and (A10) in the Hamiltonian constraint, we
find that a, P, and p must satisfy the relation

1 —k z 3+k
Ck' = 0.

4 4

N=e ~+, a=ao~" b=bo (A5)

Choosing a = P = +p (All) is satisfied Vk 6 [
—1, 1].

Recalling (A5) and setting te ——te = 0 we find

The variables defined in (A5) reduce the system to a Toda
lattice form [3]. Thus, defining g = v + p and neglecting
an overall constant factor, the Lagrangian density (A4)
becomes

~2(L= f+—v +
b2o

q
—4P yIRt(1 —s)/4[ h( t)]

—(5—
A, )/4

a q
—4o~+ ( —)/ ]coshj~g)1 —( +&)/a —aors 6 Leos yo! j)

b = q -4"e+~'('-")/'[cosh(at)]

(A12a)

(A12b)

(A12c)

3+k /'' Q
1 —k i b4s

(A6) +IRt(1—A:)/4
[ h( t)](1—)I)/4 (A12d)

Varying (A6) with respect to (, v, and (tI we obtain the
equations of motion for the new variables:

where ae and (be are arbitrary constants and Q is given in
terms of Q by Eq. (2.9). Choosing the positive sign and
rescaling the metric to the string frame, (A12a) —(A12c)
become

(A7a) K = aQ[cosh(at)] (A13a)

3 + k QvII 2(I -4I)
) (A7b)

I t(c1III)/2
[

h—
( t)] (1+II)/2 (A13b)

n&~~ 2(~—4)
bo

(A7c)

(A13c)

To express the line element as a function of the proper
time we perform the coordinate transformation

The Hamiltonian constraint is

j' —'+ = +
~

j'+Q- '("-~)i~ =0e2~ 3+k ( Q2

be21—k ( b4o

r = 2Q arctan(e ').

( ) The solution becomes

(A14)

Now, we are able to solve (A7) and (AS). From (A7a)
we obtain

f = ln(abc) —ln cosh[a(t —te)], (A9)

where a and te are integration constants. From (A7b)
and (A7c), defining y = v —P, we have

1 —A:

4 (~t —X)+~,

ds = —dr + ae sin (r/Q) [1 + cos(r/Q)]" dy

+Q'dOz2, (A15a)

e2(4 —4P) [1+cos(~/q)](&
—i)/2 (A15b)

From (A15) we get (2.S) with a suitable choice of the
constant ao. Finally, we would emphasize that choosing

—o. we obtain the four-dimensional dual solution
corresponding to (3.6).
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