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Cosmic strings can give rise to a large variety of interesting astrophysical phenomena. Among them,
powerful bursts of gravitational waves (GWs) produced by cusps are a promising observational signature.
In this Letter we present a search for GWs from cosmic string cusps in data collected by the LIGO and
Virgo gravitational wave detectors between 2005 and 2010, with over 625 days of live time. We find no
evidence of GW signals from cosmic strings. From this result, we derive new constraints on cosmic string
parameters, which complement and improve existing limits from previous searches for a stochastic
background of GWs from cosmic microwave background measurements and pulsar timing data. In
particular, if the size of loops is given by the gravitational backreaction scale, we place upper limits on the
string tension Gμ below 10−8 in some regions of the cosmic string parameter space.

DOI: 10.1103/PhysRevLett.112.131101 PACS numbers: 04.80.Nn, 11.25.Wx, 11.27.+d, 98.80.Cq

Introduction.—A cosmic network of strings may form as
a result of phase transitions in the early Universe [1]. When
a U(1) symmetry is broken in multiple causally discon-
nected spacetime regions, one-dimensional topological
defects, i.e., strings, are expected to form [2]. For a long
time, cosmic strings were considered candidate sources for
structure formation in the early Universe [3]. Cosmic
microwave background (CMB) experiments, however, have
shown that cosmic strings can only contribute up to a few
percent of the overall anisotropies observed [4–8]. More
recently it was realized that strings can also be produced
within the framework of string theory inspired cosmological
models and grow to cosmic scales [9–13]. Cosmic strings
produced in string theory motivated models (dubbed cosmic
superstrings) have received much attention since they could
provide observational signatures of string theory [14,15].
Observational constraints on cosmic string models are

often given as bounds on the string tension Gμ (c ¼ 1),
where G is Newton’s constant and μ the mass per unit
length. Such constraints have been derived from direct
searches for line discontinuities in the CMB temperature
maps [16–18] and from simulations of string-sourced CMB
anisotropies [4–7,19,20]. These analyses, based on various

assumptions about the string network, set upper limits
on Gμ in the range of 10−7–10−6. The recent results
from the Planck mission [8] constrain Gμ to be lower than
1.5 × 10−7 and 3.2 × 10−7 for Nambu-Goto and Abelian-
Higgs strings, respectively.
A promising way of detecting the presence of cosmic

strings and superstrings is the gravitational wave (GW)
emission from loops [21,22]. When two string segments
meet, they exchange partners or intercommute with a
probability p. For superstrings, the reconnection proba-
bility can be less than unity (10−4 < p < 1 [23]) while
field theory simulations show that topological strings will
essentially always reconnect. This is partly due to the
fact that fundamental strings interact probabilistically.
Furthermore, superstring models have extra spatial dimen-
sions so that even though two strings may meet in three
dimensions, they miss each other in the extra dimensions.
When a string intercommutes with itself, a closed loop
breaks off. The loop oscillates, radiates gravitationally,
and decays. Cosmic string loops can form cusps, points
along the string with large Lorentz boosts, that produce
powerful bursts of gravitational radiation [24]. This Letter
reports on the search for such GW transient signatures
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from cosmic strings in data from the LIGO and Virgo
gravitational wave detectors.
The GW emission by cusps depends on the loop size,

which is often written as a fraction of the horizon at the time
of formation l ¼ αt, where t is the cosmic time. Early
simulations such as Ref. [25] suggested that the size of
loops is set by gravitational backreaction and α ≤ ΓGμ,
where Γ ∼ 50 [2]. More recent simulations favor cosmic
string networks where the size of loops is dictated by the
large scale dynamics of the network, in which case α≲ 1
[26,27]. In this case loops are large and they are long lived
because their gravitational decay takes many Hubble times.
This Letter only reports constraints for the small loop
regime, since the large loop scenario is already well cons-
trained by pulsar data [7,28]. We parametrize α ¼ εΓGμ
with ε < 1 following the convention of Ref. [21].
Constraints on Gμ were previously derived from obser-

vational limits on the stochastic GW background expected
from the incoherent superposition of GW emission from
cosmic string loops [22]. The tightest limits were obtained,
for the case of large loops, by pulsar timing experiments
[7,22,28] with Gμ≲ 10−9 for p ¼ 1 and Gμ ≲ 10−12 for
p < 10−2 with α ∼ 0.1. Constraints from pulsar timing
experiments were also derived for small loops [22] and are
included in Fig. 2. LIGO complemented these results with
observational limits from its own search for GW stochastic
background in the very small loop region [29]: Gμ≲ 3 ×
10−8 for p < 10−3 and for ε ∼ 10−11. Additional bounds on
the GW background can be indirectly derived from CMB
[30] data and big-bang nucleosynthesis constraints [31]. At
the epochs of last scattering and big-bang nucleosynthesis,
the energy density of the GW background must be
sufficiently small so as not to distort the CMB fluctuations
or affect the abundances of primordial elements. The CMB
bound is shown in Fig. 2 and, until the present publication,
offered the best limit on Gμ for intermediate values ε.
However this indirect limit only applies to gravitational
waves generated prior to decoupling, while LIGO and
pulsar timing data are also sensitive to later production
of GWs.
GW bursts from cosmic string cusps.—This Letter

presents a different approach to constrain cosmic string
parameters, with a targeted search for transient cusp
signatures in LIGO and Virgo data. This approach was
previously tested in Ref. [32] over a short period of about
2 weeks of live time with detectors less sensitive by about
a factor of 2. For this work we have analyzed all available
LIGO and Virgo data collected between 2005 and 2010, at
design sensitivity. Moreover, the search pipeline includes
new postprocessing techniques, described in this Letter,
offering the tightest observational constraints achievable
from first generation ground-based GW interferometers.
The possibility of direct detection of GW bursts

from cosmic string cusps was first suggested in 2000 by
Berezinsky et al. [33]. Shortly after, Damour and Vilenkin

showed that the stochastic GW background generated by
oscillating loops is strongly non-Gaussian [24]. Occasional
sharp bursts of GWs produced by cusps are expected to
stand out above the stochastic background [21,24,34].
Damour and Vilenkin predict that the GW burst signal
produced by cusps is linearly polarized and the expected
waveform in the frequency domain is hcuspðfÞ ¼ Af−4=3

with an exponential decay that sets on at frequency fh. The
signal amplitude A is determined by the string tension, the
loop size, and the propagation distance. The high frequency
cutoff fh is determined by the size of the loop and the angle
between the line of sight and the direction of the moving
cusp. It can be arbitrarily large; therefore, we take fh to be a
free parameter. Here we report on a direct search for these
signatures in LIGO and Virgo, and constrain a yet unex-
plored region of the string parameter space (Gμ, ε, p).
The search.—The LIGO-Virgo detector network

[35,36] is composed of four kilometer-scale Michelson
interferometers: H1 (4 km) and H2 (2 km) share the same
location at Hanford, Washington, USA, L1 (4 km) is in
Livingston Parish, Louisiana, USA, and V1 (3 km) is
located near Pisa, Italy. We analyze data collected
between November 2005 and October 2010, at times
when at least two detectors were operating simultane-
ously in stable conditions. This corresponds to a total of
625 days of observation time.
The search for GW bursts from cosmic strings begins

with a matched-filter analysis of strain data from each
detector separately [37]. It consists of projecting the
whitened data onto an overpopulated [38] template bank
defined by a set of cusp waveforms with a high-frequency
cutoff spanning from 75 up to 8192 Hz. This procedure
results in a time series for the signal-to-noise ratio (SNR)
for each template. An event is identified when the
SNR > 3.6 and only the template with the largest SNR
is retained when several templates are triggered at the same
time. A set of five variables is used to characterize an event.
The event time te and the SNR ρ are determined by the
point where the SNR time series is maximum. The
triggered template provides the high-frequency cutoff fh
and the amplitude A. In addition, a χ2 parameter can be
computed to characterize the match between the event and
the signal waveform in the time domain [39].
Many transient noise events can mimic the properties

of a GW burst from a cusp. They constitute the background
of our search and reduce our chances of detecting weak
signals. A fraction of these events is removed by data
quality vetoes specific to each interferometer [40,41].
A stronger handle on background is the requirement of
simultaneous detection in two or more interferometers.
The central time of the single-detector events must lie
within a time window sufficiently large to take into account
the maximum light travel time between detectors, the signal
duration, and the timing uncertainty. For each pair of
detectors, a coincident event is characterized by three
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variables: (δte, rA, rfh) where δ is used for the difference
and r for the ratio between the two detectors of the pair.
To discriminate true signals from background events, we

apply the multivariate technique described in Ref. [42],
which uses a set of simulated GW events and typical noise
events to statistically infer the probability for a candidate to
be signal or noise. Given a set of parameters ~x describing an
event E, a likelihood ratio can be computed and used to
rank the events:

Λð~xÞ ¼ Pðj~xE ∈ SÞ
Pð~xjE ∈ BÞ ; (1)

where S and B refer to the signal and background training
sample, respectively. The background sample is obtained
by artificially time shifting the single-detector triggers prior
to the coincidence search. The signal sample is generated
by injecting simulated cosmic string signals in the detec-
tors’ data. The simulated sources are uniformly distributed
in volume and the distribution of frequency cutoffs fh is
dN ∝ f−5=3h dfh [37]. The simulated signals are injected on
a time-shifted data set in order not to bias the event ranking
performed on the nonshifted data.
We parametrize an event by the coincidence variables

δte, rA, and rfh given for each of the six possible pairs of
detectors. These variables allow us to favor signals that are
coherent in the network. We also include the single-detector
SNR and χ2 parameters to discriminate genuine signals
from noise. An additional parameter is the identifier for
which set of interferometers was involved in each event,
one of 11 possible combinations, to account for the
different sensitivity of, for instance, a two-detector network
versus a three-detector network. An event is therefore
represented by a total of 27 variables. The large dimen-
sionality of the parameter space presents a computational
challenge. To obtain statistically reliable results, this
method would require very large signal and background
samples, well beyond the capabilities of present-day com-
puters. Instead, we assume the parameters to be uncorre-
lated so the likelihood ratio of Eq. (1) can be factorized as

Λð~xÞ ≈
Y27
i¼0

ΛðxiÞ ¼
Y27
i¼0

PðxijE ∈ SÞ
PðxijE ∈ BÞ . (2)

This allows us to compute the likelihood ratio one variable
at a time. Since this estimator of Λ neglects possible
correlations between parameters, it might result in the
search being less sensitive, compared to the idealized case
where the full 27-dimensional likelihood ratio is known.
In fact, we do not perform such a factorization for the
SNR and χ2 parameters because of the strong correlation
between these two variables.
Results.—The LIGO-Virgo data set was divided into

24 time segments, which are analyzed independently. In
particular, the training sets S and B are generated for each

segment to account for the noise nonstationarities and the
evolution of the detector sensitivities. The principal out-
come of this search is shown in Fig. 1. The upper plot in
Fig. 1 shows the combined cumulative event rate as a
function of the ranking statistic Λð~xÞ. The highest-ranked
event of the search occurred on May 10, 2007 at 16:27:15
UTC and is detected simultaneously by the three LIGO
interferometers. The ranking value of this event is less than
1σ away from the expected background distribution from
time-shifted data, shown on the same plot. Therefore, we
cannot claim this event to be a GW signal produced by
cosmic strings.
To determine the search sensitivity and derive an upper

limit, about 7 million simulated cusp signals were injected
into a time-shifted data set. To avoid self-selection issues,
we use a set of injections that is independent from the S
sample used to train the likelihood ranking. We run
the search using the same likelihood functions as for
the nonshifted analysis and count how many simulated
signals are detected with Λ larger than the highest-ranked
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FIG. 1 (color online). In the upper plot, the red circles show
the cumulative event rate as a function of the ranking statistic Λ.
The black line shows the expected background of the search
with the 1σ statistical error represented by the hatched area. The
highest-ranked event (Λh ≃ 2.3 × 107) is consistent with the
background. The lower plot shows the sensitivity of the search
as a function of the signal amplitude. This is measured by the
fraction of simulated cusp events recovered with Λ > Λh. This is
to be compared to the sensitivity of the previous LIGO search
[32] represented by the dashed line.
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event [43]. The lower plot in Fig. 1 shows the detection
efficiency e as a function of the injected signal amplitude A.
The uncertainties associated with the efficiency curve
include binomial counting fluctuations, calibration uncer-
tainties, and an amplitude binning uncertainty. This result
shows that the search sensitivity has improved by a factor 3
with respect to previous LIGO results [32]. Half of this gain
is explained by the increased sensitivity of the detectors; the
rest of the gain is due to our improved statistical analysis.
A natural question we wish to answer next is what are

the implications of this nondetection for constraints in the
cosmic string parameter space. We derived model-
dependent upper limits with the method described in
Ref. [37] and previously adopted in Ref. [32]. Given the
search efficiency eðAÞ, we expect to observe an effective
rate of GW bursts given by the integral over the redshift z:

γðGμ; ε; pÞ ¼
Z

∞

0

eðz;Gμ; εÞ dRðz;Gμ; ε; pÞ
dz

dz; (3)

where dRðz;Gμ; ε; pÞ is the cosmological rate of events
with a redshift between z and zþ dz and is derived in
Ref. [37]. This rate relies on the generic loop density
distribution [21]:

nðl; tÞ ¼ ðpΓGμÞ−1t−3δðl − εΓGμtÞ: (4)

This means that at a given cosmic time, the loop size is
given by the gravitational backreaction (the δ function) and
is identical for all loops. Following Ref. [34], the signal
amplitude is written as

Aðz;Gμ; εÞ ¼ g1H
1=3
0 ðGμÞ5=3½εΓφtðzÞ�2=3
ð1þ zÞ1=3φrðzÞ

; (5)

where g1 is an ignorance constant that absorbs the unknown
fraction of the loop length, which contributes to the
cusp, and factors of Oð1Þ. H0 ¼ 70.1 km s−1Mpc−1 [44]
is the Hubble constant. Two dimensionless cosmology-
dependent functions of the redshift z enter the amplitude
expression: φt and φr relate the redshift and the cosmic
time t ¼ H−1

0 φtðzÞ and the proper distance r ¼ H−1
0 φrðzÞ,

respectively. We use the φr and φt functions derived in
Appendix A of Ref. [37] for a Universe that contains matter
and radiation and includes a late-time acceleration. Those
functions are computed using the energy densities relative
to the critical density: Ωm ¼ 0.279, Ωr ¼ 8.5 × 10−5, and
ΩΛ ¼ 0.721 for the matter, radiation, and cosmological
constant, respectively [44].
Knowing how the GW amplitude A scales with redshift

[Eq. (5)], the efficiency curve in Fig. 1 can be constructed
as a function of the redshift and parametrized with Gμ and
ε. As a result, the parameter space (Gμ, ε, p) can be
scanned and the effective rate γ computed. The parameter
space is ruled out at a 90% level when the effective rate

exceeds 2.303=T, which is the expected rate from a Poisson
process over an observation time T. In addition to the
ignorance constant g1 in Eq. (5), the dRðz;Gμ; ε; pÞ
expression given in Ref. [37] includes two other ignorance
constants: g2, and the average number of cusps per loop
oscillation nc. These three constants are expected to be of
Oð1Þ provided cosmic string loops are smooth. Instead of
fixing these factors to 1 as it is usually done, we choose
to absorb these unknown factors in modified cosmic
string parameters: G ~μ ¼ g1g

−2=3
2 Gμ, ~ε ¼ g−11 g5=32 ε, and

~p ¼ ðncg1Þ−1g−1=32 p.
Figure 2 displays the region of the cosmic string

parameter space that is excluded by our analysis (gray-
shaded areas). For comparison, we also show limits, fixing
~p at 10−3, derived from constraints on the GW stochastic
background spectrum. These limits were computed adopt-
ing the same cosmic string model and using the same
parameters (G ~μ, ~ε, ~p). Our result improves the indirect
CMB bound [29,30] by a factor 3 for intermediate ~ε values.
It nicely complements existing limits provided by pulsar
timing experiments for large ~ε [7,28] and by the LIGO
stochastic search in the very small loop regime [29].
Conclusion.—We found no evidence for GW bursts

produced by cosmic (super)string cusps in LIGO-Virgo
data collected between 2005 and 2010. In the absence of a
detection, we place significant constraints on cosmic string
models, surpassing existing limits from CMB data. The
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rejected by our analysis at a 90% level. The black lines show the
bounds derived from the GW stochastic background spectrum for
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data). The rejected region is always on the right-hand side of
these lines.
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next generation of ground-based GW detectors will probe
the cosmic string parameter space further, including, for
instance, superstring loops with junctions [45], as the
improved sensitivity of Advanced LIGO [41] and
Advanced Virgo [46] will allow us to search for cosmic
strings with an order of magnitude lower tension.
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