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ABSTRACT

Online social networks, such as Facebook and Google+, have been emerging

as a new communication service for users to stay in touch and share information with

family members and friends over the Internet. Since the users are generating huge

amounts of data on social network sites, an interesting question is how to mine this

enormous amount of data to retrieve useful information. Along this direction, social

network analysis has emerged as an important tool for many business intelligence

applications such as identifying potential customers and promoting items based on

their interests. In particular, since users are often interested to make new friends, a

friend recommendation application provides the medium for users to expand his/her

social connections and share information of interest with more friends. Besides this,

it also helps to enhance the development of the entire network structure.

The existing friend recommendation methods utilize social network structure

and/or user profile information. However, these methods can no longer be applica-

ble if the privacy of users is taken into consideration. This work introduces a set of

privacy-preserving friend recommendation protocols based on different existing simi-

larity metrics in the literature. Briefly, depending on the underlying similarity metric

used, the proposed protocols guarantee the privacy of a user’s personal information

such as friend lists. These protocols are the first to make the friend recommendation

process possible in privacy-enhanced social networking environments.

Also, this work considers the case of outsourced social networks, where users’

profile data are encrypted and outsourced to third-party cloud providers who pro-

vide social networking services to the users. Under such an environment, this work

proposes novel protocols for the cloud to do friend recommendations in a privacy-

preserving manner.
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1. INTRODUCTION

An online social network (OSN) facilitates users to stay in touch with other

users (such as distant family members or friends), easily share information, look for

old acquaintances and establish friendship with new users based on shared inter-

ests. The wide availability of the Internet has resulted in the fast growth of OSNs

[1, 2, 3, 4, 5], such as Google+, Facebook, MySpace, Twitter and LinkedIn, which

resulted in a vast amount of social data containing personal and sensitive information

about individual users. Social network analyses [4, 6] involve mining the social data

to understand user activities and to identify the relationships among various users.

Especially, in applications such as business intelligence, social network analyses have

boosted the research in developing various recommendation algorithms [7, 8]. For

example, an algorithm may recommend a new application to a Facebook user based

on either the applications he/she used in the past or the usage pattern of various

applications used by his/her friends. In general, a recommendation can be a friend, a

product, an ad or even a content potentially relevant to the user. This work focuses

on recommending new friends to a given user in an OSN.

1.1. MOTIVATION

In particular, the friend recommendation application [9] has gained special

importance from both the social network administrators and the users. From the net-

work administrator perspective, recommending potential candidates as new friends

to users will enable the development of the entire network/community since it results

in a more connected network. On the other hand, from the users’ side, friend recom-

mendations help them grow their social contacts and explore for new friends based on

their own interests. In general, the main goal of a friend recommendation algorithm
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is to identify the potential candidates for a given target user (who wish to make new

friends) in an effective manner. Along this direction, much work has been done in

developing various friend recommendation algorithms [9, 10, 11, 12, 13, 14] based on

network topology, user contents or both. In the literature, discovering new friends

to a given user A is equivalent to solving the link prediction [15] problem for A in

the corresponding social network. Given a snapshot of the social network, the link

prediction problem aims at inferring the new interactions that are likely to happen

among its nodes. More specifically, the nodes of the social network are the users and

an edge between two users indicates a friendship between them.

Given the snapshot of an OSN, the social closeness between two users is termed

as proximity. The proximity measures can be divided into two groups. The first

group includes measures based on node neighborhoods, such as common neighbors,

Jaccard Coefficient, Adamic/Adar, and preferential attachment. Whereas, the second

group consists of measures based on ensemble of all paths, such as Katz, Hitting

time, Page Rank and SimRank [15, 16]. Irrespective of the similarity metric used,

computation of social closeness between any two given users requires the topological

structures of the network and/or user profile contents (such as friend list, social

interest tags, education, employment details, etc). Briefly, friend recommendations

can be performed as follows. (i) Social closeness (referred to as recommendation

score) between A and each potential candidate is computed. (ii) The candidates with

Top-K scores can be recommended as new friends to A.

The computation of recommendation scores between a target user A and any

other user in the given snapshot of a network is straightforward when user’s profile

information is treated as public. However, with the growing use of OSNs, there have

been various concerns about user privacy [17, 18, 19, 20, 21, 22, 23]. Some well-

known privacy issues in the social networks are data publishing to a third party,

social phishing and analysis on the social data. Due to these privacy concerns, freely
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mining the social network data is not allowed or feasible; therefore, researchers from

both academia and industry are moving towards developing problem-specific privacy-

preserving techniques. What is private to a given user is subjective in nature. In

particular to the friend recommendation problem, the friendship between any two

users can be treated as sensitive/private information. This assumption is realistic

and being supported by many on-line social networks (e.g., Facebook) where users

are allowed to hide their friend lists. Most often, when people maintain friendship

with trusted ones, there is much information flowing from one to another. Thus,

revealing this sensitive information (i.e., friendship) poses a great threat to user

privacy through social engineering attacks [24, 25].

Recently, Ratan et al. [26] have conducted a survey by crawling the public

profile pages of 1.4 million New York City (NYC) Facebook users in March 2010 and

again in June 2011. It was shown that NYC users from their sample have become

dramatically private during this period. More specifically, in March 2010 only 17.2%

of users in their sample kept their friend lists as private; however, in June 2011, just

15 months later, 52.6% of the users hid their friend lists [26]. This further suggests

that users are more concerned about their privacy; therefore, forcing them to make

their profile information private. The observation is, in addition to friend list, other

contents of a user profile can also be kept private. Nevertheless, without certain

personal profile information, identifying new friends is not possible using the existing

friend recommendation techniques.

Based on the above discussions, it is clear that there is a strong need to develop

privacy-preserving friend recommendation algorithms in OSNs. Along this direction,

this work proposes a set of private friend recommendation protocols by assuming

different combinations of user’s profile information is kept as private.
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1.2. ORGANIZATION

The emerging growth of online social networks has opened new doors for var-

ious business applications such as promoting a new product across its customers.

Besides this, friend recommendation is an important tool for recommending poten-

tial candidates as friends to users in order to enhance the development of the entire

network structure. Existing friend recommendation methods utilize social network

structure and/or user profile information. However, these techniques can no longer

be applicable if the privacy of users is taken into consideration. Along this direc-

tion, this work proposes four different set of private friend recommendation protocols

which are organized into four sections as follows.

First, Section 2 presents an overview of the existing work related to the prob-

lem domain. In addition, this section reviews the literature work of secure multiparty

computation and highlight the security definition adopted.

Section 3 proposes a two-phase private friend recommendation protocol for

recommending friends to a given target user based on the network structure as well

as utilizing the real message interaction between users. The proposed protocol com-

putes the recommendation scores of all users who are within a radius of h from the

target user in a privacy-preserving manner. This work also addresses some imple-

mentation details and point out an inherent security issue in the current online social

networks due to the message flow information. To mitigate this issue or to pro-

vide better security, this work proposes an extended version of the proposed protocol

using randomization technique. In addition, the practical applicability of the pro-

posed approach is discussed extensively through empirical analysis based on different

parameters.

Section 4 proposes two private friend recommendation algorithms for users in

a social network group G by leveraging both social tags and network topology. For
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a given target user ui, the proposed protocols compute the social closeness scores

between ui and each user in the subset Gi ⊂ G in a privacy-preserving manner by

utilizing an ontology tree T constructed by the domain expert such as the network

administrator. The first protocol is more efficient from a user’s perspective compared

to the second protocol, and this efficiency gain comes at the expense of relaxing the

underlying privacy assumptions. On the other hand, the second protocol provides the

best security guarantee. In addition, this work empirically analyzes the complexities

of the proposed protocols and provides various experimental results.

Section 5 proposes two novel methods to recommend friends for a given tar-

get user by using the common neighbors proximity measure in a privacy preserving

manner. The first method is based on the properties of an additive homomorphic

encryption scheme and also utilizes a universal hash function for efficiency purpose.

The second method utilizes the concept of protecting the source privacy through

randomizing the message passing path and recommends friends accurately and effi-

ciently. In addition, this work empirically compares the efficiency and accuracy of

the proposed protocols, and addresses the implementation details of the two meth-

ods in practice. The proposed protocols act as a trade-off among security, accuracy,

and efficiency; thus, users can choose between these two protocols depending on the

application requirements.

Section 6 considers the scenario of outsourced social networks, where users

encrypt their profiles independently and export them to a third-party cloud service

provider, such as Google or Amazon. Since the data are encrypted, query processing

over encrypted data becomes challenging for the cloud. In particular, this section

focuses on the friend recommendation problem over encrypted users’ profiles based on

the secure k-nearest neighbor (SkNN) technique. More specifically, this work develops

two novel SkNN protocols for the cloud to recommend the top k-nearest neighbors

as potential friends to a given target user in a privacy-preserving manner. The first
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protocol, which acts as a basic solution, leaks some information to the cloud. On the

other hand, the second protocol is fully secure, that is, it protects the confidentiality

of the data and also hides the data access patterns. However, the second protocol

is more expensive compared to the basic protocol. Also, the performance of the

proposed protocols under different parameter settings is evaluated.

Finally, this report concludes the contributions of this work and demonstrates

several possible directions for future research in Section 7.
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2. LITERATURE REVIEW

Social network analyses have been utilized for various business applications

[6, 27], such as predicting the future [28] and developing recommender systems

[29, 30, 31, 32]. With growing interest of expanding a person’s social circle, friend rec-

ommendation has become an important service in many online social networks. This

section reviews upon the existing friend recommendation algorithms along with the

the existing work related to private friend recommendations. Finally, it discusses the

literature work on secure multiparty computation along with the security definition

adopted in this work.

2.1. EXISTING FRIEND RECOMMENDATION METHODS

Social network analyses have been utilized for various business applications

[6, 27], such as predicting the future [28] and developing recommender systems

[29, 30, 31, 32]. With growing interest of expanding a person’s social circle, friend rec-

ommendation has become an important service in many OSNs. Along this direction,

researchers from both academia and industry have published much work. In par-

ticular, Chen et al. [9] evaluated four recommender algorithms, which utilize social

network structure and/or content similarity, in an IBM enterprise social networking

site Beehive through personalized surveys. Their analysis showed that algorithms

based on social network information produce better-received recommendations. A

novel user calibration procedure was proposed by Silva et al. [11] based on a ge-

netic algorithm to optimize the three indices derived from the structural properties

of social networks. Xie [12] designed a general friend recommendation framework to

recommend friends based on the common interests by characterizing user interests in

two dimensions - context (e.g., location and time) and content.
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By treating the friend recommendation process as a filtering problem, Naru-

chitparames et al. [10] developed a two-step approach to provide quality friend recom-

mendations by combining cognitive theory with a Pareto-optimal genetic algorithm.

Gou et al. [13] developed a visualization tool (named as SFViz) that allows users

to explore for a potential friend with an interest context in social networks. Their

method considers both semantic structure in social tags and topological structures

in social networks to recommend new friends. The correlation between social and

topical features in three popular OSNs: Flickr, Last.fm, and aNobii has been stud-

ied by Aiello et al. [33] to analyze friendship prediction. Their results showed that

social networks constructed solely from topical similarity captured the actual friend-

ship accurately. Nevertheless, Facebook uses the “People You May Know” feature to

recommend friends based on the simple “friend-of-a-friend” approach [34].

2.2. PRIVATE FRIEND RECOMMENDATION (PFR) METHODS

Due to various privacy issues [17, 18, 19, 20, 21, 22, 23], many users keep

their profile information as private. Existing friend recommendation techniques

[9, 10, 11, 12, 13, 14] do not take users’ privacy into consideration; therefore, they

cannot be directly applied. Only recently, researchers have focused on developing

accurate and efficient PFR methods. Along this direction, Dong et al. [35] proposed

a method to securely compute and verify social proximity between two users using

cosine similarity in mobile social networks. In their approach, (mobile social network)

users physical location is treated as private. Their approach identifies new friends

who happen to be in the physical vicinity of the target user. That is, social coordi-

nates (users geographical location) are used to compute the social proximity between

users. Nevertheless, their approach assumes that the social coordinates (which may
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change often due to the mobility of users) for individual users are pre-computed by

a trusted central server which is a violation of user privacy.

Machanavajjhala et al. [36] formally analyzed the trade-offs between accuracy

and privacy of private friend recommendations using differential privacy [37]. In their

work, the authors used the existing differentially private algorithms as underlying sub-

routines and assumed the existence of PFR protocols based on these sub-routines.

Also, according to their claims, if privacy is to be preserved when using the common

neighbors utility function [15], only users with Ω(log n) friends can hope to receive

accurate recommendations, where n is the number of users in the graph. Furthermore,

the users’ privacy in [36] is based on differential privacy. Whereas, in this work,

privacy guarantees are based on an entirely different security model, namely the semi-

honest security definitions from the field of secure multiparty computation (SMC)

[38, 39]. Under the SMC model, this work develops accurate and private friend

recommendation protocols.

2.3. SECURE MULTIPARTY COMPUTATION AND ITS SECURITY
DEFINITION

Due to the growing concerns about privacy and the distributed nature of data,

secure multiparty computation (SMC) plays an important role in solving a wide-

range of applications. Some of these applications include secure electronic voting

[40], private auctioning and bidding [41, 42], and privacy-preserving data mining

[43, 44].

Consider a scenario where multiple parties, each with their private input ai,

wish to collaborate and compute a common functionality f by preserving the privacy

of each user. To achieve that, parties have to exchange messages and perform some

local computations until all the parties get the desired output. In the literature,

this is referred to as secure multiparty computation (SMC). More formally, SMC is
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the evaluation of the function f(a1, . . . , an) = (b1, . . . , bn) such that the output bi is

known to party Pi and the input ai of each party is kept private. This definition was

first introduced by Yao to solve the famous Millionaires’ problem in 1982 [38, 39].

Let Alice and Bob be two millionares with their respective wealth a and b. The goal

of Alice and Bob is to determine who is richer without revealing their wealth to one

another. More precisely, the functionality one need to evaluate is “greater than”, that

is, whether a is greater than b or not. The first general and provably secure solution,

for a two-party case, was developed by Yao and it was also demonstrated that any

function that can be described by a polynomial size boolean circuit of logarithm depth

can be solved securely [38, 39]. This work was extended to multiparty computations

by Goldreich et al. [45]. It was proved in [45] that any computation which can be done

in polynomial time by a single party can also be done securely by multiple parties.

Since then much work has been published for the multiparty case [46, 47, 48, 49].

In this work, privacy/security is closely related to the amount of information

disclosed during the execution of a protocol. There are many ways to define in-

formation disclosure. To maximize privacy or minimize information disclosure, this

work adopts the security definitions in the literature of SMC [49, 50]. There are two

common adversarial models under SMC: semi-honest and malicious. An adversarial

model generally specifies what an adversary or attacker is allowed to do during an

execution for a security protocol. In the semi-honest model, an attacker (i.e., one

of the participating parties) is expected to follow the prescribed steps of a protocol.

However, the attacker can compute any additional information based on his or her

private input, output and messages received during an execution of a secure proto-

col. As a result, whatever can be inferred from the private input and output of an

attacker is not considered as a privacy violation. An adversary in the semi-honest

model can be treated as a passive attacker; on the other hand, an adversary in the
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malicious model can be treated as an active attacker who can arbitrarily diverge from

the normal execution of a protocol.

In this dissertation, to develop secure and efficient protocols, all the participat-

ing parties are assumed to be semi-honest. Detailed security definitions and models

can be found in [49, 50]. The following definition captures the above discussion

regarding a secure protocol under the semi-honest model.

Definition 1. Let ai be the input of party Pi,
∏

i(π) be Pi’s execution image of the

protocol π and bi be the result computed from π for party Pi. π is secure if
∏

i(π) can

be simulated from 〈ai, bi〉 and distribution of the simulated image is computationally

indistinguishable from
∏

i(π).

In the above definition, an execution image generally includes the input, the

output and the messages communicated during an execution of a protocol. Briefly,

to prove a protocol is secure, it is required to show that the execution image of a

protocol does not leak any information regarding the private inputs of participating

parties [50].
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3. STRUCTURAL AND MESSAGE BASED PRIVATE FRIEND
RECOMMENDATION

In general, a recommendation score between any two given users can be com-

puted based on the network topology and/or user profile contents (such as previous

employer, location and hobbies). For the past few years, researchers have been focused

on developing hybrid friend recommendation algorithms [9, 13] to take advantage of

both approaches. Recently, Bi-Ru Dai et al. [14] proposed a new friend recommenda-

tion algorithm (denoted as CSM - meaning “Combine Structure and Messages”) by

utilizing the real messages communicated between the users as well as the network

structure. To be concrete, this work computes the recommendation scores between

users based on the similarity metric given in [14]. More details are given in the later

part of this section.

The computation of recommendation scores based on the similarity metric

given in [14] is straight-forward if user’s data is public. However, as users are more

concerned about their privacy [19, 21, 22, 23, 51], many online social networks have

provided various privacy settings for users to keep their data private. In general, users

are allowed to keep their friend lists, profile information etc., as private information.

Under this scenario, the computation of recommendation scores is non-trivial. This

work proposes a two-phase private friend recommendation algorithm based on the

similarity metric proposed in [14]. The proposed method computes the recommen-

dation scores between A and all potential users who are h-hop away from A in a

privacy-preserving manner. Figure 3.1, shows a sample network for target user Lee

with h = 3. In practice, as proposed by Stanley Milgram [52], any two people can

get acquainted each other through six degree of separation (i.e., 1 < h ≤ 6) in the

network.
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Figure 3.1: A sample social network for Lee with h = 3

Also, this work discusses various practical implementation details of the pro-

posed protocol. In addition, this work points out an inherent security issue in the

current online social networks due to the message flow information among various

users. To mitigate this issue or to provide better security, an extension to the pro-

posed protocol is developed using randomization technique.

3.1. PROBLEM DEFINITION

Consider a social network graph Gs with the nodes denoting the users and the

(directed) weighted edge between any two nodes denoting the number of real message

interactions between them. Since the message interaction can be bi-directional, one

can take the minimum number of messages, as mentioned in [14, 53], as the actual

weight of the edge (denoting the strength of the relationship). A sample minimum

message interaction between various users (for h = 3) in Lee’s network is as shown in

Figure 3.2. In general, if user A sends n1 messages to B and B sends n2 messages to

A, then the weight of the edge between A and B is taken as min(n1, n2). This further
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Lee

Hall Cox Bell

Ford Butler Cole Kelly

Shaw Ray Fox Ryan Hart Jones

2 2 1

1

2 1 4 3 3

2 1 4 2 5 2 4

Figure 3.2: Message interaction between different users in Lee’s network

implies that the weight of the edge between any two friends is directly correlated to

the strength of their relationship (i.e., larger weight indicates stronger friendship).

For a target user A (i.e., a user who wants to make new friends), generate a

candidate network with A as the root and an edge between the users denoting the

number (minimum) of real message interactions. Note that the users who are 1-hop

away from A are actually his/her friends. In order to generate the candidate network,

one has to remove the links between users at the same level. E.g., refer to Figure 3.2,

one can generate the candidate network by removing the link between Hall and Cox

(since they are on the same level). The recommendation score (RS) between A and

a user U who is l-hop (2 ≤ l ≤ h) away from A in the candidate network is given as

[14]:

RS(A,U) =

(
∑

k

(
|Pk(A,U)| ∗

∏

i

C(Si−1, Si)

))
∗ DU

TN
(3.1)

where Pk(A,U) denotes all the intermediate users on the kth shortest path starting

from A (root) to user U , |Pk(A,U)| is the total number of messages along path

Pk(A,U), and let L(i) be the set of all users at level i (i.e., i-hop away from A).



15

Si ∈ Pk(A,U) ∩ L(i), for i = 1, . . . , l − 1, where U ∈ L(l). Note that S0 denotes

the root user A. C(Si−1, Si) denotes the proportion of messages between users Si

and Si−1 to the total number of messages at level i. Here, user Si−1 is the parent of

user Si in the corresponding candidate network; DU denotes the degree of U and TN

denotes the total number of users in the candidate network.

When the privacy of users is taken into consideration, the computation of

above mentioned recommendation score is not straight-forward. More specifically,

this work assumes the following private information (PI) for user U :

(i). PI 1 - Friendship: The friendship between any two users U and V is not

revealed to any other user.

(ii). PI 2 - Strength of Friendship: The weight of an edge between U and V ,

denoted as CU,V , is not revealed to users other than U and V .

(iii). PI 3 - Degree: The size of the friend list of U is not revealed to other users.

Without loss of generality, let U1, . . . , Un be the set of potential candidates

who are at most l-hop (2 ≤ l ≤ h) away from A. The goal of this work is to develop a

private friend recommendation (PFR) protocol which is formally defined as follows:

PFR(A,F (A), U1, . . . , Un)→ Γ (3.2)

where F (A) denote the friend list of user A. Γ is defined as:

Γ = {〈R̃S(A,U1), U1〉, . . . , 〈R̃S(A,Un), Un〉}

Here, R̃S(A,Uj) is the new recommendation score for Uj which is correlated to the

actual score RS(A,Uj) (based on Equation 3.1) as below, for 1 ≤ j ≤ n:

R̃S(A,Uj) = Mh ∗ TN ∗RS(A,Uj)
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Mh is the normalizing factor for a user at h-hop away from A and TN is the number

of users in the candidate network. For any fixed h and A, the observation is that Mh

and TN are constants. At the end of the PFR protocol, the values of R̃S(A,Uj) and

Uj, for 1 ≤ j ≤ n, are known only to A and the privacy of each user (PI 1, 2, and

3) is preserved. In practice, since the friend lists can be large, the number of scores

returned to A can be in the hundreds. Therefore, a more effective way is to simply

select Top-K users as the final set of friend recommendations.

3.2. MAIN CONTRIBUTIONS

The proposed protocol computes the recommendation scores between a target

user A and all potential candidates who are at most l-hop (2 ≤ l ≤ h) away from A

in a privacy-preserving manner. The main contributions of this particular work are

summarized below:

• Security - The proposed protocol guarantees that the friend lists, the strength

of friendships, and the friend list sizes of each user are kept as private from

other users. However, this work identifies an inherent security issue that may

leak valuable information to the network administrator in the current online

social networks which is also applicable to the proposed protocol. To mitigate

this risk, this work also proposes an extended version of the proposed protocol

using randomization technique.

• Accuracy - The proposed protocols compute the recommendation scores which

are scaled by a constant factor Mh ∗TN ; therefore, the relative ordering among

the scores is preserved. Hence, the proposed protocols guarantee the same kind

of effectiveness similar to the CSM method [14]. That is, the final Top-K list

of recommended users in the proposed protocols is the same as that in [14] and

is independent of K.
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• Efficiency - In the empirical analysis, this work shows the practical value of

PFR through various experiments. Also, it shows that the efficiency of the

extended version is very close to that of PFR. The experiments show that the

computation costs incurred on the internal users in the proposed protocols are

very small; therefore, the proposed protocols are very efficient from an internal

user’s perspective.

3.3. RELATED WORK

As mentioned earlier, friend recommendation is a very useful application for

both users and the social network provider. Through social recommendations, users

are allowed to make new friends; therefore, expanding their social connections. In

addition, it helps the social network provider in a way to enhance the development

of entire network structure.

3.3.1. Existing Friend Recommendation Methods. In general, recom-

mendation scores between any two given users can be computed either based on the

network topology [10, 11] and/or user profile contents [12].

Only recently, researchers have focused on developing hybrid friend recommen-

dation algorithms [9, 13] to take advantages of both approaches. As an independent

work, Lo et al. [53] proposed a graph-based friend recommendation algorithm us-

ing a weighted minimum-message ratio as the scoring metric. This work was later

improved in [14] by taking the evolution of entire network into consideration. The

computation of recommendation scores based on the metric given in [14] is straight-

forward when users data is public. However, due to the growing concerns over user

privacy [19, 21, 22, 23, 51], many users prefer to keep their profile data (including

their friend lists) as private. Along this direction, many online social networks such

as Facebook, provide various privacy settings for users to make their data private.
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Therefore, the above existing methods are not applicable if privacy of users is taken

into consideration.

To make friend recommendations possible even in privacy-sensitive environ-

ments, this work proposes a two-phase PFR protocol based on the similarity metric

given in [14]. Furthermore, this work addresses an inherent security issue in the

current online social networks. To overcome this issue, an extended version to the

proposed PFR protocol is also proposed.

3.3.2. Existing PFR Protocols. In the literature, that there has not been

much work done in developing efficient PFR protocols based on different metrics.

Dong et al. [35] proposed a method to securely compute the social proximity between

users in a mobile social network. They have used the cosine similarity metric to

compute how close two give users are by treating user’s location as private.

Machanavajjhala et al. [36] analyzed the trade-offs between accuracy and

privacy for private friend recommendation algorithms based on differential privacy

[37, 54]. The work in this section is entirely different from theirs since the security

guarantee in this work is based on the the well-known semi-honest security definition

of secure multiparty computation (SMC) [38, 39, 50]. In addition, they use a different

similarity metric, namely common neighbors [15] whereas this work is based on the

scoring metric given in Equation 3.1.

In general, different metrics have different advantages. Secure protocols de-

signed for one metric often may not work for other metrics. Therefore, there is a

strong need to develop a secure protocol based on particular scoring function. In

particular, this work focuses on developing a secure PFR protocol based on the scor-

ing function given in Equation 3.1. Table 3.1 presents some common notations used

extensively in this section.
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Table 3.1: Common notations used in PFR

HPEnc+ An Additive Homomorphic Probabilistic Encryption System

T A trusted party (such as network administrator)

〈E,D〉 A pair of HPEnc+ based encryption and decryption functions

〈pk, pr〉 A public and private key pair corresponding to 〈E,D〉
F (U) Friend list of user U

m Size of friend list of target user A

CU,V Minimum number of messages exchanged between U and V

(or weight of edge between U and V )

L(i) List of all users at level i in the corresponding candidate network

Mi−1,i Minimum number of messages exchanged between users at L(i− 1) and L(i)

C(Si−1, Si) Ratio of CSi−1,Si
to Mi−1,i

Ml,M
′
l Normalization and Scalar factors for a user ∈ L(l)

3.4. ORDER PRESERVING SCORING FUNCTION

The original scoring function [14] given in Equation 3.1 contains a rational

factor (i.e., C(Si−1, Si)) which varies with i, for 1 ≤ i ≤ l − 1 and 2 ≤ l ≤ h.

Therefore, to perform encryption operations, this work defines a new scoring function

(producing an integer value) based on Equation 3.1 such that the relative rankings

among the final recommendation scores are preserved.

3.4.1. Normalization Factor. Given a snapshot of the network for A, the

normalization factor for a user l-hop (or friend) away from A (where 2 ≤ l ≤ h) is

defined as:

Ml =
l−1∏

i=1

Mi−1,i (3.3)

where Mi−1,i, denoting the total number of messages exchanged between users at

L(i− 1) and L(i), is as given below.

Mi−1,i =
∑

U∈L(i−1)
V ∈L(i)

CU,V

CU,V denotes the minimum number of messages exchanged between users U and V .

This work explicitly assumes M1 = 1 since users who are 1-hop from A are already
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friends of A. For any two potential candidates who are l-hop away from A, the

observation is that the two candidates have the same normalization factor.

Example 1. Refer to Figure 3.2. Consider the potential candidate Cole who is

2 hops away from Lee. Here, L(0) = 〈Lee〉 and L(1) = 〈Hall, Cox,Bell〉. The

normalization factor for Cole is M2 = M0,1 = CLee,Hall + CLee,Cox + CLee,Bell = 5.

Note that the normalization factor for Ford,Butler, and Kelly (who are also 2 hops

away from Lee) is the same as Cole. Similarly, it is clear that M1,2 = 13. By

substituting these values in Equation 3.3, the normalization factor for users at level

3 is M3 =
∏2

i=1 Mi−1,i = M0,1 ∗M1,2 = 65.

Observation 1. For any user Si−1 ∈ L(i − 1) and Si ∈ L(i), one can observe that

the value of C(Si−1, Si) is equivalent to
CSi−1,Si

Mi−1,i
. Therefore, for a potential user U at

level l, the rational factor in Equation 3.1 can be simplified as follows:

∏l−1
i=1 C(Si−1, Si) =

∏l−1
i=1

CSi−1,Si

Mi−1,i
= 1

Ml

∏l−1
i=1 CSi−1,Si

3.4.2. Scalar Factor. Given a target user A and h, the scalar factor for a

user at level l, for 1 ≤ l ≤ h, can be defined as follows:

M ′
l =

Mh

Ml

=
M0,1 ∗ . . . ∗Mh−2,h−1

M0,1 ∗ . . . ∗Ml−2,l−1

(3.4)

where Ml is the normalization factor for a user belonging to L(l). In addition, the

observation is that M ′
l is the same for all users who are at same level l. Furthermore,

when l = h, it is clear that M ′
h = 1. This further implies that M ′

1 = Mh. From

Figure 3.2, the scalar factor for Cole is M ′
2 =

M3

M2
= M1,2 = 13.

Definition 2. For any given target user A and potential candidate U who is l hops

away from A, the new scoring function (denoted as R̃S(A,U)) is defined as follows:

R̃S(A,U) = M ′
l ∗
(
∑

k

(
|Pk(A,U)| ∗

∏

i

CSi−1,Si

))
∗DU (3.5)
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Note that CSi−1,Si
is the weight of edge between parent user Si−1 and its child user Si

on the kth shortest path from A to U , for 1 ≤ i ≤ l− 1. Based on Equations 3.3 and

3.4, and by using Observation 1, one can re-write Equation 3.5 as below.

R̃S(A,U) =
Mh

Ml

∗
(
∑

k

(
|Pk(A,U)| ∗

∏

i

CSi−1,Si

))
∗DU

= Mh ∗
(
∑

k

(
|Pk(A,U)| ∗

∏

i

CSi−1,Si

Mi−1,i

))
∗DU

= Mh ∗ TN ∗
(
∑

k

(
|Pk(A,U)| ∗

∏

i

C(Si−1, Si)

))
∗ DU

TN

= Mh ∗ TN ∗RS(A,U)

The values of Mh and TN are constants for any given snapshot of the social network

(for a fixed h). Therefore, the relative orderings among the recommendation scores

of the potential candidates based on Equation 3.5 are preserved. That is, for any two

potential users U and V if RS(A,U) > RS(A, V ), then the new scoring function

guarantees that R̃S(A,U) > R̃S(A, V ) for any fixed h and A, and vice versa.

3.4.3. Computation of Recommendation Score. Refer to Figure 3.2 and

let us consider the case of computing the recommendation score between Lee and Fox.

Here, Fox has two shortest paths from Lee; P1(Lee, Fox) = {Lee,Hall, Butler, Fox}

and P2(Lee, Fox) = {Lee, Cox,Butler, Fox}. The total (minimum) number of mes-

sages along the first path i.e., |P1(Lee, Fox)| is 7. Similarly, |P2(Lee, Fox)| = 10.

Along P1(Lee, Fox), there exist two internal users Hall and Butler who are respec-

tively 1 and 2 hops away from Lee. In addition, CLee,Hall = 2 and CHall,Butler = 1.

Similarly, for the path P2(Lee, Fox), CLee,Cox = 2 and CCox,Butler = 4. Since Fox is

3 hops away from Lee, her scaling factor M ′
3 is 1. By substituting the above values
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in Equation 3.5, the recommendation score for Fox is given as:

R̃S(Lee, Fox) = 1 ∗ [7 ∗ 2 ∗ 1 + 10 ∗ 2 ∗ 4] ∗DFox = 94 ∗DFox

Whereas, the actual recommendation score for Fox, following from Equation 3.1, is

given by:

RS(Lee, Fox) =

[
7 ∗ 2

5
∗ 1

13
+ 10 ∗ 2

5
∗ 4

13

]
∗ DFox

TN

=
1

65
∗ 94 ∗ DFox

TN

where DFox is the degree (size of friend list) of Fox and TN denotes the size of the

candidate network. It is clear that R̃S(Lee, Fox) = Mh ∗ TN ∗RS(Lee, Fox), where

Mh = M0,1 ∗M1,2 = 5 ∗ 13 = 65.

3.5. THE PROPOSED PFR PROTOCOL

This sub-section presents the proposed private friend recommendation (termed

as PFR) protocol which computes the recommendation scores between the target user

A and all potential candidates who are at most h-hop (> 1) away from A based on

Equation 3.5. This work explicitly considers the following assumptions:

1. If U ∈ F (V ), then V ∈ F (U), and CU,V is known only to U and V . Also, let

F (A) = 〈B1, . . . , Bm〉 denote the friend list of A.

2. Each user has a unique user ID (for example, Facebook user ID is generally at

most 128-bit integer).

3. There exists a third party T (e.g., network administrator) who generates a

pair of encryption and decryption function 〈E,D〉 for A based on the additive

homomorphic probabilistic encryption scheme (HPEnc+) such as the Paillier
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cryptosystem [55]. The corresponding private key pr is known only to T and

the public key pk is public. In addition, let N be the group size (usually of

1024 bits). For any two given plaintexts m1,m2 ∈ ZN , the HPEnc+ system

exhibits the following properties:

(a) Homomorphic Addition: Epk(m1+m2)← Epk(m1)∗Epk(m2) mod N2;

(b) Homomorphic Multiplication: Epk(m1 ∗m2)← E(m2)
m1 mod N2;

(c) Semantic Security: The encryption scheme is semantically secure as

defined in [49, 56]. Briefly, given a set of ciphertexts, an adversary cannot

deduce any additional information about the plaintext.

To generate the candidate network, one need to omit the messages between

users who are at the same level. For example, in Figure 3.2, one should not con-

sider CHall,Cox for computing the recommendation scores in the PFR protocol (as

mentioned in [14, 53]). Thus, to explicitly generate the candidate network, this work

includes an initialization step as follows. Initially, A generates a counter t = h − 1

and passes it over to his/her friends. Upon receiving the counter, each intermediate

user U stores the value of received counter (locally) and also stores the parent user

who sent the counter to U (denoted as Pr(U)). After this, U decrements the counter

by 1 and sends it to his/her friends. This process continues until users at h-hop from

A receive a counter of t = 0. Since a user can receive multiple counter values, the

following observations are considered.

Observation 2. Consider user U , who is l-hop away from A and 1 ≤ l ≤ h, receiving

multiple t values. This work addresses the following two cases:

Case 1: If the counter values are same, then U has multiple shortest paths

(with parents of U on the same level). In this case, U considers one of the parents

(can be chosen randomly) as actual parent Pr(U) and any further communication
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happens only with that parent. E.g., refer to Figure 3.2, “Hart” receives t = 0 from

both Cole and Kelly. Therefore, he can pick one of them, say Kelly, as Pr(U).

Case 2: If U receives different values of t which happens when U receives

counters from parents who are at different levels. In this case, U selects one of the

parent user who sent the maximum t value as Pr(U). In the PFR protocol, the

child users of U (denoted as Ch(U)) are users belonging to F (U) − R(U), where

R(U) denotes the set of users who have sent a counter value to U . The important

observation here is U omits the messages exchanged with the users who have sent

smaller counter values (also dumps the corresponding counter). This further implies

that, U considers only messages exchanged between him/her and either Pr(U) or

Ch(U) (therefore forming a candidate network by omitting messages with users on

the same level). An example to this case is user “Cox” (refer to Figure 3.2). Here,

Cox receives t = 2 and t = 1 from Lee and Hall respectively. Therefore, Cox treats

Lee as the actual parent user and omits CCox,Hall.

At the end of the initialization step, based on Observation 2, each internal

user U who is l-hop away from A, for 1 ≤ l ≤ h, has the values of t, pk, Pr(U) and

Ch(U). Apart from the above initialization step, the proposed PFR protocol mainly

consists of the following two phases:

Phase 1 - Secure Computation of Scalar Factors: During Phase 1, A

computes the list of encrypted scalar factors (denoted as Φ, where Φl−1 denotes the

encrypted scalar factor for level l and 2 ≤ l ≤ h) in a privacy-preserving manner.

This phase utilizes a secure multiplication protocol (only if h > 3) as a building block.

At the end, only A knows Φ and nothing is revealed to other users.

Phase 2 - Secure Computation of Recommendation Scores: Follow-

ing from Phase 1, A (with Φ as input), T and other internal users jointly compute

the recommendation scores of all potential candidates who are l-hop away from A,

for 2 ≤ l ≤ h. This phase utilizes a secure multiplication and addition protocol as a
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building block. The final recommendation scores and the corresponding user IDs are

revealed only to A and nothing is revealed to other users.

To start with, A chooses the value of h∗ and executes the initialization step

as explained earlier. Then, during Phase 1, A decides whether there is a need to

take the help of other users in order to generate Φ. If h = 2, A computes Φ locally.

Otherwise, for h > 2, A computes Φ with the help of internal users. After this,

during Phase 2, A sends necessary information to Bi along with his/her user ID

and Φ, for 1 ≤ i ≤ m. Then, each intermediate user Uj receives the necessary

information from Pr(Uj), generates his/her encrypted partial scores (only if Uj is

not already a friend of A) and sends the encrypted partial scores to A. In addition,

if the value of t (stored during initialization step) of Uj is greater than 0, he/she

computes the necessary information (for t > 0) and sends it to his/her corresponding

child friends. After receiving all the encrypted partial scores, A and T involve in a

secure multiplication and addition protocol to compute the recommendation scores

for each potential candidate Uj . At the end of this step, only A knows the user IDs

of all potential friends along with their recommendation scores (computed based on

Equation 3.5). The main steps of PFR are shown in Algorithm 1. Now, the steps

involved in each of the two phases are discussed in detail.

3.5.1. Phase 1 - Secure Computation of Scalar Factors. If the value

of h is 2, then only the child friends of A’s friends are considered as the potential

candidates. Since the scalar factor for users at l = 2 is M ′
2 = 1, A simply sets

Φ1 = Epk(1) for security reasons. When h > 2, A does not have necessary information

to compute the encryption of scalar factors (such asM ′
3) since the potential candidates

can belong to any L(l), where 2 ≤ l ≤ h. Therefore, when h > 2, A computes Φ,

with the help of internal users who are at most h− 2 hops away from A. Note that

the potential candidates who are at most h − 2 hops away from A are sufficient to

∗Note that h should always be greater than 1. Because, if h = 1, then l = 1 implies the potential
candidates who are 1-hop away from A who are already friends of A.
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generate the encryptions of all scalar factors because the partial scores of Mh−2,h−1

are known to users belonging to L(h − 2). Note that, irrespective of the value of h,

Φh−1 = Epk(1) always hold. Phase 1 involves steps 1 to 16 as shown in Algorithm 1.

In order to compute Φ, for h > 2, A simply waits for internal users with t ≥ 2

to send in the aggregated data. To start with, each internal user Uj (including Bi)

performs the following operations based on his/her counter value t:

1. Compute XUj
= Epk(

∑s

i=1 CUj ,Vi
), where Vi is the child friend of Uj and s =

|Ch(Uj)|

2. Create a vector LUj
of size t− 1; sets LUj

[t− 1] to XUj

3. If t > 2, Uj receives LVi
from Vi and updates LUj

by aggregating LVi
component-

wise as follows, and sends it to Pr(Uj).

LUj
[k] =

∏s

i=1 LVi
[k] mod N2, for 1 ≤ k ≤ t− 2

The above process forwards the aggregated data at each internal user in a bottom-up

fashion. At the end, A receives LBi
from Bi, for 1 ≤ i ≤ m. After this, A generates

the final aggregated encrypted list (LA) and proceeds as follows:

1. LA[k] =
∏m

i=1 LBi
[k] mod N2, for 1 ≤ k ≤ |LBi

|, where LBi
denote the aggre-

gated list received from Bi. The observation is |LBi
| = h− 2, for 1 ≤ i ≤ m.

2. Assign the encrypted scalar factor for level h as Φh−1 = Epk(1). If h = 3, set

Φ1 ← LA[1]. Else, let LA = 〈Epk(x1), . . . , Epk(xh−2)〉. Using secure multiplica-

tion (SMP) given in Algorithm 2, A and T compute Φ from LA as below.

Φl ← Epk

(
h−l−1∏

j=1

xj

)
, for 1 ≤ l ≤ h− 2

The SMP protocol is one of the basic building blocks in the field of secure multiparty

computation (SMC) [50]. The basic concept of the SMP protocol is based on the
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Algorithm 1 PFR

Require: pr is private to T , h is private to A, Uj knows 〈t, Pr(Uj), Ch(Uj)〉
{Steps 1 - 7 performed by Uj with t ≥ 2}

1: s← |Ch(Uj)|
2: XUj

← Epk(
∑s

i=1 CUj ,Vi
), where Vi ∈ Ch(Uj)

3: LUj
[t− 1]← XUj

4: if t > 2 and Uj received LVi
from Vi then

5: LUj
[k]←∏s

i=1 LVi
[k] mod N2, for 1 ≤ k ≤ t− 2

6: end if
7: send LUj

to Pr(Uj)
{Steps 8 - 16 performed by A and T}

8: Φh−1 = Epk(1)
9: if h ≥ 3 then

10: LA[k]←
∏m

i=1 LBi
[k] mod N2, for 1 ≤ k ≤ h− 2

11: if h = 3 then
12: Φ1 ← LA

13: else
14: Compute Φ using LA as input to the SMP protocol
15: end if
16: end if
{Steps 17 - 21 performed by A}

17: for all Bi ∈ Ch(A) do
18: α1 ← Epk(CA,Bi

)

19: αl ← Φ
CA,Bi

l−1 mod N2, for 2 ≤ l ≤ h
20: send A,Φ, and α to Bi (note that α is different for each Bi)
21: end for
{Steps 22 - 36 performed by Uj}

22: receive A,Φ, and α from Y = Pr(Uj)
23: if A ∈ F (Uj) then
24: send A, Φ and α to each Vi ∈ Ch(Uj)
25: else
26: compute βj ← α

DUj

1 mod N2

27: compute γj ← α2 ∗ Φ
CY,Uj

1 mod N2

28: Zj ← {Epk(Uj), 〈βj, γj〉}
29: send Zj to A
30: end if
31: if t > 0 then
32: Φl ← Φl+1, for 1 ≤ l ≤ t

33: α1 ← α
CY,Uj

1 mod N2

34: αl ← αl+1 ∗ Φ
CY,Uj

l−1 mod N2, for 2 ≤ l ≤ t+ 1
35: send A, Φ and α to each Vi ∈ Ch(Uj)
36: end if
37: (R̃S(A,Uj), Uj)← SMPA(Zj), for each Zj
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following property which holds for any given a, b ∈ ZN :

a ∗ b = (a+ r1) ∗ (b+ r2)− a ∗ r2 − b ∗ r1 − r1 ∗ r2 (3.6)

where all the arithmetic operations are performed under ZN . Given that A has input

Epk(a) and Epk(b), the SMP protocol computes Epk(a ∗ b) as the output (which will

be revealed only to A) without disclosing the values of a and b to either A or T . The

output of Phase 1 is the list of encrypted scalar factors (in order) for each level. More

specifically,

Φl = Epk(M
′
l+1), for 1 ≤ l ≤ h− 1

where M ′
l+1 is the scalar factor for users at (l+1)-hop away from A. If the maximum

value of h is 6 (sufficient for most situations), the maximum size of LA is 4. Therefore,

Phase 1 is bounded by 2 instantiations of the SMP Protocol.

Theorem 1. The output of Phase 1 is the list of encrypted scalar factors (in order)

for each level. That is, Φl is equivalent to the encryption of scalar factor for users at

level l + 1, where 1 ≤ l ≤ h− 1. Formally,

Φl = Epk(M
′
l+1)

where M ′
l+1 is the scalar factor for users at l + 1 hops away from A.

Proof. For h = 2, since M ′
2 = 1, it is clear that Φ1 = Epk(1) = Epk(M

′
2). Note

that irrespective of the value of h, Φh−1 = Epk(1) = Epk(M
′
h) always holds. When

h ≥ 3, initially the internal user X with t = 2 (denoting level h − 2) sends LX =

Epk(
∑|Ch(X)|

i=1 CX,Yi
) to Z, where Yi ∈ Ch(X) and Z = Pr(X). Then, Z aggregates

the data received from Ch(Z). Without loss of generality, let Z receives LX1 , . . . , LXd
,

where Xi ∈ Ch(Z). Then, the aggregated entry in LZ is LZ [1] = LX1 [1]∗ . . .∗LXd
[1].

In addition, Z sets LZ [2] = Epk(
∑|Ch(Z)|

i=1 CZ,Xi
). Since the data are aggregated
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Algorithm 2 SMP(Epk(a), Epk(b))→ Epk(a ∗ b)
Require: A has Epk(a) and Epk(b)
1: A:

(a). Pick two random numbers ra, rb ∈ ZN

(b). za ← Epk(a) ∗ Epk(ra) mod N2

(c). zb ← Epk(b) ∗ Epk(rb) mod N2; send za, zb to T

2: T :

(a). Receive za and zb from A

(b). ua ← Dpr(za); ub ← Dpr(zb)

(c). Compute u = ua ∗ ub mod N

(d). v ← Epk(u); send v to A

3: A:

(a). Receive v from T

(b). s← v ∗ Epk(a)
N−rb mod N2

(c). s′ ← s ∗ Epk(b)
N−ra mod N2

(d). Epk(a ∗ b)← s′ ∗ Epk(ra ∗ rb)N−1 mod N2

component-wise, lth component in LZ is equivalent to the encryption of summation of

(minimum) number of messages exchanged between users at L(h− l−1) and L(h− l)

under sub-tree of Z. (Note that, following from Observation 2, if Xi has multiple par-

ents, then he/she will send LXi
to only actual parent user Pr(Xi)). This aggregation

process continues at each level in a bottom-up fashion. Finally, when A computes

LA (by aggregating the LBi
’s component-wise, for 1 ≤ i ≤ m), the lth component

in LA is equivalent to the encryption of sum of (minimum) number of messages ex-

changed between users at L(h− l− 1) and L(h− l), that is, LA[l] = Epk(Mh−l−1,h−l),

for 1 ≤ l ≤ h − 2. As mentioned earlier, let LA = 〈Epk(x1), . . . , Epk(xh−2)〉, where

xl = Mh−l−1,h−l, for 1 ≤ l ≤ h − 2. Based on the above discussions, consider the

following two scenarios:
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Scenario 1: When h = 3, it is clear that |LA| = 1 and Φ1 gives the encrypted

scalar factor for users at level 2 as shown below.

Φ1 = LA[1]

= Epk(M1,2)

= Epk

(
M0,1 ∗M1,2

M0,1

)

= Epk

(
M3

M2

)

= Epk(M
′
2)

Scenario 2: On the other hand, when h > 3, A and T jointly involve in the SMP

protocol (Step 14 in Algorithm 1). Following from the SMP protocol (as given in

Algorithm 2), the value of Φl, for 1 ≤ l ≤ h− 2, can be formulated as shown below:

Φl = Epk

(
h−l−1∏

j=1

xj

)

= Epk

(
h−l−1∏

j=1

Mh−j−1,h−j

)

= Epk

(
h−2∏

k=l

Mk,k+1

)

= Epk

(
M0,1 ∗ . . . ∗Mh−2,h−1

M0,1 ∗ . . . ∗Ml−1,l

)

= Epk

(
Mh

Ml+1

)

= Epk(M
′
l+1)

3.5.2. Phase 2 - Secure Computation of Recommendation Scores.

During Phase 2, A with input Φ along with T and the internal users jointly compute
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the recommendation score for each potential candidate. The main steps involved in

Phase 2 of the PFR protocol are shown as steps 17 to 37 in Algorithm 1. To start

with, initially A computes a vector α (which is different for each Bi) of size h as

follows:

α1 = Epk(CA,Bi
)

αl = Φ
CA,Bi

l−1 mod N2, for 2 ≤ l ≤ h

After this, A sends A,Φ, and corresponding α to Bi, for 1 ≤ i ≤ m. Then, each

internal user Uj receives the values of A,Φ, and α from Pr(Uj) and checks whether

A is already a friend of Uj (this case happens only if Uj is equal to one of the Bi’s).

If A ∈ F (Uj), then Uj simply forwards A,Φ, and α to each of his/her child friend.

Otherwise, Uj computes the encryption of shares of his/her recommendation score as

below:

βj = α
DUj

1 mod N2; γj = α2 ∗ Φ
CY,Uj

1 mod N2

where DUj
denotes the degree of Uj (i.e., |F (Uj)|) and Y is the parent friend of Uj .

After this, Uj sends Zj = {Epk(Uj), 〈βj , γj〉} to A. Note that Uj can receive multiple

pairs of (Φ, α) which occurs only when there exist multiple shortest paths from A

to Uj . Under this scenario, Uj creates the encrypted partial scores for each pair of

(Φ, α) and simply appends them to Zj as follows.

Zj = {Epk(Uj), 〈β1,j , γ1,j〉, . . . , βs,j , γs,j〉}

where each βl,j, γl,j, for 1 ≤ l ≤ s, is computed as explained above for each pair of

(Φ, α) and s denotes the number of such pairs (number of shortest paths to Uj from

A). In addition, if the counter (t) corresponding to Uj is greater than 0, then Uj

generates necessary information for his/her child friends as follows.

• Update Φ and α:
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– Φl = Φl+1, for 1 ≤ l ≤ t

– α1 = α
CY,Uj

1 mod N2

– αl = αl+1 ∗ Φ
CY,Uj

l−1 , for 2 ≤ l ≤ t+ 1

• Send A, Φ and α to his/her child friends. If Uj receives multiple pairs of (Φ, α),

Uj updates each pair as above and sends all updated pairs to the child friends.

Upon receiving the entries from all potential candidates, A and T involve in a secure

multiplication and addition (SMPA) protocol. The main steps involved in the SMPA

protocol are shown in Algorithm 3. Without loss of generality, consider the entry

Zj = {Epk(Uj), 〈β1,j , γ1,j〉, . . . , 〈βs,j , γs,j〉}, where s denotes the number of shortest

paths from A to Uj . In addition, let βk,j = Epk(ak,j) and γk,j = Epk(bk,j), for 1 ≤ k ≤

s. The goal of the SMPA protocol is to securely compute a1,j ∗ b1,j + · · · + as,j ∗ bs,j
as output without revealing the values of ak,j and bk,j, for 1 ≤ k ≤ s, to either A or

T . At the end of the SMPA protocol, only user A knows the recommendation score

corresponding to Uj , for 1 ≤ j ≤ n. The basic idea of the SMPA protocol is based

on the following property which holds for any given ak,j, bk,j ∈ ZN , for 1 ≤ k ≤ s:

s∑

k=1

ak,j ∗bk,j =
s∑

k=1

(ak,j+rk,j)∗(bk,j+r′k,j)−
s∑

k=1

ak,j ∗r′k,j−
s∑

k=1

bk,j ∗rk,j−
s∑

k=1

rk,j ∗r′k,j

where rk,j and r′k,j are random numbers in ZN and all arithmetic operations are per-

formed under modulo N . The overall steps involved in SMPA are shown in Algorithm

3. Initially, A randomizes each encrypted tuple 〈βk,j, γk,j〉, for 1 ≤ k ≤ s, as follows:

β̃k,j = βk,j ∗ Epk(rk,j) mod N2

γ̃k,j = γk,j ∗ Epk(r
′
k,j) mod N2

Here rk,j and r′k,j are randomly chosen in ZN . A also randomizes Epk(Uj) and performs

these homomorphic operations (steps 1(b) to 1(g) of Algorithm 3). The rj and r̃j are
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Algorithm 3 SMPA

Require: A’s input is Zj

1: A:

(a). for 1 ≤ k ≤ s do:

• β̃k,j ← βk,j ∗ Epk(rk,j) mod N2, where rk,j ∈ ZN

• γ̃k,j ← γk,j ∗ Epk(r
′
k,j) mod N2, where r′k,j ∈ ZN

(b). λj ← Epk(Uj) ∗ Epk(rj) mod N2, where rj ∈ ZN

(c). Epk(r)← Epk(
∑s

k=1 rk,j ∗ r′k,j)

(d). Epk(r1)←
∏s

k=1 β
r′k,j
k,j mod N2

(e). Epk(r2)←
∏s

k=1 γ
rk,j
k,j mod N2

(f). τ ← Epk(r̃j) ∗ Epk(r)
N−1 mod N2, where r̃j ∈ ZN

(g). wj = τ ∗ Epk(r1)
N−1 ∗ Epk(r2)

N−1 mod N2

(h). Send wj, λj and β̃k,j, γ̃k,j, for 1 ≤ k ≤ s to T

2: T :

(a). Receive parameters from A

(b). ãk,j ← Dpr(β̃k,j) ; b̃k,j ← Dpr(γ̃k,j), for 1 ≤ k ≤ s

(c). cj ←
∑s

k=1 ãk,j ∗ b̃k,j mod N

(d). zj ← Dpr(wj); s1,j ← zj + cj mod N

(e). s2,j ← Dpr(λj); send s1,j and s2,j to A

3: A:

(a). Receive s1,j and s2,j from T

(b). R̃S(A,Uj)← s1,j − r̃j mod N (recommendation score)

(c). Uj ← s2,j − rj mod N (corresponding user ID)

also random numbers in ZN . Then, A sends β̃k,j and γ̃k,j, for 1 ≤ k ≤ s, to T along

with wj and λj. Upon receiving, T decrypts β̃k,j and γ̃k,j, for 1 ≤ k ≤ s, multiplies

and adds them as below:

• For 1 ≤ k ≤ s, ãk,j = Dpr(β̃k,j) and b̃k,j = Dpr(γ̃k,j)
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• cj =
∑s

k=1 ãk,j ∗ b̃k,j mod N .

Furthermore, T decrypts wj and λj: zj = Dpr(wj) and s2,j = Dpr(λj), and computes

s1,j = zj + cj mod N . Then, T sends s1,j and s2,j to A. Finally, A removes the

randomness from s1,j and s2,j to get the actual score and user ID Uj as follows:

R̃S(A,Uj) = s1,j − r̃j mod N ; Uj = s2,j − rj mod N

Here, R̃S(A,Uj) is the recommendation score for user Uj based on Equation 3.5.

Note that (N − 1) represents “-1” under ZN .

Theorem 2. The output of Phase 2 is the list of recommendation scores along with

the corresponding users IDs. That is, for any given entry Zj:

s1,j − r̃j mod N = R̃S(A,Uj)

s2,j − rj mod N = Uj

Where s1,j and s2,j are the final values sent to A from T corresponding to the entry

Zj in the SMPA protocol, for 1 ≤ j ≤ n.

Proof. Without loss of generality, consider a potential user Uj who receives A and

(Φ, α) pairs from his/her parent friends. Let us assume that Uj receives s number

of different (Φ, α) pairs (representing s number of shortest paths from A to Uj) and

let βk,j, γk,j denote the encrypted partial scores corresponding to kth pair (Φk, αk)

(denoting kth shortest path from A to Uj), for 1 ≤ k ≤ s. Uj computes the encrypted

partial shares for kth pair as follows:

βk,j = α
DUj

1,k mod N2 = Epk

(
DUj
∗
∏

i

CSi−1,Si

)

γk,j = α2,k ∗ Φ
CY,Uj

1,k mod N2 = Epk(M
′
l ∗ |Pk(A,Uj)|)
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where αy,k (resp., Φy,k) denotes the yth component of vector αk (resp., Φk); i =

1, . . . , l − 1; l = L(Uj) and Si−1 = Pr(Si) along the kth path from A to Uj. Then,

Uj sends Zj = {Epk(Uj), 〈β1,j , γ1,j〉, . . . , 〈βs,j , γs,j〉} to A. Upon receiving, A and

T involve in the SMPA protocol. As mentioned earlier, let βk,j = Epk(ak,j) and

γk,j = Epk(bk,j), for 1 ≤ k ≤ s. Since SMPA securely multiplies each (βk,j, γk,j) pair

and then adds them, the output of the SMPA protocol can be formulated as follows:

s1,j − r̃j mod N =
s∑

k=1

ak,j ∗ bk,j

=
s∑

k=1

(DUj
∗
∏

i

CSi−1,Si
) ∗ (M ′

l ∗ |Pk(A,Uj)|)

= M ′
l ∗

s∑

k=1

(
|Pk(A,Uj)| ∗

∏

i

CSi−1,Si

)
∗DUj

= R̃S(A,Uj)

Similarly, it is easy to show that s2,j − rj mod N = Uj.

During the actual implementation, the SMPA protocol can be initiated in

parallel as the computation for potential user Uj is independent of others. Thus,

overall, SMPA requires only one round of communication between A and T .

Example 2. As an example, various intermediate steps and results involved in the

PFR protocol based on Figure 3.2 are shown. Here h = 3 and Lee is the target

user. Following from initialization step, users at 1-hop away from Lee, that is,

〈Hall, Cox,Bell〉 have a value of t = 2. Similarly, 〈Ford,Butler, Cole,Kelly〉 have

a value of t = 1. Whereas, 〈Shaw,Ray, Fox,Ryan,Hart, Jones〉 have t = 0. Each

of them is aware of pk and also their parent and child friends (following from the

initialization step).

Phase 1: Initially, Hall computes LHall[1] = Epk(CHall,Ford + CHall,Butler) =

Epk(3). Similarly, Cox and Bell compute LCox[1] = Epk(7) and LBell[1] = Epk(3)
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respectively. Observe that CHall,Cox is not included in LHall[1] and LCox[1] since Hall

and Cox are at same level from Lee. After this, Hall, Cox, and Bell send LHall, LCox,

and LBell resp., to Lee. Upon receiving values, Lee computes LLee[1] = LHall[1] ∗

LCox[1] ∗ LBell[1] mod N2 = Epk(13). Then, Lee sets the encrypted scalar factors as

follows:

Φ1 = LLee[1] = Epk(13); Φ2 = Epk(1)

Phase 2: During Phase 2, Lee computes encrypted vector α (different) for

each of his friends. Without loss of generality, consider user Hall. Lee creates α for

Hall as follows.

α = 〈Epk(CLee,Hall),Φ
CLee,Hall

1 ,Φ
CLee,Hall

2 〉

= 〈Epk(2), Epk(2 ∗ 13), Epk(2 ∗ 1)〉

Then, Lee sends 〈Lee,Φ, α〉 to Hall who further forwards them to Ford and Butler.

The final entries (that are sent to Lee) from all potential users are shown in Table 3.2.

Finally, Lee and T involve in the SMPA protocol to get the scaled recommendation

scores. E.g., the recommendation score for Ford is R̃S(Lee, Ford) = 2 ∗DFord ∗ 4 ∗

13 = 104 ∗ DFord. It is clear that R̃S(Lee, Ford) = Mh ∗ TN ∗ RS, where actual

recommendation score for Ford is RS = 4 ∗ 2
5
∗ DFord

TN
and Mh = 65. �

3.5.3. Security Analysis. This sub-section analyzes the security of the ini-

tialization step and each phase in the proposed PFR protocol separately.

First, during the initialization step, the generation of candidate network does

not leak any information. Consider the two possible cases of the initialization step

as discussed in Observation 2. For case 1, where U receives the same counter values

from multiple parents (on the same level), U cannot predict whether there exists a

friendship between any two parents. For example, suppose U receives t = 2 from two
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Table 3.2: Encrypted partial scores corresponding to each potential candidate based
on the PFR protocol

{Epk(Ford), 〈Epk(2 ∗DFord), Epk(52)〉} {Epk(Butler), 〈Epk(2 ∗DButler), Epk(39)〉,
〈Epk(2 ∗DButler), Epk(78)〉}

{Epk(Cole), 〈Epk(2 ∗DCole), Epk(65)〉} {Epk(Fox), 〈Epk(2 ∗DFox), Epk(7)〉,
〈Epk(6 ∗DFox), Epk(10)〉}

{Epk(Kelly), 〈Epk(DKelly), Epk(52)〉} {Epk(Ryan), 〈Epk(2 ∗DRyan), Epk(5)〉,
〈Epk(6 ∗DRyan), Epk(8)〉}

{Epk(Shaw), 〈Epk(4 ∗DShaw), Epk(6)〉} {Epk(Hart), 〈Epk(6 ∗DHart), Epk(10)〉,
〈Epk(3 ∗DHart), Epk(6)〉}

{Epk(Ray), 〈Epk(4 ∗DRay), Epk(5)〉} {Epk(Jones), 〈Epk(3 ∗DJones), Epk(8)〉}

parents M1 and M2. Here U cannot distinguish the two scenarios shown in Figure

3.3. This is because the value of t received by U is independent of the relationship

between the parents who sent it.

Similarly, for case 2, where U can receive different counter values from mul-

tiple parents (different levels), U cannot deduce any information by simply using

the received counter values. For example, consider that U receives t = 3 from M1

and t = 2 from M2. Then, U cannot distinguish between the following two possible

scenarios as shown in Figure 3.4, where J is the parent user of M2. It is clear that

the counter values passed to U are independent of the relationship between M1 and

M2. Hence, passing the counter values during the formation of candidate network

(initialization step) in PFR does not reveal any information.

During Phase 1, each internal user sends the encrypted aggregated data only

to Pr(Uj). Thus, the privacy of individual users is preserved as per the security

definition of SMC [50]. In addition, during the SMP protocol, A first randomizes

the values of LA and sends them to T . Therefore, the simulated view of T is indis-

tinguishable compared to the real view (trusted third party model). Furthermore,

since T sends only the encrypted scalar factors to A, neither the values of Mi−1,i’s

nor M ′
i ’s are revealed to A, for 1 ≤ i ≤ h − 1. Therefore, the privacy of A and Uj

are preserved, for 1 ≤ j ≤ n. Note that the scalar factor for users at level h is always
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(a) M1 and M2 are friends

M1 M2

U

t
=
2 t

=
2

(b) M1 and M2 are not
friends

Figure 3.3: Case 1 of initialization step in PFR

known to A, since M ′
h = 1 always hold. However, it is worth pointing out that this

does not reveal any information to A.

On the other hand, in Phase 2, A initially sends {A,Φ, α} to each Bi, for

1 ≤ i ≤ m. Each internal user Uj, computes his/her encrypted partial scores using

DUj
and CYi,Uj

, where Yi is the parent friend of Uj (with multiple parents denoting

multiple shortest paths from A to Uj). Then, Uj sends his entry Zj in encrypted form

to A. Here, the privacy of each Uj is preserved under the assumption that number of

shortest paths to Uj can be revealed to A. However, this problem can be solved by

random masking without affecting the recommendation score (more details are given

in the later part of this section). During the SMPA protocol, the values of each entry

are randomized in ZN and sent to T . That is, the values of DUj
∗∏i CSi−1,Si

and

M ′
l ∗ |Pk(A,Uj)|, for 1 ≤ k ≤ s, are randomized and sent to T . Therefore, the privacy

of A and Uj is preserved. In addition, the final output sent to A is the actual output

and the intermediate values are never revealed to A, T and other internal users.

Based on the above discussions, it is clear that, apart from the initialization

step, Phase 1 and 2 are secure. In addition, the values returned from Phase 1 to 2

are pseudo-random; therefore, the sequential composition of the two Phases lead to

a secure protocol according to the Composition Theorem [49].
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(b) M1 and M2 are not friends

Figure 3.4: Case 2 of initialization step in PFR

3.5.4. Complexity Analysis. The computation and communication costs

of each party in the PFR protocol are analyzed. For the rest of this sub-section, this

work omits the cost of the Initialization step since they are negligible compared to

the encryption costs in Phase 1 and 2 of PFR.

Computation Cost. For Phase 1, the computation cost of each internal user Uj

depends on his/her counter value and number of child friends. In addition, irrespec-

tive of the counter value, Uj has to perform one encryption operation. Therefore, the

computation complexity of Uj is bounded by one encryption and O(t ∗ |Ch(Uj)|) ho-

momorphic addition operations. Whereas, the computation complexity of A mainly

depends on h and m. If h = 2, then A simply performs one encryption operation.

However, when h = 3, A’s computation complexity is bounded by O(h ∗m) homo-

morphic additions and one encryption. On the other hand, if h > 3, the computation

complexity of A mainly comes from the SMP protocol which depends on the value

of h. That is, A’s computation complexity is bounded by O(h ∗ m) homomorphic

additions and O(h) number of encryption operations. Whereas, the computation

complexity of T is bounded by O(h) decryption operations (coming from the SMP

protocol).

In Phase 2, the computation complexity of each internal user (excluding Bi’s)

depends on his/her t and s (number of shortest paths from A to Uj). Specifically,
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Uj’s computation cost is bounded by O(t ∗ s) exponentiations and homomorphic

additions. On the other hand, A has to initially compute α, which depends on the

value of h, for each Bi. Therefore, the computation complexity of A for computing

all α values is bounded by O(h ∗ m) encryption and exponentiation operations. In

addition, during the SMPA protocol, A has to randomize all components of each

potential candidate. Let n denote the number of potential candidates and s be the

maximum number of shortest paths, then the computation cost of A in the SMPA

protocol is bounded by O(s ∗ n) encryption and exponentiation operations. Overall,

during Phase 2, the computation complexity of A is bounded by O(s ∗ n) encryption

and exponentiation operations (under the assumption s ∗ n > h ∗m). Whereas, the

computation complexity of T is bounded by O(s ∗ n) decryption operations (coming

from SMPA).

Communication Cost. Without loss of generality, let K denote the Paillier

encryption key size (in practice, K should be at least 1,024 bits). During Phase 1, the

communication complexity between any two internal users is bounded byO(K∗t) bits.

Note that t may vary between each pair of users depending on their location in the

corresponding candidate network and only adjacent users (i.e., friends) communicate

to each other. Whereas, between A and all Bi’s, the communication cost is bounded

byO(K∗h∗m) bits. In addition, for the SMP protocol, the communication complexity

between A and T is bounded by O(K ∗ h) bits.

Additionally, during Phase 2, the communication cost between any two inter-

nal users is bounded by O(K ∗ t) bits, where t is the counter of the corresponding

parent user. Since A has to send Φ and α to each Bi, for 1 ≤ i ≤ m, the communica-

tion cost between A and all Bi’s is bounded by O(K ∗ h ∗m) bits. In addition, since

each potential candidate sends the encrypted partial shares to A, the communication

cost between A and all potential candidates is bounded by O(K ∗s∗n) bits (assuming

there exist s number of shortest paths from A to each potential candidate). Finally,
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during the SMPA protocol, the communication cost between A and T is bounded by

O(K ∗ s ∗ n) bits.

3.6. PRACTICAL IMPLEMENTATION DETAILS

3.6.1. Masking Number of Shortest Paths. As mentioned earlier, the

PFR protocol reveals (only to A) the number of shortest paths from A to each poten-

tial candidate Uj, for 1 ≤ j ≤ n. However, it is unclear how this additional informa-

tion affects the privacy of Uj. Nevertheless, this problem can be solved by randomly

masking the number of entries corresponding to each Uj without affecting his/her fi-

nal recommendation score. Suppose Zj = {Epk(Uj), 〈β1,j , γ1,j〉, . . . , 〈βs,j , γs,j〉} is the

entry corresponding to Uj, where s denotes the number of shortest paths from A to

Uj in the corresponding candidate network. Briefly, the steps involved in masking

the entry Zj by Uj are as given below, for 1 ≤ j ≤ n:

• Randomly mask the number of shortest paths by computing Z ′
j as follows.

Z ′
j = {Epk(Uj), 〈β1,j , γ1,j〉, . . . , βs+θ,j , γs+θ,j〉}

where θ is the security parameter chosen by Uj, such that βs+i,j = γs+i,j =

Epk(0), for 1 ≤ i ≤ θ. Note that the encryption scheme used in this work

(based on HPEnc+ system) is probabilistic. Therefore, encryption of 0 each

time yields different (random) ciphertext in ZN2 .

• Send the masked entry Z ′
j to A

The rest of the steps are same as in Phase 2 of PFR. Observe that applying SMPA

on Z ′
j yields the same result as on Zj, for 1 ≤ j ≤ n.

3.6.2. Data Encryption and Secure Peer-to-Peer Communication.

The PFR protocol assumes there exist peer-to-peer network connectivity and the
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communication between any two users is secure. However, in practice, as it is the case

is many online social networks, communication between any two users should happen

through the social network provider (say the network administrator) for security

reasons. Another reason for this is a user may not be online at the receiving end.

In this work, users profile data are assumed to be encrypted first (using his/her

own secret key) and then stored on the server of network administrator [57]. From

user’s perspective, this assumption, which is also practical, gives more flexibility

to them since it gives more control to users on their own data. In addition, secure

communication between any two users can be achieved by establishing a secure session

(using AES session key [58]) between them. During the process of establishing a

secure session if the end user is offline, then the information corresponding to the

session key (in encrypted form using public key of end user) is stored on the network

administrator’s server. Under this scenario, the network administrator merely acts as

an intermediate router who simply stores the encrypted data sent by the sender and

delivers them to the concerned end-user after he/she logins. Note that the data to be

sent is first encrypted using the corresponding session key of sender and then stored

on the server. Therefore, only the end-user who holds the session key can decrypt

it. For example, during the initialization step of PFR, each user U first establishes

a secure session with his/her friends. Then, the value of t to be sent is encrypted

and stored on the server. Once the intended end-users (i.e., friends of U) logins into

social network, the network administrator sends the encrypted value of t to him/her

who decrypts it to know his/her counter value. Note that the session keys should be

changed occasionally for security reasons.
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3.7. EXTENSION TO PFR

In many online social networks, such as Facebook, there exist an inherent

security issue due to the information flow between different entities. For example,

consider the scenario of user U sending a message to another user V . Though the

message is encrypted using the session key of U , as explained above, it is clear that

the network administrator will know that U and V have some kind of relationship.

This is because of the fact that the communication between any two users should

pass through the network administrator. Here U and V might be friends but this

may not be the case always since a user can send a message to any other user in the

social network (i.e., no need of friendship between the two users).

In particular to the PFR protocol, this information might be too specific since

U sends an encrypted counter or some other information during Phase 1 or 2 to only

his/her parent or child nodes (i.e., friends of U). However, the network administrator

cannot distinguish which message belongs to which application. This is because the

messages are encrypted and thus the underlying application is not transparent to the

network administrator. Nevertheless, the network administrator will still know that

there exists some kind of relationship between U and the users at the receiving end.

It is unclear how this extra information will be useful to the network administrator

in deducing any private information of U .

As mentioned above, the PFR protocol might leak the additional information

that there exists some kind of relationship between U and his/her friends to the

network administrator. Note that this kind of information is never revealed to other

users in the PFR protocol. If the message flow is always between U and only his/her

friends, then the probability of guessing user Vj ∈ F (U) is a friend of U by the network

administrator is very high. Therefore, to mitigate this issue or to provide better

security, this sub-section presents an extended version (denoted by PFRrand) of the
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PFR protocol by randomly including additional users (apart from the actual friends)

to take participation in the PFR protocol without affecting the final recommendation

scores. By doing so, this work actually allows users to randomize their friend lists;

therefore, reducing the probability of guessing the friends of a user by the network

administrator.

Similar to PFR, the PFRrand protocol consists of an initialization step and

two phases. However, the methodology is slightly different from PFR. Therefore, the

key steps in PFRrand that are different from PFR are discussed below.

3.7.1. Initialization Step. To start with, the target user A selects a random

set of dummy friends (excluding the actual friends of A) from the social network,

denoted by D(A), where |D(A)| is the security parameter for A. Note that the

dummy friends can also be referred to as dummy child nodes. Then, A sets the

counter t to h − 1 and sends (δ, t) to each user Yj in F (A) ∪D(A). Where δ = 1 if

Yj ∈ F (A), and 0 otherwise. Then, each intermediate user U selects his/her random

set of dummy users D(U), stores (δ, t) and the parent user who sent the entry to

U locally (as explained below). In addition, he/she sends the updated (δ, t) entry

to users in Ch(U) ∪D(U), where Ch(U) denotes the actual child nodes of U . This

process is continued until the users at h-hop away from A receive a counter of t = 0.

Since U can receive multiple pairs of (δ, t), depending on whether U is a dummy user

or not, this work addresses the following two cases.

Case 1: If the δ values received by U are all 0’s (whereas the values of t can

be different), then U is actually a dummy user (i.e., not part of candidate network).

Under this case, U stores δ as 0 and the maximum t value received locally. Plus, U

selects the user who sent the maximum t as his/her parent (i.e., P (U)). In addition,

U sends (δ, t) to each user in Ch(U) ∪D(U) with δ ← 0 and t← t− 1.

Case 2: On the other hand, if U receives either different δ values (i.e., both

0 and 1’s) or same δ values of 1, then U is part of the candidate network. Therefore,
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U stores δ as 1 and selects the maximum t value among the entries with δ = 1 as

his/her counter value . Also, among the users who sent δ = 1, U selects the user who

sent the maximum t as Pr(U). Unlike in the previous case, U sends (1, t) to users in

Ch(U) and (0, t) to users in D(U), where t← t− 1.

At the end of the initialization step, each user who participates in the PFRrand

protocol knows whether he/she is a dummy user (i.e., δ = 0) or part of the candidate

network (δ = 1). In addition, each user knows his/her parent user (Pr(U)), actual

child users (Ch(U)), and dummy child users (D(U)).

3.7.2. Phase 1 - Secure Computation of Scalar Factors. Following

from Case 1 and 2 of the above initialization step, one can deduce the following

observation in the PFRrand protocol.

Observation 3. For any internal user U who belongs to the candidate network (i.e.,

δ = 1), Pr(U) belongs to the candidate network and is also the same as in the PFR

protocol (assuming single parent).

The basic idea of Phase 1 in PFRrand is same as in PFR. However, the only

difference is that whenever an internal node (and also A) receives the encrypted

aggregated data from his/her child nodes (i.e., users in Ch(U) ∪ D(U)), U simply

dumps the messages received from dummy child nodes (∈ D(U)). More specifically,

only the messages received from actual child nodes are used in performing further

computation by U and the resulting aggregated data is forwarded to Pr(U). Since

the messages from dummy nodes are not used for computations and following from

Observation 3, it is clear that the final output from Phase 1 is same as that of Phase

1 in PFR.

3.7.3. Phase 2 - Secure Computation of Recommendation Scores.

Similar to PFR, at the end of Phase 1 in PFRrand, A has the list of encrypted scalar

factors (i.e., Φ) for all potential users within a radius of h. Note that, as mentioned

above, these scalar factors are computed based on the candidate network. That is,
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even though dummy child friends are added for each user to provide better security,

the corresponding messages are not used during the computation of encrypted scalar

factors for each level. Thus, the final result of Phase 1 in PFRrand is equivalent to Φ

(list of encrypted scalar factors for each level).

During Phase 2, A initially sends his/her ID, Φ, and α (which is computed

similar to in PFR) to each user in F (A) ∪ D(A). Then, each participating user

Mj in PFRrand, after receiving encrypted data from his/her parent(s), computes the

encrypted shares of his/her recommendation score as mentioned in PFR. After this,

Mj sends his/her entry Zj, as defined below, to A.

Zj = {Epk(Mj), Epk(δj), 〈β1,j , γ1,j〉, . . . , βs,j , γs,j〉}

where s denotes the number of shortest paths from A to Mj and the flag δj denotes

whether or not Mj is part of the candidate network. Observe that δj is not used in

the PFR protocol. Note that, similar to PFR, the number of shortest paths can be

masked by Mj before sending it to A. For each entry Zj received, A first retrieves δj

securely as follows:

• A randomizes Epk(δj) by computing σj = Epk(δj) ∗ Epk(rj) mod N2, where rj

is a random number chosen from ZN , and sends σj to T .

• Upon receiving, T computes δ′j = Dpr(σj) and sends δ′j to A.

• A removes the randomization from δ′j to get δj, i.e., computes δj = δ′j − rj

mod N .

At the end of this step, A knows which entries belong to actual potential users (i.e.,

δj = 1) and dummy users (i.e., δj = 0). Finally, A and T involve in the SMPA

protocol to get the recommendation scores and corresponding user IDs for only those
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entries with δj = 1. Note that, the number of instantiations of SMPA in PFRrand is

the same as in PFR.

3.8. EMPIRICAL ANALYSIS

Since the effectiveness of PFR is the same as CSM method [14], this sub-

section analyzes the computation costs of PFR based on different parameters. In

addition, the computation costs of PFRrand are compared with that of PFR.

3.8.1. Platform and Dataset Description. The experiments used Paillier

cryptosystem [55] as the underlying encryption scheme. The proposed protocols

were implemented in C, and experiments were conducted on an Intel R© Xeon R© Six-

CoreTM3.07GHz PC with 12GB memory running Ubuntu 10.04 LTS.

Since it is hard to control parameters in a real-world dataset, this work simu-

lated the environment and computed the computation costs. In all the experiments,

the minimum number of messages exchanged between any two users U and V (i.e.,

CU,V ) is assumed to be uniformly distributed in [1, 1000]. Also, this work assumes

that there is no communication delay between participating users (which further im-

plies that users are online). In addition, the number of child friends for each user

(including the target user A) is varied from 50 to 250.

3.8.2. Performance of PFR. First, the computation costs of A, T , and

internal user Uj in Phases 1 and 2 of PFR are analyzed separately. Since the run

time of Uj depends on which level he/she belongs to, the average over the computation

costs of all internal users at different levels are presented. For the rest of this sub-

section, the Paillier’s encryption key size (i.e., K) is fixed to either 1024 or 2048 bits.

The results are as shown in Figure 3.5.

For Phase 1, the value of h is set to 6 and the run time of A, T , and Uj are

computed by varying the number of child friends from 50 to 250 (note that users
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Figure 3.5: Computation costs of PFR

at level h − 1 and h do not involve in Phase 1). As shown in Figure 3.5(a), for

Paillier key size K=1024 bits, the computation time for A, T , and Uj are 79, 30, and

4.25 milliseconds respectively when the number of child friends is 50. In addition,

the computation time of Uj varies only slightly (due to less expensive homomorphic
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operations) from 4.25 to 6 milliseconds when the number of child friends of Uj are

varied from 50 to 250. However, for A the computation time remains the same

since the cost of homomorphic addition operations are negligible compared to the

encryption operations involved in SMP. Since h is fixed, the encryption cost in SMP

remains the same irrespective of the child friends of A. Therefore, the computation

costs of A and T remains the same in Phase 1. A similar trend can be observed for

K=2048 bits as shown in Figure 3.5(b). Briefly, when the number of child friends

is 50, the computation costs of A, T , and Uj are 571, 240, and 24.25 milliseconds

respectively. Also, irrespective of the number of child friends and h, the computation

time of Uj is always significantly less than that of A and T .

During Phase 2, the computation time to find the recommendation score for

each potential candidate Uj mainly depends on m (number of A’s friends) and the

cost of SMPA which in turn depends on the number of shortest paths (s) from A to

Uj. However, for any given m, the cost to compute recommendation score for each Uj

varies with the corresponding s. Thus, the computation costs for A, T and Uj based

on varying values of s, with h = 6 and m = 50, are analyzed. As shown in Figure

3.5(c), the computation cost of Uj (averaged over different levels) increases from 0.8

to 2.4 milliseconds when s is varied from 5 to 25 for K=1024 bits. However, due

to the expensive encryption costs, the computation cost of A varies from 207 to 538

milliseconds when s is changed from 5 to 25. On the other hand, due to the decryption

costs in SMPA, the computation cost of T varies from 30 to 130 milliseconds when s

is changed from 5 to 25. A similar trend can be observed for K=2048 bits as shown in

Figure 3.5(d). In short, when s = 5, the computation costs of A, T , and Uj are 1.79,

0.24 and 0.002 seconds respectively. For any fixed parameters, the observation is that

the computation costs of A and T are increased by a factor of almost 8 whereas Uj ’s

time is increased by a factor of 2 when K is doubled.
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Based on the above results, it is clear that the computation costs incurred

due to Phase 2 are much higher than those of Phase 1. This further validates the

computational analysis of PFR as discussed in the previous sub-section.

Furthermore, the total run time of PFR based on varying values of h and

s is computed. That is, the total time took by the PFR protocol to compute the

recommendation score corresponding to the potential user Uj (similar analysis can

be deduced for other potential candidates) is computed. The number of child friends

for each potential user (and A) is fixed to 50. The results are as shown in Figures

3.5(e) and 3.5(f). For K=1024, as shown in Figure 3.5(e), the total time does not

change much when h is changed from 2 to 3 for both s =1 and 5. For example, when

s = 5, the run time of PFR varies from 241.8 to 245.8 milliseconds when h is changed

from 2 to 3. This is because the cost of Phase 1 does not change much since there

is no need of SMP when h = 2 and 3. Also, the cost of Phase 2 almost remains the

same for any fixed s (assuming m is also fixed). However, the total cost increases as

h is varied from 3 to 6. For example, when s = 5, the total time for PFR to compute

the recommendation score for Uj varies from 245.8 to 351.05 milliseconds when the

value of h is changed from 3 to 6. A similar trend can be observed for s = 1 as shown

in 3.5(e). Also, for any given value of h, the computation time of PFR is almost

increased by a factor of 1 to 2 when s is changed from 1 to 5. E.g., when h = 6,

the computation time of PFR varies from 264.25 to 351.05 milliseconds when s is

changed from 1 to 5. In addition, observe that for any fixed values of h and s, the

running time of PFR grows almost linearly with n. A similar trend can be observed

for K=2048 as shown in Figure 3.5(f).

These results show that most of the significant computation (more than 97%)

is from A and T . The computation cost incurred on all internal nodes is negligible. In

addition, for A and T the computation time grows linearly with s and n. Furthermore,



51

when the size of encryption key doubles, the computation time of PFR increases by

almost a factor of 8 for any fixed parameters.

3.8.3. Computation Costs - PFR Vs. PFRrand. In this sub-section, the

computation costs of PFRrand are compared with that of PFR. As mentioned earlier,

remember that adding random dummy users to take participation in the PFRrand

protocol does not change the relative ordering among the recommendation scores of

actual potential candidates. That is, the effectiveness of PFRrand is the same as in

PFR. For the rest of this sub-section, the Paillier key size K is fixed to 1024 bits

(however, similar analysis can be deduced for K=2048 bits). The comparison results

are as shown in Figure 3.6.

For any given parameters, it is important to note that the computation cost

of Phase 1 in PFRrand is the same as in PFR. This is because of the fact that though

additional dummy child friends are added for each internal user (and A), he/she will

operate on the encrypted partial data received from only his/her actual child friends.

Therefore, first, the computation costs of Phase 2 in PFR and PFRrand are compared.

Suppose the number of actual child friends for each potential candidate Uj

be 50, i.e., |Ch(Uj)| = 50. Also, let m = 50, n = 100 and h = 6. Now, the

computation time of Phase 2 in the proposed protocols for varying n′ and s = 1 are

evaluated, where n′ denotes the total number of dummy random users participating

in the PFRrand protocol. As shown in Figure 3.6(a), the computation time of Phase

2 in PFR is 5.2 seconds and it remains constant with varying n′ since Phase 2 is

independent of n′ in PFR. Whereas, the computation cost of Phase 2 in PFRrand

varies from 5.93 to 6.27 seconds when n′ is varied from 10 to 50. It is clear that

the extra cost incurred on Phase 2 in PFRrand is not much compared to the cost of

Phase 2 in PFR. A similar trend can be observed for s = 5 as shown in Figure 3.6(b).

Briefly, the computation time of Phase 2 in PFR remains to be constant at 13.88
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Figure 3.6: Comparison of computation costs of PFRrand and PFR for K=1024

seconds whereas in PFRrand the cost varies from 14.61 to 14.95 seconds when n′ is

varied from 10 to 50.

Also, the total run time of PFR and PFRrand for varying s and by fixing n′ to

50 are computed. The results are as shown in Figure 3.6(c). The total run time of

PFR varies from 13.99 to 57.25 seconds whereas that of PFRrand varies from 15.07 to

58.33 seconds when s is changed from 5 to 25. Irrespective of the value of s and for

any fixed parameters, observe that the total run time of PFR is very close to that of

PFRrand.

Note that friend recommendations are generally performed on a daily basis

(not a real-time application); therefore, the performances of the proposed protocols

are reasonable in practice. The main advantage is that the proposed protocols make it
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possible to do friend recommendations even in a privacy-preserving social networking

environments.

3.9. CONCLUSION

Friend recommendation has become an important service in many online so-

cial networks to enhance the development of the entire network as well as to provide

opportunities for users to expand their social relations. Due to privacy concerns

[19, 21, 51], many online social networks are providing various privacy settings to

users. Existing friend recommendation algorithms do not take privacy into account;

therefore, they are not applicable in privacy-preserving social networking environ-

ments. This work first proposes a new two-phase private friend recommendation

(PFR) algorithm based on the network structure as well as real messages exchanged

between users. The proposed PFR protocol computes the recommendation scores of

all users within a radius of h from the target user A by using the similarity metric

proposed in [14] as a baseline. In particular, the proposed protocol generates the

(scaled) recommendation scores along with the corresponding user IDs in such a way

that the relative ordering among the users in the TOP-K list of recommended users

is preserved (i.e., same accuracy as in [14]).

This work provided an in-depth security and complexity analysis of the pro-

posed PFR protocol and also addressed various implementation details related to

PFR in practice. In addition, this work demonstrated a new security issue in the

current online social networks due to the inherent message flow information between

different entities. To mitigate this issue or to provide better security, an extended

version of the proposed protocol was developed using randomization technique. Also,

this work showed the practical applicability of the proposed protocols through exten-

sive experiments based on different parameters.
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4. INTEREST-DRIVEN PRIVATE FRIEND RECOMMENDATION

Most of the time, users in a social network wish to find new friends based on

their own interests. For instance, a biologist working on cancer cells may want to

collaborate with new researchers who are also interested in the relevant topics. A

computer science researcher may want to make new friends who are working in the

field of “Social Networks”. Due to social engineering attacks [24], a social network

user may not want to keep his or her personal profile publicly available. Especially,

considering the size of the social network users (which is usually in millions), finding

new friends based on both social network structure and users’ dynamic interest will

make the private friend recommendation (PFR) problem even more challenging.

This section considers the set of users within a group G and proposes a set of

solutions to privately recommend friends within this group based on users’ specific

interests. Note that the profile information of users even within a public group (where

any one can join the group) can be treated as private and is not allowed to be visible

to other users even within the same group. This work assumes that users’ friend lists

and social tags are private information. In other words, friendship between any two

users is treated as sensitive information, and the social tags [59] attributed to any

given user are also treated as private.

4.1. PROBLEM DEFINITION

Consider G as a group in a social network, and let n be the number of users

in G. Without loss of generality, let u1, . . . , un denote the users in G and T be the

ontology tree constructed from the domain knowledge using the possible set of social

tags in G. For the rest of this section, assume that T is constructed by the domain

expert such as the network administrator (more details on how to construct T are
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given in later part of this section). Each leaf node in T represents a set of social tags,

and each internal node denotes a category Ck representing the generalization for the

set of social tags under the sub-tree rooted at Ck. In addition, each user ui’s social

tags in G is denoted by Tags(ui), and let FL(ui) denote the list of user IDs who are

friends of ui, for 1 ≤ i ≤ n. In the literature, there exist several similarity metrics for

computing the social closeness score (denoted as SC) between any two given users

as part of the friend recommendation process [15]. Each metric has its pros and

cons, and this work adopts the scoring function proposed in [13] that considers both

social tagging information and topological structures in the social network. More

specifically, the social closeness between two users ui and uj in G is defined as [13]:

SC(ui, uj) = θ · NS(ui, uj) + (1− θ) · TS(ui, uj) (4.1)

where θ is a control parameter; NS(ui, uj) and TS(ui, uj) are the network and social

tag similarity scores, between ui and uj, respectively defined as below:

NS(ui, uj) = Cosine(ui, uj) =
vi · vj

||vi|| · ||vj||

TS(ui, uj) =
1∑

k,k+1 ∈ SP(Cat(ui),Cat(uj))
2

d(k)+d(k+1)

In the above equations, Cosine(ui, uj) denotes the cosine similarity between the friend-

ship vectors vi and vj of ui and uj respectively. vi and vj are constructed from FL(ui)

and FL(uj), such that |vi| = |vj| = n (denoting the size of global friend list space of

G) and vi[k] = 1 if uk ∈ FL(ui), otherwise vi[k] = 0, for 1 ≤ k ≤ n. ||vi|| and ||vj||

denote the Euclidean norms of vi and vj. Cat(ui) and Cat(uj) denote the category

(deepest non-leaf) nodes of ui and uj. SP(Cat(ui), Cat(uj)) denotes the trail of nodes

in the shortest path between nodes Cat(ui) and Cat(uj). Nodes k and k + 1 are two
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consecutive nodes in the shortest path, and d(k) is the depth of node k. More details

about how to compute the SC score are given later along with a concrete example.

Given a snapshot of the social network for users in G along with their social

tags and the ontology tree T , the problem of computing social closeness score between

a target user ui and any other user uj based on Equation 4.1 is straightforward.

However, the problem becomes non-trivial if the network structure and social tags

are considered as users’ private information. More formally, this work considers the

following users’ profile information as private:

• Friendship between any two users ui and uj should not be revealed to any other

user. This further implies that FL(ui) is only known to ui, for 1 ≤ i ≤ n.

• The social tags attributed to ui (i.e., Tags(ui)) are only known to ui.

Without loss of generality, let Gi = 〈uj1 , . . . , ujt〉 denote a subset of users in G

(excluding ui and friends of ui). Here Gi is chosen by ui either based on his/her

interest or randomly. More details regarding this issue are provided in later sections.

According to the above privacy assumptions, the goal of this work is to securely

compute the social closeness scores between a target user ui and each user in Gi in

a privacy-preserving manner. As mentioned earlier, this process is termed as private

friend recommendation (PFR). Formally, the PFR problem is defined as:

PFR(ui, Gi ⊂ G)→ 〈SC(ui, uj1), . . . , SC(ui, ujt)〉 (4.2)

At the end of the PFR protocol, only ui knows the values of SC(ui, ujl), for 1 ≤ l ≤ t.

Once the t social closeness scores are known to ui, he/she can either send friend

requests to or browse through the pubic profiles of Top-K users (i.e., users in Gi with

Top-K social closeness scores with ui) and take action accordingly.
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4.2. MAIN CONTRIBUTIONS

This work proposes two new PFR protocols based on both the network struc-

ture and users’ social tags using a knowledge based ontology tree. Both of the pro-

posed protocols compute the social closeness scores, according to Equation 4.1, be-

tween a target user ui in a group G (who wish to make new friends) and each user

in a subset Gi ⊂ G without revealing any private information between each other.

The first protocol assumes FL(ui) and FL(ujl) as private information and the social

tags of users can be revealed to the network administrator, and returns SC(ui, ujl)

without disclosing FL(ui) to ujl and FL(ujl) to ui, for ujl ∈ Gi. Whereas the second

protocol assumes not only FL(ui) and FL(ujl) are private but also their social tags

are private. At the end of both protocols, only user ui knows the SC(ui, ujl) scores

(based on Equation 4.1) and decides whether to send a friend request to user ujl , for

ujl ∈ Gi. Specifically, the main contributions of this work are summarized below:

• Interest-Driven. The first protocol provides more flexibility to users in terms

of identifying new friends based on his/her specific interest (i.e., choosing users

in Gi based on his/her own interest).

• Security. The second protocol preserves the privacy of individuals (i.e., both

users’ friend lists and social tags) and is more secure than the first protocol.

The security guarantee follows the well-known semi-honest security definition

of secure multiparty computation [38, 39, 50].

• Trade-off. Since some of the users’ computations in the first protocol are

pushed to the network administrator, the first protocol is more efficient than

the second protocol. However, this efficiency gain comes at the expense of

releasing the users’ social tags directly to the network administrator. Therefore,

the proposed protocols act as a trade-off between efficiency and security.
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4.3. RELATED WORK

Social network analyses have been utilized for various business applications [6],

such as predicting the future [28] and developing recommendation systems [31, 32].

With growing interest of expanding a person’s social circle, friend recommendation

has become an important service in many online social networks. Along this direc-

tion, Silva et al. [11] proposed a novel user calibration procedure based on a genetic

algorithm to optimize the three indices derived from the structural properties of social

networks. Xie [12] designed a general friend recommendation framework to recom-

mend friends based on the common interests by characterizing user interests in two

dimensions - context (e.g., location and time) and content. By treating friend rec-

ommendation process as a filtering problem, Naruchitparames et al. [10] developed a

two-step approach to provide quality friend recommendations by combining cognitive

theory with a Pareto-optimal genetic algorithm. As an independent work, Gou et al.

[13] developed a visualization tool (named as SFViz) that allows users to explore for

a potential friend with an interest context in social networks. Their method considers

both semantic structure in social tags and topological structures in social networks to

recommend new friends. Nevertheless, Facebook uses the “People You May Know”

feature to recommend friends based on the simple “friend-of-a-friend” approach [34].

Due to various privacy issues [17, 18, 19, 20, 21, 22, 23], many users keep their

profile information as private. Existing friend recommendation techniques [9, 10, 11,

12, 13, 14] do not take users’ privacy into consideration; therefore, they cannot be

directly applied. Only recently, researchers have focused on developing accurate and

efficient PFR methods. Along this direction, Dong et al. [35] proposed a method to

securely compute and verify social proximity between two users using cosine similarity

in mobile social networks. This work differs from theirs in two aspects. First, the

problem setting is entirely different from theirs. This work considers the users in an
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(Internet-based) online social network group G, where the friend list and social tags of

each user are treated as private. Whereas, in their approach, (mobile social network)

users physical location is treated as private. Secondly, the proposed protocols in

this section identify new friends based on the users’ friend lists and their social tags.

More specifically, this work uses the scoring function proposed in [13] to measure

the social closeness between any two given users. On the other hand, their approach

identifies new friends who happen to be in the physical vicinity of the target user.

That is, social coordinates (users geographical location) are used to compute the

social proximity between users.

Machanavajjhala et al. [36] formally analyzed the trade-offs between accuracy

and privacy of private friend recommendations using differential privacy [37]. In their

work, the authors used the existing differentially private algorithms as underlying sub-

routines and assumed the existence of PFR protocols based on these sub-routines.

They have considered network topology based similarity metrics. Different from their

work, the algorithm proposed in this section securely computes the social closeness

score using the similarity scoring function proposed in [13] which is based on the social

network topology as well as the social tagging information. Also, according to their

claims, if privacy is to be preserved when using the common neighbors utility function

[15], only users with Ω(log n) friends can hope to receive accurate recommendations,

where n is the number of users in the graph. Furthermore, the users’ privacy in

[36] is based on differential privacy. Whereas, the privacy guarantees in this work

are based on an entirely different security model, namely the semi-honest security

definitions from the field of secure multiparty computation (SMC) [38, 39]. Under

the SMC model, this work develops accurate PFR protocols. In particular, the second

proposed protocol recommends friends accurately, similar to [13], and simultaneously

preserves the privacy of each user (i.e., users’ friend lists as well as social tags are

protected).
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4.4. PRELIMINARIES

This sub-section highlights the steps involved in computing the category for a

given user ui ∈ G using the social tags of ui and T . Then, details on how to compute

the cosine similarity score between friend lists of users are given. Also, a running

example for computing the social closeness score based on Equation 4.1 is presented.

Finally, this sub-section describes the properties exhibited by additive homomorphic

encryption schemes. Notations commonly used throughout this section are given in

Table 4.1.

4.4.1. Computation of User Category. Without loss of generality, let

C1, . . . , Cm be the deepest non-leaf category nodes (in order from left to right) in T .

For any given user ui ∈ G, assign ui to exactly one of the category nodes, which is

referred to as “category of user ui” and is denoted by Cat(ui), as follows[13]:

• Compute the matching score (MS) between ui’s social tags and each category

node Cx as given by

MS(ui, Cx) =

∑
h ∈ Tags(ui) ∩ allTags(Cx)

f(h) · d(h)
∑

y ∈ allTags(Cx)
f(y)

(4.3)

where f(h) and d(h) denote the frequency and depth of tag h respectively; h

is common to Tags(ui) and allTags(Cx), where Tags(ui) returns all tags of user

ui, and allTags(Cx) returns tags under category Cx and all ancestors of Cx

(omitting root node as stated in[13]).

• Next, pick the largest score and assign user ui to the corresponding category

(i.e., Cat(ui)).

Example 1. Consider the sample ontology tree T for a group G as shown in

Figure 4.1. Following from the Figure 4.1, all tags related to category C3 are given as

allTags(C3) = {t1, t2, t3, C3, C1,3}. Without loss of generality, let Bob be a user in G
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Table 4.1: Some common notations used in the interest based PFR protocols

HPEnc An Additive Homomorphic Probabilistic Encryption system

G A group in social network with users u1, . . . , un

T Ontology tree (generated by the network administrator)

〈Epk, Dpr〉 A pair of HPEnc based encryption and decryption function

with (pk, pr) as the corresponding public-private key pair

FL(ui) Friend list of user ui

Tags(ui) Social tags of user ui

Cat(ui) Category of user ui

s Scaling factor

such that Tags(Bob) = {t1, t3, t9, C3}. The common set of tags between C3 and Bob

are {t1, t3, C3}. In addition, suppose the frequencies are as follows. f(t1) = 2, f(t2) =

5, f(t3) = 1, f(C3) = 4, and f(C1,3) = 2. The matching score between C3 and Bob,

based on Equation 4.3, is computed as follows:

MS(Bob, C3) =
f(t1) · d(t1) + f(t3) · d(t3) + f(C3) · d(C3)

f(t1) + f(t2) + f(t3) + f(C3) + f(C1,3)

=
2 · 3 + 1 · 3 + 4 · 2
2 + 5 + 1 + 4 + 2

=
17

14

4.4.2. Computation of Cosine Similarity Score. For any given user ui ∈

G, let vi denote the friendship vector of ui derived from the global user space of G.

More formally, the vector vi is defined as follows:

vi[k] =





1 if uk ∈ FL(ui)

0 otherwise

That is, if vi[k] = 1, then the user corresponding to the kth dimension in the global

user space is a friend of ui. Without loss of generality, let the global user space be
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Root

C1,3 C4,5 C6,7

C1 C2 C3 C4 C5 C6 C7

t1 t2 t3

Figure 4.1: A sample ontology tree T along with the tags of C3

u1, . . . , un (in order). If vi[k] = 1, then ui and uk are friends. Note that if ui is not a

friend of uk, then the entry corresponding to the kth dimension (i.e., vi[k]) is zero.

Once the users’ friend lists are represented as friendship vectors, cosine simi-

larity between the friend lists of any two users ui and uj gives the cosine of the angles

between the corresponding two friendship vectors vi and vj. The following equation

captures the cosine similarity score between ui and uj.

Cosine(ui, uj) =

∑n

k=1 vi[k] · vj[k]
||vi|| · ||vj||

= ~vi • ~vj (4.4)

where ||vi|| and ||vj|| denote the Euclidean norms∗ of vi and vj; ~vi and ~vj are the nor-

malized vectors of vi and vj respectively, and ~vi •~vj denotes the dot product between

~vi and ~vj. Note that the value of cosine similarity score always varies between 0 and

1. A cosine similarity score of zero means the two friendship vectors are orthogonal,

and the two users have no friends in common. On the other hand, a cosine similarity

score of one means that the friend lists of both users are the same.

∗More specifically, the Euclidean length/norm of vi and vj are given as ||vi|| =
√∑n

k=1 vi[k]
2

and ||vj || =
√∑n

k=1 vj [k]
2
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Example 2. Consider two users Bob and Charles in G with friend lists {Ellis, Reed,

Beck,Walton} and {Beck, Steele, Bush,Walton,Hodges} respectively. Assume that

{Ellis, Beck,Bob, Francis,Walton, Steele, Bush, Joseph,Reed, Charles,Hodges} is

the global user space of G. Observe that Francis and Joseph are neither friends

of Bob nor Charles. The friendship vectors for both Bob and Charles are given

as vBob = 〈1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0〉 and vCharles = 〈0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1〉 respec-

tively. In addition, ||vBob|| = 2 and ||vCharles|| =
√
5. Therefore, the cosine similarity

between the friendship vectors of Bob and Charles, based on Equation 4.4, is derived

as follows:

Cosine(Bob, Charles) =

∑11
k=1 vBob[k] · vCharles[k]

||vBob|| · ||vCharles||

=
1√
5

4.4.3. Computation of Social Closeness Score. Following from the above

discussion, consider the scenario of computing the social closeness score between Bob

and Charles in G based on Equation 4.1. Let C3 and C4 be the categories of Bob and

Charles respectively. Since NS(Bob, Charles) = Cosine(Bob, Charles) = 1√
5
, let us

compute the tag similarity score between Bob and Charles. As mentioned earlier,

the tag similarity score between Bob and Charles is given by

TS(Bob, Charles) = 1∑
k,k+1 ∈ SP(C3,C4)

2
d(k)+d(k+1)

where SP(C3, C4) denotes the trail of nodes on the shortest path between C3 and C4,

node k and k + 1 are the consecutive nodes on the shortest path, and d(k) denotes

the depth of node k in T . From Figure 4.1, SP(C3, C4) = {C3, C1,3, Root, C4,5, C4}.

In addition, d(C3) = d(C4) = 2, d(C1,3) = d(C4,5) = 1, and d(root) = 0. Therefore,
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by substituting these values in the above formula, the tag similarity score is given by:

TS(Bob, Charles) =
1

2
3
+ 2 + 2 + 2

3

=
3

16

Suppose the value of control parameter θ be 0.75. Then, the social closeness score

between Bob and Charles, based on Equation 4.1, is given as:

SC(Bob, Charles) = 0.75 · NS(Bob, Charles)

+ (1− 0.75) · TS(Bob, Charles)

= 0.75 · 0.44 + 0.25 · 0.18

= 0.375

4.4.4. Additive Homomorphic Probabilistic Encryption. The proposed

protocols utilize an additive homomorphic encryption scheme which is probabilistic

in nature. In the literature, such a scheme is referred to as HPEnc system (such

as Paillier cryptosystem [55]). Let Epk and Dpr be the encryption and decryption

functions of an HPEnc system with pk and pr as their public and private keys re-

spectively. In addition, let N be the RSA modulus generated by taking the product

of two large primes of similar bit-length. For any given plaintext messages a, b, and

c ∈ ZN , the HPEnc system exhibits the following properties:

• Homomorphic Addition - Epk(a+ b) = Epk(a) · Epk(b) mod N2

• Scalar Multiplication - Epk(c · a) = Epk(a)
c mod N2

• Semantic Security - Given a set of ciphertexts and public key pk, it is not

feasible for a computationally bounded adversary to derive any information

about the plaintexts [49, 56].
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4.5. THE PROPOSED PROTOCOLS

This sub-section presents the proposed PFR protocols which compute the

social closeness score between a target user ui (who wish to make new friends) and

each user in Gi in a privacy-preserving manner. Both the proposed protocols aim

at protecting the users’ friend lists and social tags. At the end of the proposed

protocols, only user ui knows the social closeness scores and decides whether to send

a new friend request (such as “Add Friend” in Facebook) to users in Gi. This work

explicitly considers the following set of assumptions for the rest of this sub-section:

• User ui owns Epk and Dpr: an additive homomorphic encryption scheme (e.g.,

Paillier cryptosystem [55]) with a public-private key pair (pk, pr) and N as the

ring size.

• Each user in G is aware of all the other users within group G which is practical

since it is indeed the case in many online social networks. However, the friend

list and social tags of each user are treated as private information.

4.5.1. The PFRα Protocol. This protocol assumes that users’ social tags

can be revealed to the network administrator to reduce the work load of users. Though

this protocol releases users’ social tags to the network administrator for efficiency

reasons, users’ friend lists are kept as private. In addition, assume that the network

administrator acts as a third party and there is no collusion between users and the

network administrator. At the end of the PFRα protocol, the final social closeness

scores are revealed only to ui. Under the above assumptions, the PFRα protocol

consists of the following two stages:

Stage 1 - Computation of Users’ Categories: During this Stage, the network

administrator first computes ontology tree T and assigns each user uk ∈ G to one of

the deepest non-leaf nodes as the category of uk (denoted as Cat(uk)), and updates



66

T by attaching the user ID of uk to the node Cat(uk). At the end of this stage, the

updated T is published to the users in G.

Stage 2 - Secure Computation of Social Closeness Scores: User ui first picks

a list of users Gi ⊂ G (omitting ui and friends of ui) based on his/her interest using

T resulted from Stage 1. After this, ui securely computes the social closeness scores

with each user in Gi.

The overall steps involved in the PFRα protocol are highlighted in Algorithm

4. Briefly, during Stage 1, each user sends his/her social tags to the network admin-

istrator. Upon receiving the tags, the network administrator computes the category

for each user based on Equation 4.3, and assigns each user ID to his/her category

by updating T . After this, the network administrator publishes the updated T to

the users in G. During Stage 2, target user ui first selects a subset of users in G

(i.e., Gi) based on his/her own interests. For example, if ui is interested in the

users under category Cj, then he/she can compute the social closeness scores with

only the users in Cj based on Equation 4.1. To be more generic, this work assumes

that Gi can contain users from multiple categories. For each user ujl in Gi, ui can

compute TS(ui, ujl) locally since he/she knows (from the published T in Stage 1)

where node Cat(ujl) (i.e., the category node for user ujl) is located in T . However,

to compute NS(ui, ujl), one need to calculate the cosine similarity score between ui

and ujl securely such that FL(ui) is not revealed to ujl and FL(ujl) is not revealed to

ui. This can be seen as a sub-problem of secure similar document detection (SSDD).

Therefore, existing SSDD techniques can be utilized to solve the problem of secure

computation of cosine similarity [60, 61]. Finally, for each ujl ∈ Gi, ui combines

NS(ui, ujl) and TS(ui, ujl) based on the linear operation in Equation 4.1 to derive the

social closeness score SC(ui, ujl), for 1 ≤ l ≤ t.
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Algorithm 4 PFRα(ui, Gi ⊂ G)→ 〈SC(ui, uj1), . . . , SC(ui, ujt)〉
Require: pr is known only to ui, pk is public, and FL(uk) are private ∀ uk ∈ G
1: User uk, for 1 ≤ k ≤ n do:

(a). Send Tags(uk) to the network administrator

2: Network administrator:

(a). Receive Tags(uk) from uk, for 1 ≤ k ≤ n

(b). Generate T

(c). for each uk ∈ G do:

• Compute Cat(uk) based on Equation 4.3

(d). Update T and publish it in G.

3: User ui:

(a). Select Gi using T

(b). Compute TS(ui, ujl), for l = 1, . . . , t

(c). for k = 1 to n do:

• ~vi[k]← vi[k]
||vi||

• Vi[k]← Epk(s · ~vi[k]), where s is a scaling factor

(d). Send Vi to user ujl , for l = 1, . . . , t

4: User ujl , for 1 ≤ l ≤ t do:

(a). Receive Vi from ui

(b). ~vjl [k]←
vjl [k]

||vjl ||
, for 1 ≤ k ≤ n

(c). Zjl ←
∏n

k=1 Vi[k]
s·~vjl [k] mod N2; send Zjl to user ui

5: User ui:

(a). for 1 ≤ l ≤ t do:

• Receive Zjl from ujl

• Decryption: Φ(ui, ujl)← Dpr(Zjl)

• SC(ui, ujl)← θ · Φ(ui,ujl
)

s2
+ (1− θ) · TS(ui, ujl)
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Note that the control parameter θ in Equation 4.1 can be either a static value

(published by the network administrator) or chosen by the target user ui. Now, the

steps involved in each of the two stages are explained in detail.

Stage 1 - Computation of Users’ Categories. The overall steps for Stage 1 in

PFRα are highlighted as steps 1 and 2 in Algorithm 4. Initially, each user uk sends

his/her social tags (i.e., Tags(uk)) to the network administrator, for 1 ≤ k ≤ n.

Note that since this work assumes that there is no collusion between the network

administrator and the users, it implies that Tags(uk) is not leaked to users other than

uk. Upon receiving the social tags, an ontology tree T is constructed by the network

administrator, such that the leaf nodes in T are individual tags and the internal nodes

(i.e., non-leaf nodes) can be regarded as categories denoting the generalization of all

social tags under the sub-tree rooted at the internal node [13, 62]. Since social tags

can be represented as XML data, T can be generated automatically as long as the

network administrator knows the frequencies of individual tags.

Once T is built, the network administrator computes the matching score (MS)

between each uk and all deepest non-leaf nodes and assigns the category that have

the highest MS score to uk as the category node for uk, for 1 ≤ k ≤ n. Once the

users are assigned to each category, this information (i.e., update T by including user

IDs to their respective categories in T ) is published within the group.

Stage 2 - Secure Computation of Social Closeness Scores. Following from

Stage 1, the leaf nodes in T (published by the network administrator) represent the

user IDs and the deepest internal nodes represent the category label for all the leaf

nodes under it. Suppose user ui wants to compute the social closeness scores with t

users in the group Gi ⊂ G denoted by uj1 , . . . , ujt . The observation is that since ui

knows the categories of all users in G, he/she can choose the potential users based on

his/her own interests. For example, consider a biology community where users can

be assigned to multiple research categories in T . If ui is interested only in researchers
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working on cancer cells, he/she can choose only the user IDs under the cancer cell

category and proceed further. Here the users in Gi may belong to multiple categories

and the choice purely depends on the ui’s interest. The main steps involved in Stage

2 of PFRα are shown as steps 3, 4, and 5 in Algorithm 4.

Once the group Gi is chosen, user ui first computes TS(ui, ujl) locally, for

1 ≤ l ≤ t. After this, he/she computes ~vi (using FL(ui)) and encrypts the scaled ~vi

component-wise. Note that since the encryption scheme operates on group ZN (i.e.,

integer-based) and as ~vi[k] can be fractional, one need to convert ~vi[k] to integer before

encrypting it, for 1 ≤ k ≤ n. This is the reason for multiplying each component of

~vi (i.e., ~vi[k]) with the scaling factor s before encrypting it. In general, the value of

s can be either static (chosen by the network administrator) or dynamic (varies with

target user ui). For example, when ~vi[k] = 0.143 (3-point precision), a scaling factor

(i.e., s) of 1000 is sufficient. Briefly, ui computes Vi[k] = Epk(s ·~vi[k]), for 1 ≤ k ≤ n,

and sends Vi to each user ujl , for 1 ≤ l ≤ t. Note that if s ·~vi[k] is still a floating-point

number, then the ceiling value of it can be taken before encryption. For the rest of

this section, the proposed protocols simply omit the ceiling operation.

Upon receiving Vi from ui, each user ujl performs the following operations:

• Compute the friendship vector vjl from FL(ujl) and normalize it to get ~vjl . That

is, for 1 ≤ k ≤ n:

~vjl [k] =
vjl [k]

||vjl ||

• Compute the encrypted cosine similarity score as Zjl =
∏n

k=1 Vi[k]
s·~vjl [k] mod N2

and send Zjl to user ui. Note that the exponent term should be an integer in ZN ;

therefore, ujl first multiplies ~vjl by s component-wise (scaling) and then uses

the result s · ~vjl [k] (which is an integer in ZN) to do exponentiation operations.

Finally, ui performs the following operations to compute the final social closeness

scores for each ujl , where 1 ≤ l ≤ t:
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• Receive Zjl from user ujl and decrypt it to get Φ(ui, ujl) = Dpr(Zjl).

• Observe that:

Φ(ui, ujl) =
n∑

k=1

(s · ~vi[k]) · (s · ~vjl [k])

= s2 · (~vi • ~vjl)

= s2 · NS(ui, ujl)

• Compute SC(ui, uj) using Φ(ui, ujl) and TS(ui, ujl) as follows.

SC(ui, ujl) = θ · Φ(ui, ujl)

s2
+ (1− θ) · TS(ui, ujl)

= θ · NS(ui, ujl) + (1− θ) · TS(ui, ujl)

4.5.2. Complexity Analysis of PFRα. Next, the computation and com-

munication costs of the PFRα protocol are analyzed.

Computation Cost. During Stage 1, users in G simply sends their social tags

to the network administrator; therefore, there is no computation involved on the

user side. The main computation cost of PFRα occurs in Stage 2. During Stage

2, the target user ui creates his/her friendship vector, normalizes and encrypts it

component-wise (from step 3(c) of Algorithm 4). In addition, ui has to perform t

number of decryptions (from step 5(a) of Algorithm 4). However, in practice, the

value of t is less than n and the time for encryption is almost the same as the

decryption operation under Paillier cryptosystem [55]. Therefore, the computation

cost of ui is bounded by O(n) encryptions, where n is the number of users or size of

the global user space in G.

Furthermore, only the users in Gi participate in Stage 2 of PFRα. Since

each user ujl ∈ Gi receives a vector of size n from the target user ui, the number
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of exponentiation operations performed by ujl is bounded by O(n), at step 4(c) of

Algorithm 4. On the other hand, the total computation cost by all users in Gi is

bounded by O(t · n) exponentiations. In general, an encryption is much costlier than

an exponentiation operation; therefore, the computation cost of ui is more significant

compared to ujl .

Communication Cost. In the PFRα protocol, the communication occurs be-

tween each user and the network administrator (from Stage 1). In addition, the

communication also happens between ui and each user in Gi (from Stage 2). During

Stage 1, each user uk ∈ G sends his/her social tags to the network administrator (fol-

lowing from step 1(a) of Algorithm 4). Therefore, the communication cost between

each user uk and the network administrator is bounded by O(|Tags(uk)|) in bits.

In addition, during Stage 2, the target user ui sends his/her encrypted vector

which is of size n to each user ujl ∈ Gi (following from step 3(d) of Algorithm 4).

Hence, the communication cost between ui and ujl is bounded by O(z · n) in bits,

where z denotes the encryption key size in bits.

4.5.3. Security Analysis of PFRα. The PFRα protocol assumes that the

users’ friend lists are private. In addition, the social tags of one user are not revealed

to any other user. One issue with the PFRα protocol is the assumption of revealing

social tags to the network administrator. Though the social tags of one user are not

revealed to the other user, the above issue may not be allowed in some cases where

users wish to hide their tags even from the network administrator.

Also, the category information of each user is published publicly within the

group in order to compute TS(ui, ujl), for 1 ≤ l ≤ t. However, revealing the category

of a user may leak valuable information as it is possible to extract the semantic

relations by analyzing the possible set of tags under this category. Therefore, to

achieve better protection, it is desirable to move the computation of matching scores
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(i.e., computation of users’ categories) from the network administrator to individual

users giving rise to the second proposed protocol as explained in the next sub-section.

4.5.4. The PFRβ Protocol. In this sub-section, in addition to the friend

lists, assume that users’ social tags as well as their category information are private.

Along this direction, a new PFR protocol (denoted as PFRβ) is proposed. The basic

idea is to allow users to have control over their data which is achieved by perform-

ing the data critical computations locally and the remaining non-local operations

are performed on the encrypted data using the additive homomorphic properties as

discussed earlier.

Since the users cannot directly compute their categories locally, PFRβ explic-

itly includes an initialization step to compute T including the frequency details of

each tag globally as follows. In the PFRβ protocol, unlike PFRα, the users of G do

not send their social tags directly to the network administrator. Instead, one of the

user acts as a coordinator (say un) and each user sends his/her encrypted social tags

(using the public key of the network administrator) to un. Then, un appends his/her

own encrypted social tags to the list and permutes the global list of encrypted social

tags, and sends it to the network administrator. After receiving, the network admin-

istrator decrypts each entry and constructs T as mentioned in the PFRα protocol.

However, in addition to the tags as leaf nodes, the network administrator also in-

cludes its global frequency information (i.e., each leaf node in T looks like 〈ω, f(ω)〉,

where ω is a social tag). After this, the network administrator publishes T to the

users in G. Since un permutes the global list of encrypted social tags, the network

administrator cannot trace back which social tag belongs to which user.

Apart from the above initialization step, the PFRβ protocol consists of the

following two stages similar to PFRα. However, the steps involved in each stage of

PFRβ are different from that of PFRα.
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Stage 1 - Computation of Users’ Categories: During Stage 1, each user locally

computes the category corresponding to him/her using the ontology tree T published

by the network administrator from the initialization step.

Stage 2 - Secure Computation of Social Closeness Scores: The target user ui

randomly chooses t users (denoted as set Gi ⊂ G) and computes the social closeness

scores with each user in Gi. At the end of this step, only ui knows the scores and

nothing is revealed to either ui or other users in Gi.

The overall steps in PFRβ are highlighted in Algorithm 5. Now, the steps

involved in each stage of the PFRβ protocol are discussed as below.

Stage 1 - Computation of Users’ Categories. Unlike in PFRα, the social tags of

users in G are not disclosed to the network administrator in PFRβ. Instead, assume

that the network administrator simply publishes the ontology tree T (where the leaf

nodes consist of social tags and their frequencies) and makes it available to users in G.

From T , each user uk ∈ G can locally compute the matching scores between Tags(uk)

and tags of each category (deepest non-leaf nodes) and identifies the one with largest

matching score as his or her corresponding category Cat(uk). Since the computation

is done locally and as Tags(uk) is only known to user uk, the category Cat(uk) is only

known to user uk. Thus, social tags of users as well as his/her category information

are kept private. Stage 1 is shown as step 1 in Algorithm 5.

Stage 2 - Secure Computation of Social Closeness Scores. Following from Stage

1, user ui knows only his/her category Cat(ui) (similarly, other users in G knows their

respective categories). When user ui wants to make new friends from a group of users

Gi ⊂ G (note that Gi is chosen randomly after excluding ui and friends of ui from G),

ui can securely compute the cosine similarity with each of them as discussed in the

PFRα protocol. That is, ui computes the component-wise encryption of the scaled

normalized friend list vector as Vi[k] = Epk(s ·~vi[k]), for 1 ≤ k ≤ n. However, for any
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Algorithm 5 PFRβ(ui, Gi ⊂ G)→ 〈SC(ui, uj1), . . . , SC(ui, ujt)〉
Require: pr is known only to ui; s, pk, θ, and T are public (note that T is resulted

from the initialization step); FL(uk), Tags(uk), and Cat(uk) are private ∀ uk ∈ G

1: User uk, for 1 ≤ k ≤ n do:

(a). Compute uk’s category Cat(uk)

2: User ui:

(a). Select Gi randomly from G

(b). for k = 1 to n do:

• ~vi[k]← vi[k]
||vi||

• Vi[k]← Epk(s · ~vi[k])

(c). for x = 1 to m do (where m denotes the number of deepest non-leaf
category nodes)

• Compute TS(ui, u
′
x) (where u′

x is a dummy user such that Cat(u′
x) =

Cx)

• Zi[x]← Epk(s
2 · TS(ui, u

′
x))

(d). Send Vi and Zi to each user in Gi

3: Each user ujl ∈ Gi, for 1 ≤ l ≤ |Gi| = t:

(a). Receive Vi and Zi from ui

(b). Compute ~vjl

(c). Yjl ←
∏n

k=1 Vi[k]
s·~vjl [k] mod N2

(d). Sjl ← Y s·θ
jl
· Zi[Index(Cat(ujl))]

s·(1−θ) mod N2

(e). Send Sjl to ui

4: User ui:

(a). for 1 ≤ l ≤ t do:

• Receive Sjl from user ujl

• SC(ui, ujl)←
Dpr(Sjl

)

s3
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user ujl ∈ Gi, the main difficulty is to compute TS(ui, ujl) without revealing either

Cat(ui)/Tags(ui) to ujl or Cat(ujl)/Tags(ujl) to ui.

This work solves the above issue (i.e., securely computing TS(ui, ujl), ∀ ujl ∈ Gi)

as follows. Letm be the number of deepest non-leaf category nodes in T (in order from

left to right), denoted by C1, . . . , Cm. User ui computes TS(ui, u
′
x), for 1 ≤ x ≤ m,

where u′
x is a dummy user such that Cat(u′

x) = Cx. Then ui computes the encrypted

vector of scaled tag similarity scores, i.e., Zi[x] = Epk(s
2 ·TS(ui, u

′
x)), for 1 ≤ x ≤ m

(the reason for scaling by s2 instead of s will become clear later). After this, ui sends

Vi and Zi to each user in Gi. Upon receiving the values, each user ujl ∈ Gi performs

the following operations:

• Compute the normalized friendship vector ~vjl using FL(ujl).

• Compute the encryption of (scaled) cosine similarity score between the friend-

ship vectors of ui and ujl as Yjl =
∏n

k=1 Vi[k]
s·~vjl [k] mod N2. This step is shown

as step 3(c) in Algorithm 5. As mentioned earlier in the PFRα protocol, observe

that Yjl = Epk(s
2 · (~ui •~ujl)) and the scaling factor here is s2. This is the reason

for scaling TS(ui, u
′
x) by the same value (i.e., s2), for 1 ≤ x ≤ m.

• The (scaled) encrypted social closeness score is computed as:

Sjl = Y s·θ
jl
· Zi[Index(Cat(ujl))]

s·(1−θ) mod N2 (4.5)

where Index(Cat(ujl)) returns the index corresponding to the category node

of ujl . That is, if Cat(ujl) = Cp, then Index(Cat(ujl)) = p. Observe that

Zi[Index(Cat(ujl))] is the encryption of (scaled) tag similarity score between

ui and ujl (i.e., TS(ui, ujl)). In addition, since θ (resp., 1 − θ) is a fractional

value, one need to first multiply it by the scaling factor s before doing the

exponentiation operation. After this, ujl sends Sjl to ui.
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Finally, ui gets a list of SC scores by decrypting each Sjl value and dividing it by s3

(removing the total scaling factor). Note that users in Gi with Top-K SC scores can

be treated as potential candidates to be new friends of ui; therefore, ui can either

send friend requests to them or filter them further by browsing through their profiles.

Theorem 3. (Correctness) - For any given target user ui and ujl ∈ Gi, the value

of
Dpr(Sjl

)

s3
is always equal to the social closeness score between ui and ujl, as defined

in Equation 4.1, where 1 ≤ l ≤ t.

Proof. Following from the above discussions, it is clear that Yjl = Epk(s
2·(~ui•~ujl)) and

Zi[Index(Cat(ujl))] = Epk(s
2 · TS(ui, ujl)). Based on these values, one can simplify

Equation 4.5 as follows†:

Sjl = Y s·θ
jl
· Zi[Index(Cat(ujl))]

s·(1−θ)

= Epk(s
2 · (~ui • ~ujl))

s·θ · Epk(s
2 · TS(ui, ujl))

s·(1−θ)

= Epk(s
3 · θ · NS(ui, ujl)) · Epk(s

3 · (1− θ) · TS(ui, ujl))

= Epk(s
3 · SC(ui, ujl))

From the above deductions, it is clear that Dpr(Sjl) = s3 · SC(ui, ujl); therefore,

SC(ui, ujl) =
Dpr(Sjl

)

s3
always holds, for 1 ≤ l ≤ t.

Example 3. Refer to the sample ontology tree T as shown in Figure 4.1. Let

the scaling factor s be 10 (for simplicity) and control parameter θ be 0.7. Suppose

Bob be the target user (i.e., ui = Bob) and Charles be the user chosen by Bob

randomly from group G (i.e., Charles ∈ Gi where Gi ⊂ G). As mentioned in Exam-

ple 1, let their friendship vectors be vBob = 〈1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0〉 and vCharles =

〈0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1〉 respectively. Without loss of generality, let C3 and C4 be

the categories of Bob and Charles. That is, Cat(Bob) = C3 and Cat(Charles) = C4.

†To make the presentation clear, this work simply omits the modN2 operation in the expansion
of Equation 4.5. However, this does not affect the derived results.
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Note that in the PFRβ protocol the category information is computed locally; there-

fore, it is not revealed to other users. Based on the PFRβ protocol, various interme-

diate results along the process of computing social closeness score between Bob and

Charles are shown in Table 4.2. The final social closeness score between Bob and

Charles (i.e., SC(Bob, Charles)) is known only to Bob.

4.5.5. Complexity Analysis of PFRβ. Next, the computation and com-

munication costs of the PFRβ protocol are analyzed.

Computation Cost. Similar to the PFRα protocol, the main computation cost

of PFRβ comes from Stage 2. During Stage 2, the target user ui encrypts the nor-

malized friendship vector component-wise (following from step 2(b) of Algorithm 5)

and also encrypts the tag similarity scores with each of the deepest non-leaf category

nodes (from step 2(c) of Algorithm 5). This results in O(n+m) encryptions. In ad-

dition, ui has to perform t number of decryptions (from step 4(a) of Algorithm 5). As

mentioned earlier, t is smaller than n in practice and also the cost of encryption and

decryption are almost the same. Therefore, the computation cost of ui is bounded

by O(n + m) encryptions. Furthermore, each user ujl ∈ Gi performs n number of

exponentiation operations (following from step 3(c) of Algorithm 5). Therefore, the

computation cost of each ujl is bounded by O(n) exponentiations, for 1 ≤ l ≤ t.

Communication Cost. Unlike the PFRα protocol, PFRβ does not need the

help of network administrator for computing the users’ categories; therefore, there is

no communication between users and the network administrator. The only commu-

nication in the PFRβ protocol is between ui and each user in Gi (which occurs during

Stage 2 of PFRβ). During stage 2, the target user ui sends his/her component-wise

encryption of normalized friendship vector (which is of size n) and the encrypted

values of m tag similarity scores to each user ujl ∈ Gi. Hence, the communication
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Table 4.2: Various intermediate results during the computation of social closeness
score between Bob and Charles based on the PFRβ protocol

For s = 10 and θ = 0.7
Bob:
~vBob = 〈0.5, 0.5, 0, 0, 0.5, 0, 0, 0, 0.5, 0, 0〉

VBob = 〈Epk(5), Epk(5), Epk(0), Epk(0), Epk(5), Epk(0), Epk(0), Epk(0), Epk(5), Epk(0), Epk(0)〉

ZBob = 〈Epk(75), Epk(75), Epk(200), Epk(18), Epk(18), Epk(18), Epk(18)〉

Send VBob and ZBob to Charles

Charles:
~vCharles = 〈0, 0.4, 0, 0, 0.4, 0.4, 0.4, 0, 0, 0, 0.4〉

YCharles = Epk(40) and ZBob[Index(Cat(Charles))] = Epk(18)

SCharles = Epk(334); send SCharles to Bob

Bob:

SC(Bob,Charles) =
Dpr(SCharles)

s3
= 0.334

cost between ui and ujl is bounded by O(z · (n + m)) in bits, where z denotes the

encryption key size in bits.

4.5.6. Security Analysis of PFRβ. During the initialization step, the co-

ordinator randomly permutes the global encrypted list of social tags before sending

it to the network administrator. Due to this, the network administrator cannot trace

back which social tag belongs to which user. Therefore, the revelation of global list

of social tags to the network administrator can be treated as minimum information

leakage. Other than this, the only communication in PFRβ is between ui and each

user ujl in Gi. Since the computation of matching scores is performed by each user

locally using their respective social tags, the privacy of users social tags and their

category information is preserved. In addition, the friendship vector which is sent

to ujl is encrypted by ui. Since the private key is only known to ui, the privacy of

friend lists of ui and ujl is also preserved (following from [60, 61]). Hence, the PFRβ
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protocol preserves the privacy of users’ friend lists along with their social tags and

category information under the assumption that the global list of social tags can be

revealed to the network administrator. At the end of the PFRβ protocol, the social

closeness scores (which is also the desired output) are revealed only to ui.

4.6. OTHER SECURITY CONCERNS

This sub-section discusses additional security issues related to the disclosure

of social tags and common network attacks, such as substitution, man-in-the-middle

and impersonation attacks. Also, it analyzes how these attacks are related to the

proposed protocols.

4.6.1. Security of Social Tags. The proposed protocols assume that social

tags are part of a user’s personal profile. Since social tags may reveal a user’s certain

interests or hobbies that the user may not want others to know, it is in the user’s

best interest to keep them private. Some social networks (e.g., Facebook) provide

an option that allows users to set their friend lists and personal profiles as private

information. Although it is not known whether this is the case for every social

network, having such an option is a general trend due to increasing privacy concerns.

Therefore, the main goal of the PFRβ protocol is to protect the security of users’

social tags and friend lists.

In the current implementation, the PFRβ protocol may reveal the number of

social tags of a user ua to a user ub when ua sends his or her encrypted social tags to

ub. The size or the number of social tags hardly leaks privacy information regarding

a user’s profile. However, one can eliminate this problem by adding dummy social

tags to ua’s encrypted social tag list to hide the actual number of social tags that ua

has. At the end, these dummy tags can be removed by the network administrator

when he or she builds the social-tag or ontology tree.
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4.6.2. Common Threats Related to Network Security. The proposed

protocols utilize the underlying communication structure provided by the social net-

work service provider. Therefore, as long as the underlying communication network

is secure against the man-in-the-middle and impersonation attacks, the proposed pro-

tocols are safe from these attacks. On the other hand, substitution attack is possible

under the proposed protocols when the adversary in consideration is malicious (in-

stead of assuming semi-honest in the current protocols). By substitution attack, a

user can substitute his or her actual input with some fake input to probe other users’

private information. Since the protocols only return similarity scores, the substitution

attack will not be very effective.

To further prevent substitution attack, one could employ some auditing and

outlier detection protocols as follows. The system keeps an audit trail for each user.

When a user with potential abnormal or malicious behavior is detected, the network

administrator can run an audit check to compare the user’s profile information and

the actual information used by the user during the execution of the proposed pro-

tocols. This auditing process could be implemented as a secure protocol under the

accountable computing framework [63, 64] so that the user’s private information is

not leaked during the auditing process. Developing such a secure protocol is not

straightforward, and this work leaves it as part of the future research direction.

4.6.3. Dimension Reduction of the Global Friend Space. When n be-

comes very large, in terms of millions, the computation cost of the proposed protocol

becomes very expensive. The increased cost mainly due to the size of the global

user/friend space G. Some potential ways to reduce the size of the global friend

space are discussed below.

Applicability of Secure Set Intersection Protocols. Since the individual friend

list of a user is generally very small, one may want to use secure set intersection

protocols (that do not need to represent a friend list under G) to compute the Cosine
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similarity between two friend lists. However, by using the secure set intersection

protocols proposed in [65, 66, 67] to compute the Cosine similarity, the intersection

size between two friend lists will be disclosed. This can allow an adversary (e.g., the

target user ui) to probe other users’ friend lists. To maximize security protection

of friend lists, this work adopted the secure dot product protocol [68] that bypasses

the direct computation of the intersection of two friend lists. Since the friend list

vectors are normalized, the dot product between two normalized lists gives the Cosine

similarity between the two lists. In this way, the intersection size is never disclosed.

Generating a Virtual Friend Space. When n is large and to improve compu-

tation efficiency of the proposed protocols, this work adopts universal hash functions

to generate a virtual friend space that is much smaller than the actual global friend

space. For example, ui initially develops a mapping function (converting IDs in a

friend list to an integer domain). This mapping function is sent to every user ujl in

Gi. From the mapping function alone, ujl can map every ID or user log-in in his or

her friend list to an integer value within a proper domain. Then through a universal

hash function, these values can be mapped to a vector whose size is much smaller

than |G|. Given a positive integer v, a universal hash function, denoted by ha,b, can

be derived as follows:

ha,b(v) = (a · v + b mod p) mod |S| (4.6)

where p is a prime, a ∈ Z
∗
p = {1, 2, . . . , p − 1} and b ∈ Zp = {0, 1, . . . , p − 1}. The

hash function has the property of collision resistant. The universal hash function is

commonly used to map values from some larger domain to chosen smaller domain and

is especially useful when the number of elements in a set is much smaller than their

domain size. From the existing results [69], it has been shown that when p is close

to 9,000 and the number of elements is limited by hundreds, the Cosine similarities
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computed under this virtual global friend space are almost 100% accuracy. Therefore,

by utilizing a universal hash function, this work claims that the proposed protocols

can still be efficient and preserve maximum security without sacrificing much or any

accuracy.

4.7. EXPERIMENTAL RESULTS

This sub-section empirically analyzes the computation costs of the proposed

protocols based on various parameters. Since both proposed protocols compute the

social closeness scores based on the scoring function in [13], their accuracy is exactly

similar to the method in [13]. In particular to PFRβ, if the social closeness scores

are too low (i.e., if the scores are less than a threshold value set by ui), then ui can

repeat the process with a new subset of users (i.e., by selecting different Gi).

The proposed protocols were implemented in C, and experiments were per-

formed on a Intel R© Xeon R© Six-CoreTM 3.07GHz PC running Ubuntu 10.04 with

12GB of RAM. In the evaluations, Paillier cryptosystem [55] is used due to its effi-

ciency (however, any other HPEnc system can be used to implement the proposed

protocols). The Paillier key size is set to 1,024 bits (a commonly accepted key size)

for all the experiments. Though the results presented here are for key size 1,024 bits,

one can observe that the computation time increases by almost a factor of 6 when the

size of encryption key doubles and other parameters are fixed. Furthermore, assume

that on average each user uk ∈ G contains 100 tags (i.e., |Tag(uk)| = 100). First,

the computation costs of the proposed protocols are analyzed separately based on

different parameters. Then, the computation costs of both protocols are compared

under various parameter settings.
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4.7.1. Computation Cost of PFRα. The computation cost of PFRα mainly

depends on n (i.e., number of users in G) and t (i.e., number of users in Gi). In ad-

dition, the computation cost of ui is different from ujl (observe that the computation

cost is the same for every user in Gi). Therefore, the computation costs of ui and

ujl for different values of n and m are analyzed. Note that the computation cost of

ui and ujl are independent of m (i.e., number of non-leaf category nodes) since the

computation of user category information is shifted to the network administrator in

PFRα. Hence, for the rest of this sub-section, the value of m is fixed to 20. The

results are as shown in Figure 4.2.

For t = 50 and varying values of n, the computation cost of uj and ujl are

given in Figure 4.2(a). From Figure 4.2(a), it is clear that the computation of ui is

significantly high (due to expensive encryption operations) compared to ujl (due to

less expensive homomorphic addition and multiplication operations). For example,

when n = 1000, the computation cost of ui and ujl are 2.703 and 0.024 seconds

respectively. As expected, the computation cost of ui and ujl is almost doubled

whenever n is increased by a factor of two. For instance, as shown in Figure 4.2(a),

the computation cost of ui is changed from 2.703 to 5.277 seconds when n is changed

from 1000 to 2000. However, for ujl , the increase in the computation cost is very

small (due to less expensive homomorphic addition and multiplication operations)

when n increases.

Similarly, for n = 1000 and varying values of t, the computation cost of uj and

ujl are as shown in Figure 4.2(b). Since the computation cost of ujl is independent

of t, it remains constant (0.024 seconds) for varying values of t. On the other hand,

the number of decryption operations performed by ui depends on t. As shown in

Figure 4.2(b), the computation cost of ui grows linearly with t. For example, the

computation cost of ui varies from 2.703 to 3.223 seconds when t is changed from 50

to 250.
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Figure 4.2: Computation costs of PFRα for varying n and t with m = 20

4.7.2. Computation Cost of PFRβ. Unlike PFRα, the computation cost

of PFRβ also depends on m in addition to the parameters n and t. Therefore, the

run time of ui and ujl for varying values of n, t, and m are computed. The results

are as shown in Figure 4.3.

First, the values of t and m are fixed to 50 and 20, respectively. The compu-

tation cost of ui and ujl for varying values of n are shown in Figure 4.3(a). It is clear

that, following from Figure 4.3(a), the computation cost of both ui and ujl grows

linearly with n. For example, when n is changed from 1000 to 5000, the computation

cost of ui varies from 3.02 to 13.304 seconds respectively. A similar trend can be

observed for ujl .

Next, when n = 1000 and m = 20, the run time of ui and ujl for varying t are

computed. As shown in Figure 4.3(b), the computation cost of ui varies from 3.02 to

3.54 seconds when t is changed from 50 to 250. Whereas, the computation cost of ujl

varies from 0.287 to 0.404 seconds when t is varied from 50 to 250. In a similar way,

the run time of ui and ujl for varying values of m are computed when n = 1000 and

t = 50. As shown in Figure 4.3(b), observe a linear growth in the computation time

of both ui and ujl with varying m.
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Figure 4.3: Computation complexity of PFRβ for varying n, t, and m

Based on the above results, it is clear that the computation cost of ui and ujl

in both PFRα and PFRβ does not increase much for varying t. This further justifies

the complexity analysis given in Sections 4.5.2 and 4.5.5.

4.7.3. Comparison: PFRα Vs. PFRβ. This sub-section compares the

total run time of PFRα with PFRβ (excluding the cost of the network administrator)

as shown in Figure 4.4. First, the values of t andm are fixed to 50 and 20, respectively.

As shown in Figure 4.4(a), the total run time of both protocols grows linearly with

increasing n. Note that since |Tag(uk)| is fixed to 100 for each user uk ∈ G, the total

run time of PFRβ is not significantly more compared to that of PFRα for any given

n. For example, when n = 3000, the total run time of PFRα and PFRβ are 7.953

and 8.533 seconds, respectively.
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Figure 4.4: PFRα Vs. PFRβ

Given n = 1000 and t = 50, the total run time of both proposed protocols

for varying values of m are as shown in Figure 4.4(b). As expected, the run time

of PFRα (which is 2.727 seconds) remains to be constant for increasing values of m

since the computation cost of both ui and ujl in the PFRα protocol are independent

of m. However, the run time of PFRβ varies from 3.307 to 3.64 seconds when m

is increased from 20 to 100 since the computation cost of ui in the PFRβ protocol

depends on m.

4.8. CONCLUSION

In the recent years, friend recommendation application has gained significant

importance since it helps for the development of entire network structure which is

essential for the survival of any online social network. In addition, it also helps users

to meet new friends based on their dynamic interests and to expand their social

connections. However, the existing friend recommendation techniques do not take

users’ privacy into consideration; therefore, they are not applicable in a privacy-

preserving environment. This work proposed two private friend recommendation

algorithms for users in a group G by leveraging both social tags and network topology.
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For a given target user ui, the proposed protocols compute the social closeness scores

between ui and each user in the subset Gi ⊂ G in a privacy-preserving manner by

utilizing an ontology tree T constructed by the domain expert such as the network

administrator.

In the first protocol (referred to as PFRα), the target user ui can choose the

users in Gi (excluding ui and friends of ui) based on his/her interest. Also, PFRα is

more efficient than the second protocol (referred to as PFRβ), however, this efficiency

gain comes at the expense of releasing users social tags to the network administrator.

Whereas the PFRβ protocol facilitates user ui to compute the social closeness scores

with some random users in G (i.e., Gi is chosen randomly after excluding ui and

friends of ui from G). Nevertheless, PFRβ protects the privacy of users’ friend lists,

social tags, and category information.

The proposed protocols in this work assume that the network administrator

builds the ontology tree T based on the domain knowledge of a particular group.

However, extending it to multiple groups may not seem to be feasible at this point of

time and this issue will be addressed in the future work. Though the second protocol is

more secure, the amount of computation involved for user ui is high when the number

of deepest non-leaf (category) nodes in T is large. In addition, this work used social

tags as the content of user information. However, computing the similarity between

user profiles based on other details such as education, hobbies, and employment in

a privacy-preserving manner can still be achieved using the secure computation of

cosine similarity. Therefore, investigation of the above issues can be regarded as an

interesting direction for future work.
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5. PRIVACY-PRESERVING FRIEND RECOMMENDATIONS USING
COMMON NEIGHBORS METHOD

Given the snapshot of an OSN, the social closeness between two users is termed

as proximity. The proximity measures can be divided into two groups. The first group

includes measures based on node neighborhoods, such as common neighbors, Jaccard

Coefficient, Adamic/Adar, and preferential attachment. Whereas, the second group

consists of measures based on ensemble of all paths, such as Katz, Hitting time, Page

Rank and SimRank. It was shown that the common neighbors method acts as a good

proximity measure to capture the similarity among the nodes of a social network

[15, 16]. Therefore, to be more concrete, this work uses the common neighbors as the

similarity measure to compute the social closeness between two users.

More specifically, this work proposes two novel methods for solving the friend

recommendation in a privacy-preserving manner. What is private to a given user

is subjective in nature. In particular to the friend recommendation problem, the

friendship between any two users can be treated as sensitive/private information.

This assumption is realistic and being supported by many on-line social networks

(e.g., Facebook) where users are allowed to hide their friend lists. Most often, when

people maintain friendship with trusted ones, there is much information flowing from

one to another. Thus, revealing this sensitive information (i.e., friendship) poses a

great threat to user privacy through social engineering attacks [24, 25].

Additionally, this work assumes that the social network operators or adminis-

trators are not allowed to know the users’ friend lists or other private personal profile

information. Note that this is a commonly made assumption in the related problem

domains [57, 70, 71, 72, 73, 74, 75, 76] and such a social network has several signifi-

cant benefits. For example, when a user’s private personal profile is not disclosed to

the social network, the network would likely not face any obligations about leaking
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its users’ private information when the network were hacked. Therefore, the social

network has the incentive not to know the user’s private information, like friend list.

On the other hand, the user has more incentive to use the social network since the

user has complete control over his or her private information. Due to increasing pri-

vacy concerns, such a private social network will become more common, and it can

attract non-traditional users. In addition, since the social network provider does not

know the network structure and users’ private profile, this may allow private organi-

zations or government agencies to outsource their internal communication means to

such networks. This work claims that there will be a market for such a privacy social

network. Hence, by assuming users’ friend lists are private, this work proposes a set

of solutions by utilizing the common neighbors method as the underlying similarity

metric.

5.1. PROBLEM DEFINITION

Consider a social network where the friendship of two users is treated as pri-

vate, and the other users should not know whether the two users are friends. In this

social network, users can still create or share contents among themselves, but the

friend list of a user (considered private) should be accessible only by the user him-

self/herself. The challenge is how to perform friend recommendation in such a social

network without disclosing the friendship information between any two users to the

other users. This problem is referred to as privacy-preserving friend recommendation

(PPFR), and the goal of this section is to develop PPFR protocols based on the

common neighbors method [15]. Let A be the target user (who wish to make new

friends) in a social network and Fr(A) denote the friend list of A. Without loss of

generality, assume Fr(A) = 〈B1, . . . , Bm〉, where Bi is a friend of A, for 1 ≤ i ≤ m.
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More formally, the PPFR protocol can be defined as follows:

PPFR(A,Fr(A), F r(B1), . . . , F r(Bm), t)→ S (5.1)

where t denotes a threshold value (more details are given in the later part of this

section) and S denotes the list of recommended friends whose common neighbors

scores with A are greater than or equal to t. The following properties hold for a

PPFR protocol:

(a). Privacy-Preserving

• Fr(A) (resp. Fr(Bi), for 1 ≤ i ≤ m) is never disclosed to users other than

A (resp. Bi) in a social network.

• Similarly, ∀ Cij ∈ Fr(Bi), Fr(Cij) is never disclosed to users other than

Cij.

• Friend lists of all users including A are never disclosed to the social network

administrator T .

• At the end of PPFR, S is only known to A.

(b). Correctness

• S ⊆ ⋃m

i=1 Fr(Bi)

• ∀ C ∈ S ⇒ Φ(A,C) ≥ t

where C is a recommended new friend to userA and Φ(A,C) denotes the common

neighbors score between A and C. In order to recommend C as a new friend to

A, Φ(A,C) should be greater than or equal to t.

The proposed PPFR protocols provide a means to recommend friends to A based

on the common neighbors scores in a privacy-preserving manner. Note that only the
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users with scores ≥ t are recommended as friends to A. However, A may not wish to

make friendship just simply based on the recommendations from the PPFR protocols.

That is, A might want to know more about the recommended friends before sending

the friend requests. Nevertheless, after the recommendations, A can visit the web

pages corresponding to the recommended friends and send friend requests to only

those users who are of particular interest to A.

For example, consider the case where Bob and Charles are recommended as

new friends to Alice using the PPFR protocols. Without loss of generality, let us

assume that Charles was in the same high school as Alice and Bob has no relationship

with Alice (except that they share one or more common friends). Once Alice receives

the recommendations, she may find that Charles is her old schoolmate from the web-

page of Charles. Then, Alice can simply send a friend request only to Charles (whom

she might trust) and may ignore Bob (if Alice does not want to establish friendship

with unknown users).

5.2. MAIN CONTRIBUTIONS

This work presents two novel PPFR protocols that satisfy the well-known se-

curity definitions in the literature of secure multiparty computation (SMC) [50, 77].

The first protocol adopts an additive homomorphic encryption scheme [55] and pro-

vides a very strong security guarantee. It also utilizes a universal hash function for

improving the efficiency. This efficiency comes at the expense of degraded accuracy

due to the involved hash collisions. Whereas, the second method utilizes the con-

cept of protecting the source privacy [78] through randomizing the message passing

path and recommends friends accurately. The main contributions of this work are

summarized as follows:
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• Security - Both of the proposed protocols preserve the privacy of each user

(i.e., his/her friend list). Nevertheless, both protocols leak different additional

information thereby providing different security guarantees. The first protocol

leaks the common neighbors scores to a third party (denoted by T , such as the

network administrator). However, due to hashing and random permutation,

T cannot identify the source of this scores. The second protocol reveals the

common neighbors scores which are≥ t to user A. Since the protocol guarantees

the source privacy, A cannot determine the sources corresponding to the scores.

A detailed security analysis of both protocols is provided in the later part of

this section.

• Accuracy & Efficiency - The first protocol uses a universal hash function,

so it is expected to produce false positives and false negatives due to hash

collisions. Also, its efficiency depends on the parameters of hash function and

the size of Fr(A). On the other hand, the second protocol recommends friends

accurately and its efficiency depends mainly on the size of both Fr(A) and

friend lists of A’s friends.

• Flexibility - The proposed protocols act as a trade-off among security, accu-

racy and efficiency; therefore, a domain expert can choose between these two

protocols depending on the requirements of a specific application.

5.3. RELATED WORK

This sub-section first reviews upon the existing work related to friend recom-

mendations in OSNs. Then it discusses the private social networks and the existing

PPFR algorithms. Also, it summarizes the literature work on secure multiparty

computation along with the security definition adopted in this paper.
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5.3.1. Existing Friend Recommendation Algorithms in OSNs. So-

cial network analyses have been utilized for various business applications [6, 27], such

as predicting the future [28] and developing recommender systems [29, 30, 31, 32].

With growing interest of expanding a person’s social circle, friend recommendation

has become an important service in many OSNs. Along this direction, researchers

from both academia and industry have published much work. In particular, Chen

et al. [9] evaluated four recommender algorithms, which utilize social network struc-

ture and/or content similarity, in an IBM enterprise social networking site Beehive

through personalized surveys. Their analysis showed that algorithms based on social

network information produce better-received recommendations. A novel user cali-

bration procedure was proposed by Silva et al. [11] based on a genetic algorithm to

optimize the three indices derived from the structural properties of social networks.

Xie [12] designed a general friend recommendation framework to recommend friends

based on the common interests by characterizing user interests in two dimensions -

context (e.g., location and time) and content.

By treating friend recommendation process as a filtering problem, Naruchit-

parames et al. [10] developed a two-step approach to provide quality friend recom-

mendations by combining cognitive theory with a Pareto-optimal genetic algorithm.

Gou et al. [13] developed a visualization tool (named as SFViz) that allows users

to explore for a potential friend with an interest context in social networks. Their

method considers both semantic structure in social tags and topological structures

in social networks to recommend new friends. The correlation between social and

topical features in three popular OSNs: Flickr, Last.fm, and aNobii has been stud-

ied by Aiello et al. [33] to analyze friendship prediction. Their results showed that

social networks constructed solely from topical similarity captured the actual friend-

ship accurately. Nevertheless, Facebook uses the “People You May Know” feature to

recommend friends based on the simple “friend-of-a-friend” approach [34].
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5.3.2. Private Social Networks. In current online social networks (OSNs),

such as Facebook and Google+, users do not have full control of their own data.

Though the OSN providers facilitate users with various privacy options, this will not

guarantee the privacy of user’s data since the data are stored on the server of an

OSN provider (assuming the data are not encrypted). In addition, with the past

history of data leaks and privacy controversies [79, 80], users have many trust issues

with OSN providers. To address various security concerns in OSNs, researchers have

been working to develop decentralized architectures for OSNs where social networking

service is provided by a federation of nodes (i.e., peer-to-peer networks). Along this

direction, much work has been published such as [81, 82, 83, 84, 85, 86].

Most recently, Nilizadeh et al. [87] proposed a decentralized architecture (re-

ferred to as Cachet) to efficiently support users with the central functionality of

OSNs while providing security and privacy guarantees. Cachet uses a combination

of techniques, namely distributed hash tables and attribute based encryption [88], to

protect confidentiality, integrity, availability of user content as well as the privacy of

user relationships. In particular, they developed a gossip-based social caching algo-

rithm to speedup the process of loading the data in newsfeed application. However,

their scheme is entirely different from the work presented in this section. First, their

decentralized architecture involves no network provider and the communication hap-

pens directly between users. In this work, user’s data are encrypted and stored on

the server of an OSN. Therefore, the problem setting in this paper is orthogonal to

their model. Second, the algorithm proposed in [87] is to support newsfeed applica-

tion (under peer-to-peer network architecture) whereas this paper focuses on friend

recommendation application. Third, the peer-to-peer based social network system in-

curs heavy computation as well as communication costs on the users. Therefore, this

work focuses on conventional OSN framework where the data resides on the server of

an OSN.



95

The decentralized architecture in OSNs is a more restricted model since it

avoids the use of an OSN provider altogether. Also, it was claimed in [76] that

decentralization is an insufficient approach since it leaves the user with an enviable

dilemma: either sacrifice availability, reliability and convenience by storing data either

on his/her machine or entrust his/her data to one of the several providers that he/she

probably does not know or trust any much more than he/she would with a centralized

provider. Therefore, this work explicitly assumes that user’s data are encrypted at

first place, for privacy and security reasons, and then sent to an OSN. Under such

an architecture, where user’s encrypted data are stored on the OSN’s server, various

schemes, such as [57, 70, 71, 72, 73, 74, 75], have been proposed to protect users’

privacy through cryptography. Nevertheless, even after proper encryption of user’s

data, centralized provider cannot be trusted for various reasons. For example, a

malicious provider can show different users divergent views of the system state. This

behavior is referred to as server equivocation [76].

Along this direction, the authors in [76] developed a novel framework for

social network applications, referred to as Frientegrity, that can be realized with

an untrusted service provider. In Frientegrity, the service provider sees only the

encrypted data and cannot deviate from correct execution without being detected.

Therefore, their system preserves data confidentiality and integrity. However, as

mentioned in [76], Frientegrity reveals social relations to the service provider whereas

in this work social relations (i.e., friend lists) are protected from the service provider.

Also, in their method, the target userA discovers the new friends by searching through

the access control lists of his/her friends for potential FoF (i.e., friend-of-a-friend) that

he/she might want to become friend with. However, such a process is not allowed

from user’s privacy perspective since this reveals the friend lists of A’s friends to A.

On the other hand, in this work, friend list of a user is never revealed to other users.
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This work assumes that users as well as the OSN provider are semi-honest.

However, in the case of malicious model, the proposed protocols can be combined

with the techniques from [76] in order to mitigate the server equivocation problem.

5.3.3. Existing PPFR Algorithms in OSNs. Due to various privacy is-

sues [17, 18, 19, 20, 21, 22, 23], many users keep their friend lists private. Only

recently, researchers have focused on developing accurate and efficient PPFR meth-

ods. Along this direction, Dong et al. [35] proposed a method to securely compute

and verify social proximity between two users using cosine similarity in mobile social

networks. This work differs from theirs in two aspects. First, the problem setting

in this section is entirely different from theirs. More specifically, this work assumes

users’ friend lists are kept as secret; thus, who are involved in the computation is not

revealed before hand. Whereas, in their approach, participating users are aware of

one another, and only their social closeness is securely computed and verified to de-

termine the new friendship. Secondly, the proposed protocols in this work are purely

based on the user IDs and does not need any pre-computation from a server. On the

other hand, their approach assumes that the social coordinates (which may change

often due to the mobility of users) for individual users are pre-computed by a trusted

central server which is a violation of user privacy.

Machanavajjhala et al. [36] estimated the trade-offs between accuracy and

privacy of private friend recommendations using differential privacy [37, 54]. In their

work, the authors used the existing differentially private algorithms as underlying sub-

routines and assumed the existence of PPFR protocols based on these sub-routines.

Also, according to their claims, if privacy is to be preserved when using the common

neighbors utility function, only users with Ω(log n) friends can hope to receive accu-

rate recommendations, where n is the number of users in the graph. In this work,

the privacy guarantees are based on an entirely different security model, namely

the semi-honest security definitions from the field of secure multiparty computation



97

(SMC) [38, 39, 50]. Under the SMC model, this work develops accurate PPFR pro-

tocols. In particular, the second proposed protocol recommends friends accurately

irrespective of the size of users’ friend list and simultaneously preserves the privacy

of each user.

Recently, Samanthula et al. [89] proposed a new private friend recommenda-

tion algorithm using a specific scoring function [14, 53] that takes the social network

structure as well as the number of real message interactions among social network

users into consideration. For a given target user A, their method computes the rec-

ommendation scores of all potential users who reside within a radius of r (≥ 2) in

the corresponding candidate network of A. When r = 2, the snapshot of the social

network in their approach is the same as the one considered in this work. Never-

theless, the scoring function adopted in this work (i.e., common neighbors method)

is entirely different from theirs, and the protocols proposed in this section are more

secure in the perspective of protecting friendship information.

5.3.4. Secure Set Operations. At the first glance, secure set operation

protocols [66, 67, 90] related to intersection and union may be adopted to solve the

proposed friend recommendation problem. There are two main challenges to use these

secure set operations protocols: one is related to computation efficiency and the other

is related to security. For example, let illustrate the challenges using the protocols

proposed in [67] since these protocols seem most suitable to solve the proposed friend

recommendation problem.

First of all, to generate encrypted polynomial representation of friend lists of

A’s friends is computationally expensive because the polynomials f1, . . . , fm from all

users B1, . . . , Bm need to be multiplied together to generate f = Πm
i=1fi and f needs

to be computed based on the encrypted coefficients of f1, . . . , fm. Since the degree or

the number of coefficients of fi discloses the size of the friend list of Bi, one need to
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hide the actual degree. Let make the matter simple and assume f1, . . . , fm have the

same degree denoted by d. Therefore, the degree of f is bounded by m · d.

According to [67], the computation of f needs to be done sequentially. That is,

B1 sends the encrypted f1, denoted E(f1) to A (serving as a router), where E(f1) =

{E(f1[d]), . . . , E(f1[0])} and f1[j] is a coefficient for 0 ≤ j ≤ d. Then A sends E(f1)

to B2, and B2 returns E(f1 · f2) to A. B2 needs to perform d2 exponentiations to

produce E(f1 · f2). A repeats the above process with each remaining user. However,

the computation increases from Bi to Bi+1. Specifically, the computation cost of the

ith user Bi is bounded by i ·d2 exponentiations. For Bm, the cost is m ·d2. As a result,

even when d and m are small (e.g., m = 50 and d = 200), the computation costs for

some users are much higher than the proposed protocol (detailed complexity of the

proposed protocols is given in the later part of this section).

In addition, more computation is needed to actually identify the element in

the union above the threshold. In particular, it needs to call another secure protocol

“IsEq” to verify if two ciphertexts correspond to the same plaintext. The “IsEq”

protocol is the same as the “testRecord” protocol given in [91]. The “testRecord”

protocol is not straightforward to implement, and it needs to be called m · d times.

This further reduces the computation efficiency comparing to the proposed protocols.

Furthermore, it takes m sequential rounds for A to compute E(f), so the throughput

in the proposed protocol is much higher.

Moreover, since the polynomial f needs to be evaluated by each Bi based on

his or her private dataset. This evaluation will not produce the correct result if A

randomizes E(f) in order to hide the actual user IDs. On the other hand, if A does

not randomize E(f), Bi will know who (among his or her current friend list) will be

recommended as new friends for A. It is not clear how to prevent this information

leakage if one adopts the aforementioned secure set operation protocols.
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5.4. PRELIMINARIES

This sub-section presents some concepts and properties related to universal

hash functions, additive homomorphic encryption schemes, and common neighbors

methods which are used throughout the section. Some of the common notations used

in this section are highlighted in Table 5.1.

5.4.1. Universal Hash Function. Consider a set of integers L = {0, 1, . . . , l−

1}. The goal is to map the integers from domain L to a smaller domain V =

{0, 1, . . . , s − 1} (where s < l) with minimum number of collisions. This can be

achieved by a universal hash function [92]. Given a positive integer x ∈ L, a univer-

sal hash function ha,b is defined as follows:

ha,b(x) = (a · x+ b mod p) mod s (5.2)

where p is a prime ≥ l, a and b are randomly chosen from Z
∗
p = {1, 2, . . . , p − 1}

and Zp = {0, 1, . . . , p− 1} respectively. The universal hash function has the property

of collision resistant. This is because, ∀x, y ∈ L, h(x) − h(y) mod v is uniformly

distributed in V . That is the chance of collision between x and y is 1
s
. (Note that

there is no perfect hash function without collisions.)

5.4.2. Additive Homomorphic Probabilistic Encryption. The proposed

first protocol uses an additive homomorphic encryption scheme (denoted as HEnc)

that is probabilistic in nature. Let E and D be the encryption and decryption func-

tions of an HEnc system with pk and pr as their respective public and private keys.

Suppose N∗ is the RSA modulus or the group size, and it is a part of the public key

pk. Given two plaintexts x1, x2 ∈ ZN , an HEnc system has the following properties:

• The encryption function is additive homomorphic: Epk(x1) ·Epk(x2) = Epk(x1+

x2).

∗The product of two large prime numbers of similar bit-length.
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Table 5.1: Common notations used in the PPFR protocols

HEnc An additive homomorphic probabilistic encryption scheme

PPFR Privacy-preserving friend recommendation

SMC Secure multiparty computation

〈E,D〉 A pair of encryption and decryption functions in an HEnc System

〈pk, pr〉 Public and private key pair corresponding to 〈E,D〉
ha,b(x) Hash value of an integer x, and ha,b is an universal hash function

s The domain size of the hash function ha,b

Fr(A) The friend list of user A

B or Bi One friend of A

C or Cij One friend of B or Bi, or any user in a social network

t A threshold value for recommendation condition

• Given a constant c ∈ ZN and Epk(x1): Epk(x1)
c = Epk(c · x1).

• The encryption function has semantic security as defined in [56]. Briefly, a set

of ciphertexts do not provide additional information about the plaintext to an

adversary.

There are many HEnc systems available in the literature. However, this work uses

the Paillier’s encryption scheme [55] due to its efficiency.

5.4.3. The Common Neighbors Method. Let A and C be two users in

a social network such that C /∈ Fr(A). Then, the common neighbors score (denoted

as Φ) for A and C is defined as the number of friends/neighbors that A and C have

in common [93]. More formally,

Φ(A,C) = |Fr(A) ∩ Fr(C)| (5.3)
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Note that the common neighbors score is computed between two-hop neighboring

nodes. Therefore, in order to recommend new friends for user A, consider the users

who are two hops away from A as the possible candidates.

Example 3. Consider the sample two-hop snapshot of the social network for Alex

as shown in Figure 5.1. The figure shows all the users who are at most two hops

away from Alex. The goal is to recommend new friends to Alex. Let us assume

that t = 2. From Figure 5.1, it is clear that the set of potential candidates are

〈Baker,Bob, Evans,Martin,Wilson〉. The friend lists and the common neighbors

scores for Alex and each one of the potential candidates are as shown in Table 5.2.

Since Φ(Alex,Baker) = 2 and Φ(Alex,Martin) = 2, Baker and Martin are recom-

mended as new friends to Alex.

5.5. PROPOSED PRIVACY-PRESERVING FRIEND RECOMMENDA-
TION PROTOCOLS

To solve the PPFR problem, this work considers the following practical as-

sumptions supported in many online social networks:

1. Friendship is symmetric: If A is in Bi’s friend list, then Bi must be in A’s

friend list.

2. Known Participation: A user participation in the social network is public

information. E.g., a person can browse existing Facebook user IDs.

3. Recommendation Condition: Consider the case of recommending new friends

to A. These new friends are chosen from the candidate users that share at least

t friends with A. Here, the candidate users are all the friends of A’s friends.

In general, t can be a static value decided by either the network administrator

or A, and it can be changed occasionally. The observation is 1 ≤ t ≤ |Fr(A)|.
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Figure 5.1: Sample snapshot (two-hop) of social network for Alex

On one hand, a small value of t may result in more number of recommenda-

tions. On the other hand, while increasing it, may result in lesser number of

recommendations. In this section, assume that t (which is randomly chosen by

A from [1, |Fr(A)|]) is public.

Since the proposed protocols are distributed, the messages communicated

among participating entities need to be authenticated. There exist many user and

message authentication protocols, so this work does not address these issues when

presenting and analyzing the proposed protocols. In addition, this work assumes that

the participating entities do not collude.

5.5.1. The PPFRh Protocol. The PPFRh protocol is based on an additive

homomorphic encryption scheme as explained earlier. The basic idea is to encrypt

the ID of each friend of A’s friend independently (under a common candidate space)

and perform a homomorphic addition by A on the encrypted data. Since the global

user space is public in a social network, one could use this global space to represent

the candidate space without disclosing any particular candidate’s ID to A. However,
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Table 5.2: Friend lists and the computation of common neighbors scores for Alex
based on Figure 5.1

Friend Lists
Fr(Alex) = 〈Scott,Moore, Rice,Davis〉

candidates = 〈Baker,Bob, Evans,Martin,Wilson〉

Fr(Baker) = 〈Scott,Moore〉
Fr(Bob) = 〈Moore〉
Fr(Evans) = 〈Moore〉
Fr(Martin) = 〈Rice,Davis〉
Fr(Wilson) = 〈Davis〉

Common neighbors scores for Alex
Fr(Alex) ∩ Fr(Baker) = 〈Scott,Moore〉
Fr(Alex) ∩ Fr(Bob) = 〈Moore〉
Fr(Alex) ∩ Fr(Evans) = 〈Moore〉
Fr(Alex) ∩ Fr(Martin) = 〈Rice,Davis〉
Fr(Alex) ∩ Fr(Wilson) = 〈Davis〉
Φ(Alex,Baker) = Φ(Alex,Martin) = 2
Φ(Alex,Bob) = Φ(Alex,Evans) = 1
Φ(Alex,Wilson) = 1

as the size of the social network is usually large (e.g., in millions), generating a global

user space is often impractical.

In general, the size of the potential candidate space (i.e.,
∑m

i=1 |Fr(Bi)|) is

much smaller than the size of the global user space. Additionally, since users’ friend

lists are private, neither A nor Bi knows the potential candidate space before hand.

A quick fix is for Bi to use a universal hash function that can hash the IDs of his/her

friends into integers less than s (a predefined system parameter). This creates a

pseudo and oblivious candidate space. Since the universal hash function maps integers

from one integer domain into another integer domain, there is a need to have a

mechanism to convert each user ID which may contain some characters into a unique

integer. A simple and straightforward approach is to initially convert each character
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in the ID (if there are any) into its ASCII value (a three-digit integer). In addition,

a single digit d (0 ≤ d ≤ 9) can be mapped to 128 + d. Then, any given string can

be mapped to a unique integer by appending these three-digit values together. E.g.,

ID “Bob52” is converted as follows:

int(Bob52) = ASCII(B)||ASCII(o)||ASCII(b)||133||130

= 066||111||098||133||130

= 066111098133130

where || denotes concatenation. This conversion method satisfies the condition that

each user ID is mapped into a unique integer, and this integer can be easily mapped

back to its corresponding user ID. The collision caused by the hash function is the

price to pay for the accuracy in recommendations. Hereafter, A is used to simply

represent the converted integer of ID(A) for convenience. Also, Fr(A) gives the list

of converted user IDs of A’s friends.

Based on the above description, A chooses a prime number p, such that the

converted user IDs are in the range of [0, . . . , p− 1]. Then A chooses the values of a

and b randomly from Z∗
p and Zp respectively. In addition, A chooses the domain size

of the hash function ha,b and sets it to s. Also assume that there exists a party T (e.g.,

the network administrator) in the network which generates the key pair (pk, pr) using

the Paillier’s encryption scheme [55]. T sends the public key pk to A. In this protocol,

T is only responsible for certain intermediate computations. These computations do

not reveal the user IDs to T (due to involved randomization and permutation) and

consequently preserve user privacy.

The main idea of the PPFRh protocol is as follows. Initially, each Bi hashes the

user IDs in his/her friend list (omitting A’s ID) and generates a two-column matrix

Mi, where the first column contains user IDs and the second column contains either 0s
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Algorithm 6 PPFRh

Require: Friend list of each user is treated as private (Note: the public key pk is
known to A and T , whereas the private key pr is known only to T )

1: A:

(a). Randomly choose a, b from Z
∗
p and Zp, and pick s

(b). Send ha,b (i.e., a, b, p, s) and pk to each Bi (1 ≤ i ≤ m)

2: Bi (1 ≤ i ≤ m):

(a). Receive ha,b and pk from A

(b). Compute matrix Mi using ha,b and Fr(Bi)

(c). Compute M ′
i [j][k]← Epk(Mi[j][k]), for 1 ≤ j ≤ s and 1 ≤ k ≤ 2

(d). Send M ′
i to A

3: A:

(a). Receive M ′
i from Bi, for 1 ≤ i ≤ m

(b). Compute Z[j][2]← Πm
i=1M

′
i [j][2], for 1 ≤ j ≤ s

(c). Compute Z[j][1] ← Z[j][2]rj · Πm
i=1M

′
i [j][1], where rj is randomly chosen

from Z
∗
N , for 1 ≤ j ≤ s

(d). Compute Ẑ ← π(Z) and send Ẑ to T (note that function π is known only
to A)

4: T :

(a). Receive Ẑ from A

(b). Compute freqj ← Dpr(Ẑ[j][2]), for 1 ≤ j ≤ s

(c). If freqj ≥ t, compute βj ← Dpr(Ẑ[j][1])

freqj
. Else, set βj to 0, for 1 ≤ j ≤ s

(d). Send β to A

5: A:

(a). Receive β from T

(b). F ← π−1(β)

(c). S = {Fj − rj mod N | Fj ∈ F ∧ Fj 6= 0, for 1 ≤ j ≤ s}

or 1s. Given the jth row in Mi, if the value in the second entry is 1, the corresponding

first column entry contains an actual user ID, and j equals to the hashed value of the
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user ID. After successfully generating Mi, Bi encrypts Mi component-wise and sends

it to the target user A.

Upon receiving all encrypted matrices, A computes the encrypted two-column

frequency matrix using homomorphic additions, where the first column contains en-

crypted user IDs and the second column contains the encrypted frequency of the

corresponding user ID in the friend lists of A’s friends. After this, A randomizes the

user IDs, permutes the frequency matrix row-wise and sends the resulting encrypted

matrix to T . Upon receiving the matrix, T decrypts the second entry of each row to

get the frequency. If the second entry is greater than or equal to t, he/she decrypts

the corresponding first entry. Else, because the frequency is less than t, there is no

need to recommend the corresponding user. Therefore, T sets the corresponding first

entry to zero. Note that the first entries are randomized by A, so the decrypted values

will result in random values. Then T sends the updated first entries to A. Finally, A

performs the inverse permutation over the entries received from T and removes the

randomization for all non-zero entries to get the actual set of recommended user IDs

as new friends.

The main steps involved in the PPFRh protocol are shown in Algorithm 6.

To start with, whenever A wants to make new friends, he/she shares the parameters

of ha,b (i.e., a, b, p, s) and pk with only his/her friends. Then each friend Bi of A

generates a matrix Mi of size s× 2 whose values are initialized to zero and updated

according to Fr(Bi) as follows:

Mi[ha,b(Fr(Bi)[j])][1] = Fr(Bi)[j]

Mi[ha,b(Fr(Bi)[j])][2] = 1

where Fr(Bi)[j] is the jth user in Fr(Bi), for 1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)|.

(Note that while generating the matrices, A’s ID is skipped from Fr(Bi).) Briefly,
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Bi hashes each user in his/her friend list and sets the corresponding row entries

to Fr(Bi)[j] and 1 (indicating Fr(Bi)[j] being Bi’s friend) respectively. Then Bi

encrypts his/her matrixMi component-wise using the public key pk and sends it to A.

Let the encrypted matrix be M ′
i . Upon receiving the encrypted matrices, A performs

homomorphic additions† on all the encrypted matrices, i.e., M ′
i ’s component-wise and

computes a new matrix Z, for 1 ≤ j ≤ s:

Z[j][2] ← Πm
i=1M

′
i [j][2]

Z[j][1] ← Z[j][2]rj · Πm
i=1M

′
i [j][1]

where rj is a random number chosen from Z
∗
N and is used to randomize the encrypted

user ID value. After that, A permutes the row vectors of Z by computing Ẑ ← π(Z),

where π is a random permutation function (known only to A) and sends it to T .

Upon receiving Ẑ from A, T decrypts the second component of each row of Ẑ using

his/her private key pr which gives the approximate frequency, denoted by freq, of

corresponding hashed user(s). That is, T computes freqj = Dpr(Ẑ[j][2]) and decrypts

the first component of jth row of Ẑ, for 1 ≤ j ≤ s, as follows:

• If freqj ≥ t, decrypt the corresponding first component of Ẑ. That is, compute

Dpr(Ẑ[j][1]) and set βj =
Dpr(Ẑ[j][1])

freqj
. Else, set βj to 0.

• In case of no collision at location π−1(j) and freqj ≥ t, the observation is that

βj = rk +IDk, where k = π−1(j) and IDk is one of the recommended friend IDs

to A. When freqj < t, βj is always 0.

• Sends β to A where β = 〈β1, . . . , βs〉.
†Note that the multiplication and exponentiation operations on cipher-texts are followed by

mod N2 operation so that the resulting ciphertext is still in {0, 1, . . . , N2 − 1}. However, to make
the presentation more clear, this work simply drops “mod N2” from the computations in the rest
of this section.
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The decryption of the first component of each row of Ẑ gives a random value. Finally,

A applies the inverse permutation on vector β and removes the randomness for each

non-zero entry. A selects the list of recommended friend IDs as shown below:

• Let vector F be π−1(β).

• S = {Fj − rj mod N | Fj ∈ F ∧ Fj 6= 0, 1 ≤ j ≤ s}

Example 4. Refer to Figure 5.1, let t = 2 and s = 9. From Figure 5.1, Fr(Alex) =

〈Scott,Moore, Rice,Davis〉. The goal is to recommend new friend(s) to Alex using

the PPFRh protocol. Assume that the permutation function π and the hashed values

of user IDs are as shown in Table 5.3. Let M1,M2,M3 and M4 denote the matrices

generated by Scott, Moore, Rice and Davis respectively using the PPFRh protocol.

The intermediate results during various steps involved in PPFRh are shown in Table

5.3. At the end of the PPFRh protocol, Baker and Martin are recommended as new

friends to Alex.

5.5.2. The PPFRsp Protocol. If s is large enough, the PPFRh protocol can

produce very accurate results, but large s increases computation costs. To overcome

this problem, this work presents an alternative PPFR protocol, termed as PPFRsp, to

accurately and efficiently recommend friends to A, at the expense of weaker security

guarantee comparing to PPFRh.

The overall steps involved in the PPFRsp protocol are demonstrated in Al-

gorithm 7 and Algorithm 8. The main process of the protocol is presented in Algo-

rithm 7. Assume that each user A in the network generates a public-private key pair

(pkA, prA) using the RSA public key system [94]. Also, each friend of an A’s friend

(say user Cij) uses an AES encryption algorithm [58] to encrypt his/her data, and

the secret key is divided into at most |Fr(C)| different shares such that at least t

shares are required to reconstruct the secret AES key [95].
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Table 5.3: Intermediate results based on the PPFRh protocol

A Martin Bob Scott Davis Baker Rice Evans Moore Wilson

ha,b(A) 1 2 3 4 5 6 7 8 9
π(ha,b(A)) 5 8 1 6 9 4 3 7 2

M1 =




0 0
0 0
0 0
0 0

Baker 1
0 0
0 0

Moore 1
0 0




; M2 =




0 0
Bob 1
Scott 1
0 0

Baker 1
0 0

Evans 1
0 0
0 0




; M3 =




Martin 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0




; M4 =




Martin 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0

Wilson 1




Z =




E(2 · (Martin+ r1)) E(2)
E(Bob+ r2) E(1)
E(Scott+ r3) E(1)

E(0) E(0)
E(2 · (Baker + r5)) E(2)

E(0) E(0)
E(Evans+ r7) E(1)
E(Moore+ r8) E(1)
E(Wilson+ r9) E(1)




; β =




0
0
0
0

Martin+ r1
0
0
0

Baker + r5




; S = {Baker,Martin}

The main idea of the PPFRsp protocol is to let the candidates introduce them-

selves to user A in a privacy-preserving way. Here, the so called candidates are all the

friends of A’s friends. Suppose if Bi is one of A’s friends and Cij is Bi’s friend, then

Cij acts as a candidate to be a new friend of A. The user A who wants some new

friends just waits for the self introductions to come. First, Bi arranges a random path

along which his/her friend (a candidate) will pass the self introduction to A. The

random path can hide the identities of Bi’s friends by preventing A from tracking

back to them. The PPFRsp protocol is centered at user A to make friends of A’s

friends not aware of whom they are sending the self-introductions to. This preserves

the privacy of both A and each user in Fr(A). Also, since A cannot trace back to

the candidate, the privacy of each candidate (i.e., friends of A’s friends) is preserved.
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Initially, A informs only his/her friends Bi that he/she wants new friends

and wait for luck. Then, each Bi informs his/her friends the opportunity to make

a new friend. To keep his/her friend list private from A, each Bi arranges the path

of message passing for each user in Fr(Bi) to hide the source [78], for 1 ≤ i ≤ m.

That is, Bi randomly picks two users Xij and Yij for each of his/her friend Cij and

sends the path Mij = Xij||Yij||EpuYij
(A) to Cij. During the self-introduction part of

the protocol, as shown in step 3 of Algorithm 7, Cij receives the message and then

appends kBi

Cij
(the share of the key corresponding to Bi) and AESkCij

(Cij) (encrypted

ID of Cij) to Mij , and sends only Yij||EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Xij . Then,

Xij forwards EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Yij which decrypts the first part using

his/her private key prYij
to get A. After this, it forwards the remaining message

kBi

Cij
||AESkCij

(Cij) to A. Finally, in the Collect and Solve part of the protocol, as

shown in Algorithm 8, A waits and collects the returned messages from each Yij and

groups them based on AESkCij
(Cij).

For each group Gij, A proceeds as follows. If |Gij| ≥ t, A can generate

the corresponding key (kCij
) from any t different partial keys in Gij (using polyno-

mial interpolation of t shares). Using kCij
, A can successfully decrypt the message

AESkCij
(Cij) to get the user ID Cij (newly recommended friend). Else, dump the

group Gij (since the number of different partial keys are less than t and A cannot

generate the corresponding key). Note that the method in [95] guarantees that a

group with size less than t will not provide enough information for A to generate the

key, and consequently A cannot successfully decrypt AESkCij
(Cij). Observe that in

the PPFRsp protocol, since two random users are added to the path, all the messages

received by A are sent to him/her by random users (namely Yij); therefore, A cannot

trace back to the source Cij that does the self-introduction. Note that two random

users are necessary; otherwise, if only one random user were chosen to do the favor,
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Algorithm 7 PPFRsp

Require: ∀ user A, A has his/her RSA private key prA and shares his/her RSA
public key puA to the public. A uses AES encryption algorithm to encrypt data
and divides the secret AES key into at most |Fr(A)| shares such that at least t
shares are required to reproduce the secret AES key.

1: A:

(a). Send messages to each Bi that A wants some new friends where Bi ∈ Fr(A)

2: Bi (1 ≤ i ≤ m):

(a). Receive message from A

(b). for each Cij ∈ Fr(Bi) do:

• Pick two random users Xij and Yij from the social network

• Mij = Xij||Yij||EpuYij
(A)

• Send Mij to Cij

3: Cij (1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)|):

(a). Receive Mij from Bi

(b). if |Fr(Cij)| ≥ t then:

• Generate a share kBi

Cij
of kCij

• Send Yij||EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Xij

4: Xij (1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)| ):

(a). Receive Yij||EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) from Cij

(b). Send EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) to Yij

5: Yij (1 ≤ i ≤ m and 1 ≤ j ≤ |Fr(Bi)| ):

(a). Receive EpuYij
(A)||kBi

Cij
||AESkCij

(Cij) from Xij

(b). Decrypt EpuYij
(A) to get A

(c). Send kBi

Cij
||AESkCij

(Cij) to A

6: A:

(a). Collect and Solve(t)
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Algorithm 8 Collect and Solve(t)

1: G = {kBi

Cij
||AESkCij

(Cij), 1 ≤ i ≤ m ∧ 1 ≤ j ≤ |Fr(Bi)|}
2: Partition G into Gijs, where

Gij = {kBi1
Cij
||AESkCij

(Cij), . . . , k
Biz

Cij
||AESkCij

(Cij)}
3: S = ∅
4: for each Gij do
5: if |Gij| ≥ t then
6: Generate kCij

via polynomial interpolation on

{kBi1
Cij

, . . . , k
Biz

Cij
}

7: Using kCij
to decrypt AESkCij

(Cij) to get Cij

8: S ← S ∪ Cij

9: end if
10: end for
11: return S

he or she would know that Cij and A share a friend. To increase security, one can

choose more than two random users.

To protect the privacy of each Cij ∈ Fr(Bi), Cij needs to encrypt his/her user

ID (part of self-introduction), and attaches it with a partial key, which is done at step

3(b) of Algorithm 7. According to the theory proposed in [95], only the user that can

collect at least a threshold (t) number of different partial keys can generate the full

key to decrypt the user ID. Why is this necessary? Consider the goal of this protocol

- only the users who share at least t friends with A should be recommended to A, A

should not know anything else. Without the encryption of the self introduction, in

addition to getting a few recommendations of new friends, A would know the user

IDs of all his/her friends’ friends which violates the privacy of Bi. Moreover, the AES

secret key should be changed occasionally since it can be generated by A. Also note

that only one partial key should correspond to one friend like Bi to ensure that A

gets different partial keys from different friends shared by A and Cij.

Example 5. Consider the snapshot of the social network for Alex as shown in Fig-

ure 5.1, and let t = 2. Following from Figure 5.1, the set of potential candidates
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for Alex are 〈Baker,Bob, Evans,Martin,Wilson〉. By applying the PPFRsp pro-

tocol, initially, Alex informs his friends 〈Scott,Moore, Rice,Davis〉 that he wants

new friends. Then, each of Alex’s friend will create an encrypted path for each of

his/her friend. For example, Scott sends an encrypted path to his only friend Baker.

Whereas, Moore creates three different encrypted paths and sends each one of them

to her friends Baker,Bob, and Evans separately. Without loss of generality, let us

consider the potential candidate Baker. Upon receiving the encrypted paths (differ-

ent) from Scott and Moore, Baker appends his self introductions kS
B||AESkB(Baker)

and kM
B ||AESkB(Baker) to the respective random and encrypted paths. Where kS

B and

kM
B are the corresponding key shares for Scott and Moore (only known to Baker).

After this, Baker forwards the appended self-introduction messages along their re-

spective random paths. Upon receiving the messages from random users, Alex groups

the messages based on AESkB(Baker). Since Alex has two different key shares i.e.,

kS
B and kM

B corresponding to the group AESkB(Baker), he generates the key kB (as

t = 2) and decrypts AESkB(Baker) successfully and identifies Baker as the newly

recommended friend. Similarly, Alex identifies Martin as a new friend.

5.5.3. Complexity Analyses. Next, this work analyzes the computation

and communication costs of the proposed protocols.

Computation Cost. Since the proposed protocols are asymmetric in nature,

the computation costs vary for each party. For the PPFRh protocol, the computation

cost of each Bi is bounded by the number of encryption operations which depends on

the hash domain size (s). Therefore, the computation complexity of Bi is bounded by

O(s) number of encryptions. (Note that each Bi performs the encryption operations

independently using his/her friend list in parallel.) The computation complexity of

A depends on the number of homomorphic addition and exponentiation (involved

during randomization) operations. The number of homomorphic addition operations

depends on s and |Fr(A)|. Whereas, the number of exponentiations depends on the
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size of s. Therefore, the computation complexity of A is bounded by O(s · |Fr(A)|)

homomorphic additions and O(s) exponentiations. In addition, since T has to decrypt

second component of each row of Ẑ, the computation complexity of T is bounded by

O(s) number of decryptions.

For the PPFRsp protocol, computation time mainly depends on the number of

public key encryptions (which depends on the size of each Bi’s friend list). Because

the time taken to compute the AES private key, to generate the secret shares and to

reconstruct the secret key is negligible comparing to the public key encryption costs.

Therefore, the computation cost of the PPFRsp protocol is bounded by O(|Fr(B)|)

encryptions assuming that t and |Fr(A)| are not exceedingly larger than |Fr(B)|.

Communication Cost. For the PPFRh protocol, the communication occurs

between A and each of his/her friends, and also between A and T . Without loss

of generality, let K denote the Paillier encryption key size (usually 1,024 bits long).

The communication complexity between A and all of his/her friends is bounded by

O(K · s · |Fr(A)|) bits. In addition, A has to send the randomized encrypted matrix

Ẑ to T which is bounded by O(K · s) bits. Therefore, the overall communication

complexity of PPFRh is bounded by O(K · s · |Fr(A)|) bits.

In PPFRsp, communication occurs among different users involved in each ran-

domized path (i.e., Bi → Cij → Xij → Yij → A). Each Bi generates one path for

each of his/her friend whose size is bounded by O(K) bits. Then, the total communi-

cation between each Bi and his/her friends is bounded by O(K · |Fr(Bi)|) bits. Since

there exist Σm
i=1|Fr(Bi)| number of (Bi, Cij) pairs, the total communication complex-

ity of PPFRsp is bounded by O(K · l), where l = Σm
i=1|Fr(Bi)|. One disadvantage of

the PPFRsp protocol is that it assumes that each Xij , Yij, and Cij are available and

semi-honest, i.e., following the prescribed steps of the protocols.

5.5.4. Security Analysis. Next, a comprehensive analysis on the security

of the proposed protocols is provided.
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The Semi-Honest Security Model. There are two main reasons to adopt the

semi-honest adversary model. First of all, a semi-honest model generally leads to more

efficient secure protocols. Most existing practical secure protocols in secure multi-

party computation (SMC) are under this model. By using standard zero-knowledge

proofs [96] for threshold Paillier homomorphic encryption scheme [97, 98], the PPFRh

protocol can be easily converted into a secure protocol under the malicious model.

However, its computation time is around 10 times more expensive than PPFRh since

zero-knowledge proofs are very costly.

More importantly, there is no need to design a secure protocol under the

malicious model if the protocol is non-interactive. For example, the PPFRh protocol

only requires one round of communication between A and each user. There is no

further interactions between A and each user. In the field of SMC, it is well-known

open problem that input modification cannot be prevented [49]. That is, before

executing a secure protocol, a participating party can provide any arbitrary input

value to the protocol. There does not exist any mechanisms to determine if the input

is legitimate. In addition, for a non-interactive protocol, any malicious behavior can

be directly mapped to input modification. Since the proposed protocols are non-

interactive, there is not need to enforce them to be secure under the malicious model.

Security Analysis under the Semi-Honest Model. To prove the security of the

proposed protocols, this work adopts the standard proof methodology in the literature

of SMC. According to Definition 1, one need to generate a simulated execution image

of a protocol based on a participating party’s private input and output. As long as

the simulated execution image is computationally indistinguishable from the actual

execution image, one can claim that the protocol is secure [49]. Since the proposed

protocols are non-interactive, the security of participating parties is not symmetric.

For instance, there is one way communication from Bi to A; therefore, A is considered

as the adversary for each A’s friend Bi. Similarly, T is considered as the adversary
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for A. To prove PPFRh is secure, one need to show that the execution image of

PPFRh from A’s perspective (denoted by ΠA) does not leak any information regarding

Bi’s friend list. Also, it is required that the execution image of PPFRh from T ’s

perspective (denoted by ΠT ) does not leak any information regarding A’s friend list.

Refer to the steps given in Algorithm 6, ΠA contains {ha,b, pk,M
′
1, . . . ,M

′
m, S}.

Then the simulated execution image of A (denoted by ΠS
A) can be generated as

{ha,b, pk, R1, . . . , Rm, S}, where Ri[j][k] (1 ≤ j ≤ s and 1 ≤ k ≤ 2) is randomly

chosen from ZN2 and N is part of the public key pk. Since M ′
i [j][k] is an encrypted

value generated from a semantically secure encryption scheme [55], M ′
i [j][k] is com-

putationally indistinguishable from Ri[j][k] [99]. As a result, ΠA is computationally

indistinguishable from ΠS
A, and the PPFRh protocol is secure from each user Bi’s

perspective. That is, the friend list of Bi is not disclosed to A, except for what can

be inferred from A’s private input and output. Similarly, it is easy to prove that the

PPFRh protocol is secure from each user A’s perspective. That is, A’s friend list is

not disclosed to T . T only knows the frequency information of each permuted and

randomized user IDs, and this is the only information leakage comparing to what can

be achieved under the ideal trusted third party model. Also, since T does not know

the hash function, T knows neither the friends of A nor any of the friends of A’s

friends. Therefore, the information leaked to T is negligible. In addition, nothing is

revealed to A and Bi.

It is also possible to completely eliminate the information leakage to T by

first adopting a fast secure binary conversion protocol over encrypted data [100]

and comparing the result with the threshold t without ever disclosing the frequency

information. In this way, the PPFRh offers the best security achievable in the semi-

honest model. The price to pay here is the increased computation cost. According

to the previous analysis, since the information leaked is extremely small, the security

offered by the current implementation of PPFRh is likely sufficient.
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In PPFRsp, unlike PPFRh where the scores are revealed to T , the common

neighbors scores are directly revealed to A. However, A can only link the scores to the

actual user IDs whose frequency is greater than or equal to t. If the common neighbors

score is less than t, the corresponding real user ID is not revealed to A because the

encrypted user ID cannot be decrypted by A according to the security guarantee of

the Shamir’s secret sharing scheme [95]. Furthermore, other than the intermediate

encrypted results, no additional information is revealed to Bi. In general, PPFRh is

more secure than PPFRsp, but it is less efficient.

Inference Problem and the Ideal Security Model. In the proposed protocols,

there exists an inference problem, but it is worth pointing out that the inference

problem exists even for the most secure common-neighbor based PPFR protocol.

The reasoning is as follows.

In SMC, the security guarantee of a protocol is generally compared with

the ideal security model: the trusted third party (TTP) model. Under the TTP

model, there is a third party (P0) who has the complete trust among all participating

parties (e.g., A and B1, . . . , Bm in the proposed protocols). Let PPFRP0 denote a

privacy-preserving friend recommendation protocol by utilizing a TTP. To implement

PPFRP0 , all participating parties send their private inputs to P0, and P0 will adopt

the common neighbor method to identify potential new friends for A. At the end, P0

will send the identified potential friends to A.

It is a well-known fact that a secure protocol implemented using a completely

trusted party offers the maximum security guarantee [49]. However, when t is small,

the inference problem, still exists even for the most secure protocol PPFRP0 . E.g.,

when t = m = 1, A will learn the friend list of his or her only friend. The existence of

the inference problem is not because PPFRP0 is not secure, but it is mainly because

the output of the common neighbor friend recommendation method reveals some

additional information regarding the friend list of Bi. Therefore, under SMC, the
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information that can be inferred from the output of a secure protocol is not considered

as a security violation [49].

As illustrated in the ideal security model, to completely eliminate the inference

problem is impossible. On the other hand, when the size of A’s friend list m is two

and t = 1, A will not be able to precisely know if the recommended friends are B1 or

B2’s friends since the recommended friends have equal probability for coming from

either friend lists. For smaller values of t, the larger the m is, the more difficult for A

to make correct inference. In general, the inference problem mainly depends on the

size of m and t but not on the size of individual friend list. This is partly because A

does not know the size of the friend lists of his or her friends and partly because the

recommended friends are computed from an aggregated friend list whose contents are

summed from B1 to Bm’s friend lists when m ≥ 2.

To further mitigate the inference problem, the network service provider can fix

t to a large number and makes it publicly available. Alternatively, if t is very small,

each user Bi can refuse to participate to prevent the content of his or her friend list

from being inferred.

5.6. EMPIRICAL ANALYSIS

This sub-section analyzes the effectiveness and computation cost of both pro-

tocols using a Facebook dataset. Since the PPFRsp protocol always recommends

friend(s) accurately, the effectiveness of PPFRh is analyzed by using the PPFRsp

protocol as a baseline. In addition, the computation costs for both protocols are

analyzed in detail.

5.6.1. Dataset and Platform Description. To conduct the experiments,

friend lists of 11,500 Facebook users from Facebook.com are collected as follows. The

crawler will first login using a Facebook account. It then starts to crawl the account’s
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friend list, the friend list of the friends in the list, and so on. To get a friend list

of a Facebook account while logged in, the crawler will make use of the Facebook’s

AJAX API (a web service the Facebook web client side used to update its friend list

display). The response will be a Javascript code file for the browser to update the

web page, from where the friend list is extracted using a proper regular expression.

Remember that Facebook lets users to set their privacy preferences. So one can only

crawl those users who set their friend lists information as public.

Due to privacy settings, some of the extracted friend lists are empty (for 2,068

users). In addition, the combined friend lists of users’ friends are empty for 112

users. Therefore, after removing the friend lists of these users, the experiments were

conducted on the final set of friend lists for 9,330 users. Among the 9,330 users, the

maximum and minimum friend list sizes are 447 and 1 respectively. In addition, the

maximum number of unique friends of users’ friends is 3,754, and each user has 24

friends on average. The proposed protocols were implemented in C, and experiments

were performed on a Intel R© Xeon R© six-CoreTM 3.07GHz PC running Ubuntu 10.04

with 12GB memory.

5.6.2. Effectiveness of PPFRh. The effectiveness of PPFRh is analyzed

by using PPFRsp as the baseline. Out of the 9,330 Facebook users, 1,000 users

are randomly selected as target users and conducted various experiments based on

different parameters. Let the target users (who wish to find new friends) be denoted

by the set D. Hereafter, the effectiveness results presented are average values over

the 1,000 random users in D. (The results are almost independent from the set and

the size of the random users chosen when s is large enough. Also, different hash

functions produce almost identical results.)

Let Sh and Ssp denote the sets of recommended friends resulting from PPFRh

and PPFRsp respectively. Then, the accuracy of PPFRh (with respect to PPFRsp) is
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defined as the common ratio between the two sets as follows:

Accuracy =
|Sh ∩ Ssp|
|Ssp|

(5.4)

Note that Ssp always contains the accurate friend recommendations. The accuracy

for each user in D is computed based on different hash/vector sizes (s), threshold

values (t) and the results are as shown in Figure 5.2. Following from Figure 5.2(a),

the accuracy of PPFRh is 65.4% when s = 1, 000 and t = 5. Because the number of

unique candidates for some of the users is greater than 1,000, this results in many

collisions when s = 1, 000. However, for t = 5, the accuracy increases from 65.4% to

94.1% as the value of s increases from 1,000 to 7,000. The reason behind that is as

the value of s increases, the number of collisions are reduced; therefore, improving the

accuracy. Also, as shown in Figure 5.2(a), for a fixed value of s, the accuracy improves

with an increase in the value of t. For example, for s = 5, 000, accuracy changes from

92.1% to 96% when t is varied from 5 to 25. A similar trend can be observed for

other values of s and t. Collision rate of a universal hash function is generally low,

and low collision rate introduces fewer false positives and false negatives when t is

large.

Besides accuracy based on intersection size, the experiments also considered

the false positive and false negative error rates for the PPFRh protocol which are

defined below:

Errorfp = 1− |Ssp ∩ Sh|
|Sh|

; Errorfn = 1− |Ssp ∩ Sh|
|Ssp|

As shown in Figure 5.2(b), for s = 1, 000 and t = 5, the false positive error is

37.9%. However, when t changes from 5 to 25, the false positive error drops to

17.9%. Whereas, for a fixed t, observe that the false positive error rate decreases

when s increases (resulting in less hash collisions). For example, when t = 25, false
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Figure 5.2: Performance evaluation of PPFRh and PPFRsp

positive error drops from 17.9% to 4.6% when s is increased from 1,000 to 7,000. A

similar trend can be observed for false negative errors as shown in Figure 5.2(c).

Based on the above discussions, it is clear that PPFRh gives good accuracy

and low errors rates (both false positives and false negatives) when s (≥ 3, 000) and
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t (≥ 5). In particular, when m = 7, 000 and t = 25, the PPFRh protocol recommends

friends 96% accurately with a false positive error rate of 4.6% and a false negative

error rate of 2.6%.

Next, the computation costs incurred on different parties in the PPFRh and

PPFRsp protocols are analyzed separately. Also, the running time of both protocols

for different values of s and key sizes are evaluated.

5.6.3. The Computation Cost of PPFRh. For the PPFRh protocol, the

computation costs are different for target user A, friend of A, and T . The computation

cost of A depends on the size of his/her friend list (m = |Fr(A)|) and the hash domain

or the vector size (s). Whereas, the computation cost of each friend of A (i.e., B)

mainly depends on s (deciding factor for the number of encryptions to be performed

by each B). For a friend B of A, observe that the cost involved in hashing and

creating the matrix M is negligible comparing to the encryption cost involved in

creating M ′. Also, the computation cost of the party T is equivalent to the number

of decryptions he/she needs to perform (which mainly depends on the values of s

and t). In addition, for the PPFRh protocol, the computation costs of A and B are

independent from t.

Based on the above discussions, the computation costs of each party in the

PPFRh protocol are presented. Since the friend list sizes vary for different users,

this work selected three different users with friend list sizes 110, 247, and 447 such

that the size of one friend list is almost double the size of the other. This kind of

selection is to purely present the variations in computation times in a more precise

and concrete manner. However, similar results can be observed for other users. Note

that in the above Facebook dataset, 447 is the maximum friend list size. For key size

1024, PPFRh is executed for each of these three users by varying the values of s.

As shown in Figure 5.2(d), for user A with m = 110, the computation time

increases linearly with the value of s. When m = 110, the computation time of
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A increases from 3.57 seconds to 10.54 seconds (increases by a factor of 3 due to

expensive exponentiations) when s is changed from 1,000 to 3,000. A similar trend

can be observed for the other values of s. On the other hand, when m = 227, the

computation time of the user increases slightly (due to less expensive homomorphic

additions) comparing to the user with m = 110 for a fixed value of s. In addition,

as shown in Figure 5.2(d), the computation cost of B and T are the same under the

assumption that T has to decrypt the whole encrypted matrix Z1 (in the worst case).

Under the worst case scenario, the time taken for encrypting the matrix by

B is almost the same as the time taken to decrypt the whole encrypted matrix by

T . For instance, when s = 5, 000, the computation time of B and T are 26.27 and

25.37 seconds (not depending on m), respectively. The above results indicate that the

computation time incurred by the PPFRh protocol is more on B and T comparing

to the time of A (except for the worst case where m = 447) irrespective of the hash

domain size (s) because most operations performed at A are multiplications (much

less costly than encryption or decryption operations).

5.6.4. The Computation Cost of PPFRsp. The computation cost of

PPFRsp depends on the running time of A, B, and C. On one hand, the com-

putation cost of A depends on the number of introductions he/she receives and also

on t. The computation cost of B depends on the number of randomized paths he/she

creates (equivalent to the size of his/her friend list). On the other hand, the compu-

tation cost of C depends on the threshold t and |Fr(C)| for generating shares of the

AES secret key. In the experiments, Shamir’s secret sharing scheme [95] is used to

generate the secret partial keys or shares.

Consider the same three users as mentioned before. When A has 447 friends,

he/she receives 13,444 self-introductions (through randomized paths). For t = 5, A

consists of 461 groups (formed out of 13,444 self-introductions) and generates the

AES secret keys for all groups in 2.02 seconds as shown in Figure 5.2(e). Similarly,
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when t = 25, A has 37 groups and can generate the keys in 0.156 seconds. A similar

trend can be observed for other two users. Note that since the values of t are small,

the total time taken to generate all keys (following from the Lagrange Polynomial

Interpolation) is very small. In the case of B, the computation cost only depends on

his/her friend list and is independent of t. Therefore, as shown in Figure 5.2(e), it

takes 1.169 seconds for B to generate all encrypted paths (assuming the worst case,

where B can have 447 friends).

Since B performs public key encryptions, B takes more time comparing to A

for t greater than or equal to 10 (resulting in fewer number of self-introductions).

Additionally, the results are based on the worst case for computing C’s time (i.e.,

assuming 447 friends). Therefore, C’s computation time mainly depends on the time

required to generate the secret shares based on t and its friend list size. Since the

value of t is small, it takes 53 milliseconds for C to create all 447 secret shares and

also to encrypt his/her ID using the AES private key encryption.

5.6.5. The Computation Cost of PPFRh vs. PPFRsp. Finally, the

total running times of both protocols for the worst case (i.e., A with 447 friends)

with different key sizes and s values are as shown in Figure 5.2(f). It is clear that

the computation time of PPFRh increases almost by a factor of 6 when the key size

is doubled for any fixed value of s. For instance, if s = 5, 000, the total run time

of the PPFRh protocol increases from 80.853 seconds to 553.459 seconds when the

key size is changed from 1,024 to 2,048 bits. The results show that PPFRsp is much

faster than PPFRh, when the key size is greater than or equal to 512 bits, by many

orders of magnitude. However, PPFRh provides stronger security, as per the security

definition of SMC [50, 77] comparing to the PPFRsp protocol.

A note on practicality: It is important to note that since friend recom-

mendation needs not to be performed every minute or even every day, the proposed

protocols are practical. The additional computation cost is a very small price to
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pay comparing to the achieved privacy protection. More significantly, the proposed

protocols make friend recommendation possible even when the friend lists are private.

5.7. IMPLEMENTATION DETAILS

This sub-section points out various implementation details involved for deploy-

ing the proposed protocols in real-world applications. In general, many online social

networks (OSNs), such as Facebook, collect sensitive user profile data and store them

on their server after proper encryption for security reasons. Therefore, users have no

control over their stored data except trusting the OSN service and OSNs are free to

share this stored data with third parties for business purposes. In order to give more

control to users, this work considers the privacy-enhanced web pages where a user

can encrypt his/her profile information before sending it to the OSN [57]. That is,

the data stored on the OSN server is encrypted using user’s secret key. When a user

logins, his/her data stored on the OSN server is pushed back to the web page and

decrypted. On the other hand, when the user tries to sign-out, his/her information is

updated (in encrypted form) on the OSN server. Under this kind of architecture, can

users still receive friend recommendations? Since T (i.e., the network administrator)

has encrypted user’s friend lists under different secret keys, it seems the process of

friend recommendations by T alone is complex. Note that the friend list of each user

is encrypted by using his/her secret key. In addition, the inherent information flow

in OSNs makes the friend recommendation problem more challenging. However, by

establishing a secure channel between the users, the proposed protocols make friend

recommendation possible under the above mentioned architecture. In order to use

the proposed protocols in a full fledge manner, one should first address an issue that

arises due to the inherent information flow in OSNs which are discussed as below.
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In the proposed protocols, users are assumed to exchange messages directly

without revealing them to T (i.e., the network administrator). However, in many

OSNs, messages are always passed through T because the user who is intendend

to receive the message may not be online. Additionally, in order to minimize the

information disclosure to T , one need to make sure that the messages exchanged

between users are in encrypted form and only the intended receiver should be able

to decrypt it. The above issue can be solved by creating a secure session between

the users. Briefly, assume that each user holds a public/private key pair, where the

public keys are treated as global information. If user B wants to send some message

to A, then B generates an AES encryption key (i.e., the session key which should

be different from the secret key used to encrypt and store his/her data on the OSN

server), encrypts it using the public key of A, and forwards it to A through T . Note

that here T merely acts as a network router that simply forwards the message to

A. Upon receiving the encrypted message, A decrypts it to get the AES session key

which is used for further secure communication with B.

Once this kind of secure session is established between users, the proposed pro-

tocols can be directly applied where two users A and B can communicate securely by

simply encrypting their messages using the AES session key and forwarding them to

one another through T . Note that the AES session key should be changed occasionally

for security reasons. The proposed protocols, after taking the above implementation

details into account, protect the friend list of a user from other users and T .

5.8. CONCLUSION

The emerging growth of social networks has resulted in vast amount of social

data which need to be mined for various kinds of recommendations such as friend
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recommendation. However, since the social data contain personal and sensitive in-

formation about individual users, when friend lists remain private, existing friend

recommendation techniques do not work. As a result, this section proposed two pri-

vacy preserving friend recommendation algorithms under the assumption that users’

friend lists are private. Both of the proposed protocols recommend new friends using

the common neighbors proximity measure in a privacy-preserving manner.

The first protocol PPFRh is based on an additive homomorphic encryption

scheme, and its accuracy is essentially based on the parameters of universal hash

function ha,b. Whereas the second protocol PPFRsp utilizes the concept of protecting

the source privacy through randomizing the message passing path and also recom-

mends friends accurately. The observation is that the PPFRsp protocol is more

efficient than the PPFRh protocol. The proposed PPFR protocols act as a trade-off

among security, efficiency and accuracy.

For the PPFRsp protocol, if both A and his/her friends have long friend lists,

then the protocol will cause a large number of communication between the users.

In general, only a small number of users are recommended to A; thus, most of the

messages passing back to A will end up useless. One possible solution is to develop

a pruning mechanism so that some of the candidates could be pruned during the

process. Another issue is that both of the proposed protocols are designed only to

compute the recommendation in a nearest neighbor way. On the other hand, a new

friend can also be recommended in other ways using various information, like the

similarities of sharing contents, user profiles or activities in the network. As a future

work, it will be interesting to explore alternative ways for developing hybrid privacy-

preserving friend recommendation methods by combining different scoring functions.
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6. PRIVACY-AWARE FRIEND RECOMMENDATIONS IN
OUTSOURCED SOCIAL NETWORKS

As an emerging computing paradigm, cloud computing attracts many organi-

zations to consider utilizing the benefits of a cloud in terms of cost-efficiency, flexibil-

ity, and offload of administrative overhead. With cloud computing, users now have

the opportunity to outsource their data as well as the data management services to

the cloud [101, 102]. On one hand, by outsourcing, the organization gets the benefit

of reducing the data management costs and improves the quality of service. On the

other hand, hosting and query processing of data out of the organization’s control

raises security challenges such as preserving data confidentiality. Therefore, due to

the rise of various privacy issues, sensitive data (e.g., user’s profile information) need

to be encrypted before outsourcing to the cloud. In addition, all computations should

be handled by the cloud; otherwise, there would be no point to outsource the data

at the first place.

One straightforward way to protect the confidentiality of the outsourced data

from the cloud as well as from the unauthorized users is to encrypt data by the data

owner before outsourcing [103]. By this way, the data owner can protect the privacy

of his/her own data. This work assumes that users profile data were encrypted and

then outsourced to the cloud. In general, performing computations over encrypted

data without the cloud ever decrypting the data is a very challenging task. This work

focuses on solving the friend recommendation problem over encrypted users’ profiles

outsourced to a cloud using k-nearest neighbor (kNN) method. That is, given the

encrypted profile of a target user (denoted by input query Q), the goal is for the

cloud to securely identify the k-nearest user profiles to Q. The question here is how

can the cloud execute a set of operations over encrypted data while the data stored

at the cloud are encrypted at all times? In the literature, various techniques related
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to query processing over encrypted data have been proposed, including range queries

[104, 105, 106] and other aggregate queries [107, 108]. However, these techniques are

either not applicable or inefficient to solve advanced queries such as the k-nearest

neighbor (kNN) query.

From the above discussion, it is clear that friend recommendations under out-

sourced social networking environment is closely related to the problem of secure

k-nearest neighbor (denoted by SkNN) query. Briefly, given the query Q of a target

user, the objective of the SkNN problem is to securely identify the k-nearest profiles

to Q using the database of encrypted profiles (say T ) in the cloud, without allowing

the cloud to learn anything regarding the actual contents of the database T and the

query Q. More specifically, assuming encrypted data are outsourced to a cloud, an

effective SkNN protocol needs to satisfy the following properties:

• Preserve the confidentiality of T and Q at all times

• Hiding data access patterns from the cloud

• Accurately compute the k-nearest neighbors of query Q

• Incur low computation overhead on the end-users

In the past few years, researchers have proposed various methods [101, 109, 110,

111] to address the SkNN problem. However, the existing SkNN methods violate

at least one of the above mentioned desirable properties of a SkNN protocol. On

one hand, the methods in [101, 109] are insecure because they are vulnerable to

chosen and known plaintext attacks. On the other hand, recent method in [111]

returns non-accurate kNN result to the end-user. More precisely, in [111], the cloud

retrieves the relevant encrypted partition instead of finding the encrypted exact k-

nearest neighbors. Furthermore, in [101, 110, 111], the end-user involves in heavy

computations during the query processing step. By doing so, these methods utilize

cloud as just a storage medium, i.e., no significant work is done on the cloud side.
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Additionally, the existing SkNN methods do not protect data access patterns from

the cloud. More details regarding the existing SkNN methods are provided in Section

6.3.

This work first presents a basic scheme to solve SkNN and demonstrates that

such a naive solution is not secure. To provide better security, a novel secure kNN

protocol is also proposed that protects both confidentiality of the data and access

patterns to the data. Also, this work empirically analyzes the efficiency of the pro-

posed protocols through various experiments. The results indicate that the secure

protocol is very efficient on the user end, and this lightweight scheme allows a user to

use any mobile device to request friend recommendations. The protocols developed

in this paper are secure under the semi-honest model [50]. However, they can be

easily extended to secure protocols under other adversary models, such as malicious

and covert, using threshold based cryptosystem and zero-knowledge proofs.

6.1. PROBLEM DEFINITION

In the outsourced environment, assume the existence of two non-colluding

semi-honest cloud service providers, denoted by C1 and C2, which together form a

federated cloud. Such an assumption is not new and has been commonly used in

the related problem domains [112, 113]. The intuition behind such an assumption

is as follows. Most of the cloud service providers in the market are well-established

IT companies, such as Amazon and Google. Therefore, a collusion between them is

highly unlikely as it will damage their reputation which in turn effects their revenues.

Also, assume that C2 generates a pair of public-secret key pair (pk, sk) based on

an additive homomorphic public-key cryptosystem that is semantically secure (e.g.,

Paillier cryptosystem [55]).
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Let us assume that a user profile can be represented as a vector based on

a pre-determined set of attributes. Here the attributes can be location, education,

hobbies, friend list and so on. In the outsourced social networking environment, this

work assumes that each user encrypts his/her profile vector attribute-wise using the

public key pk of C2 and sends the encrypted vector along with his/her user ID to

C1. Now consider the problem of recommending friends to a target user Bob by C1.

For this purpose, C1 randomly picks a subset of n users whose profile vectors are

denoted by T = {t1, . . . , tn}. Note that C1 has encrypted version of T , say Epk(T ),

where Epk(.) denotes the encryption function of an additively homomorphic public-

key cryptosystem that is semantically secure. Let Q /∈ T be the profile vector of

Bob such that Q = 〈q1, . . . , qm〉, where m denotes the number of attributes. Then,

the goal is for C1 and C2 to jointly compute the k-nearest neighbors of Q who are

recommended as potential friends to Bob. During this process, Bob’s query Q and

contents of database T should not be revealed to C1 and C2. In addition, the access

patterns to data (e.g., the user IDs corresponding to top k profiles for any given

Q) should be protected from the clouds. Such a process is referred to as Secure

kNN (SkNN) query over encrypted data in the cloud. Without loss of generality,

let 〈t′1, . . . , t′k〉 denote the k-nearest profiles to Q. Then, the SkNN protocol can be

formally defined as follows:

SkNN(Epk(T ), Epk(Q))→ 〈ID(t′1), . . . , ID(t′k)〉

where ID(t′i) denotes the user ID of profile t′i. Note that, at the end of the SkNN

protocol, the output 〈ID(t′1), . . . , ID(t′k)〉 should be revealed only to Bob.
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6.2. MAIN CONTRIBUTIONS

This work proposes a novel SkNN protocol to facilitate friend recommen-

dations in outsourced social networks based on the k-nearest neighbor search over

encrypted data in the cloud that protects user’s privacy and hides access patterns.

In the proposed protocol, once the encrypted data are outsourced to the cloud, users

do not participate in any computations. In particular, the proposed protocol meets

the following requirements:

• Data confidentiality - Contents of T or any intermediate results should not

be revealed to the clouds.

• Query privacy - Bob’s input query Q should not be revealed to the clouds.

• Correctness - The output 〈ID(t′1), . . . , ID(t′k)〉 should be computed accu-

rately and revealed only to Bob. Additionally, no information other than

ID(t′1), . . . , ID(t
′
k) should be revealed to Bob.

• Low computation overhead on Bob - The proposed protocols incur low

computation overhead on Bob compared with the existing works [101, 109, 110,

111].

• Hidden data access patterns - Access patterns to the data, such as the

profile IDs corresponding to the k-nearest neighbors ofQ, should not be revealed

to the clouds (to prevent any inference attacks).

It is worth pointing out that the intermediate results seen by the clouds in the pro-

posed protocol are either newly generated randomized encryptions or random num-

bers. Thus, which data profiles correspond to the k-nearest neighbors of Q are not

known to the clouds. Also, Bob does not involve in any computations. Hence, data

access patterns are further protected from Bob.
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6.3. RELATED WORK AND BACKGROUND

This sub-section presents an overview of the existing secure k-nearest neighbor

techniques. Then, it discusses the security definition adopted in this paper along with

the homomorphic properties of the Paillier cryptosystem as a background.

6.3.1. Existing SkNN Techniques. Retrieving the k-nearest neighbors to

a given query Q is one of the most fundamental problem in many application do-

mains such as similarity search, pattern recognition, and data mining. In the lit-

erature, many techniques have been proposed to address the SkNN problem, which

can be classified into two categories based on whether the data are encrypted or not:

centralized and distributed.

Centralized Methods. In the centralized methods, the data owner is assumed

to outsource his/her database and DBMS functionalities (e.g., kNN query) to an un-

trusted external service provider which manages the data on behalf of the data owner

where only trusted users are allowed to query the hosted data. By outsourcing data

to an untrusted server, many security issues arise, such as data privacy (protecting

the confidentiality of the data from the server and query issuer). To achieve data pri-

vacy, data owner is required to use data anonymization models (e.g., k-anonymity) or

cryptographic (e.g., encryption and data perturbation) techniques over his/her data

before outsourcing them to the server.

Encryption is a traditional technique used to protect the confidentiality of

sensitive data such as medical records. Due to data encryption, the process of query

evaluation over encrypted data becomes challenging. Along this direction, various

techniques have been proposed for processing range [104, 105, 106] and aggregation

queries [107, 108] over encrypted data. However, this work restricts the discussion to

secure evaluation of kNN query.
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In the past few years, researchers have proposed different methods [101, 109,

110, 111] to address the SkNN problem. Wong et al. [109] proposed a new encryp-

tion scheme called asymmetric scalar-product-preserving encryption (ASPE) that

preserves scalar product between the query vector Q and any tuple vector ti from

database T for distance comparison which is sufficient to find kNN. In [109], data and

query are encrypted using slightly different encryption schemes before outsourcing to

the server and all the query users know the decryption key. As an improvement, Zhu

et al. [110] proposed a novel SkNN method in which the key of the data owner is

not disclosed to the user. However, their architecture requires the participation of

data owner during query encryption. As an alternative, Hu et al. [101] proposed

a method based on provably secure privacy homomorphism encryption scheme from

[114] that supports modular addition, subtraction and multiplication over encrypted

data. They addressed the SkNN problem under the following setting: the client has

the ciphertexts of all data points in database T and the encryption function of T

whereas the server has the decryption function of T and some auxiliary information

regarding each data point. However, both methods in [101, 109] are not secure be-

cause they are vulnerable to chosen-plaintext attacks. Also, all the above methods

leak data access patterns to the server.

Recently, Yao et al. [111] proposed a new SkNN method based on partition-

based secure Voronoi diagram (SVD). Instead of asking the cloud to retrieve the

exact kNN, they required, from the cloud, to retrieve a relevant encrypted partition

Epk(G) for Epk(T ) such that G is guaranteed to contain the k-nearest neighbors of

Q. However, this work solves the SkNN problem accurately by letting the cloud to

retrieve the exact k-nearest neighbors of Q (in encrypted form). In addition, most of

the computations during the query processing step in [101, 110, 111] are performed

locally by the end-user which conflicts the very purpose of outsourcing the DBMS
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functionalities to the cloud. Furthermore, the protocol in [111] leaks data access

patterns, such as the partition ID corresponding to a user query, to the cloud.

Data Distribution Methods. In the data distributed methods, data are assumed

to be partitioned either vertically or horizontally and distributed among a set of

independent, non-colluding parties. In the literature, the data distributed methods

rely on secure multiparty computation (SMC) techniques that enable multiple parties

to securely evaluate a function using their respective private inputs without disclosing

the input of one party to the others. Many efforts have been made to address the

problem of kNN query in a distributed environment. Shaneck et al. [115] proposed

privacy-preserving algorithm to perform k-nearest neighbor search. The protocol in

[115] is based on secure multiparty computation for privately computing kNN points

in a horizontally partitioned dataset. Qi et al. [116] proposed a single-step kNN

search protocol that is provably secure with linear computation and communication

complexities. Vaidya et al. [117] studied privacy-preserving top-k queries in which the

data are vertically partitioned. Ghinita et al. [118] proposed a private information

retrieval (PIR) based framework for answering kNN queries in location-based services.

In [118], the data residing at the server are in plaintext format. However, if the

data are encrypted to ensure data confidentiality, it is not clear how a user can

obliviously retrieve the output records because he/she does not know the indexes

that match his/her input query. Nevertheless, even if a user can retrieve the records

using PIR, the user still needs to perform local computations to identify the k-nearest

neighbors. However, in the framework proposed in this section, the users computation

is completely outsourced to a cloud.

In summary, the above data distribution methods are not applicable to per-

form kNN queries over encrypted data for two reasons: (1). This work deals with

encrypted form of database and query which is not the case in the above methods

(2). The database in this work is assumed to be encrypted and stored on the cloud



136

whereas in the above methods it is partitioned (in plaintext format) among different

parties. Some common notations that are used extensively in this paper are shown

in Table 6.1.

6.3.2. Security Definition. In this paper, privacy/security is closely re-

lated to the amount of information disclosed during the execution of a protocol.

There are many ways to define information disclosure. To maximize privacy or mini-

mize information disclosure, this work adopts the security definitions in the literature

of secure multiparty computation (SMC) first introduced by Yao’s Millionaires’ prob-

lem for which a provably secure solution was developed [38, 39]. In this work, the

participating parties are assumed to be semi-honest; that is, a semi-honest party fol-

lows the rules of the protocol using its correct input, but is free to later use what it

sees during execution of the protocol to compromise security. Specific details regard-

ing the semi-honest security definition adopted in this work is given in Section 2. We

also emphasize that more details on standard security definitions and models can be

found in [50].

6.3.3. Paillier Cryptosystem. The Paillier cryptosystem is an additive ho-

momorphic and probabilistic asymmetric encryption scheme [55]. Let Epk be the

encryption function with public key pk given by (N, g), where N is a product of two

large primes and g is in Z
∗
N2 . Also, let Dsk be the decryption function with secret

key sk. For any given plaintexts a, b ∈ ZN , the Paillier encryption scheme exhibits

the following properties:

a. Homomorphic Addition - Epk(a+ b)← Epk(a) ∗ Epk(b) mod N2;

b. Homomorphic Multiplication - Epk(a ∗ b)← Epk(a)
b mod N2;

c. Semantic Security - The encryption scheme is semantically secure [56], i.e.,

given a set of ciphertexts, an adversary cannot deduce any information about the

plaintext.



137

Table 6.1: Common notations used in the SkNN protocols

T A subset of user profiles

Epk(T ) Attribute-wise encryption of T

n Number of user profiles in T

m Number of attributes in the profile vectors

ti ith profile vector in T

Q Bob’s profile vector

t′i ith nearest profile vector to Q based on T

ID(t′i) User ID corresponding to t′i

l Domain size (in bits) of the squared Euclidean distance between profile vectors

〈z1, zl〉 The most and least significant bits of integer z

[z] Vector of encryptions of the individual bits of z

This work assumes that a data owner or a social network user encrypted his or her

data using Paillier cryptosystem before outsourcing them to a cloud.

6.4. BASIC SECURITY PRIMITIVES

This sub-section presents a set of generic protocols that will be used as sub-

routines while constructing the proposed SkNN protocol in Section 6.6. All of the

below protocols are considered under two-party semi-honest setting. In particular,

assume the existence of two semi-honest parties P1 and P2 such that the Paillier’s

secret key sk is known only to P2 whereas pk is treated as public.

• Secure Multiplication (SM) Protocol:

This protocol considers P1 with input (Epk(a), Epk(b)) and outputs Epk(a ∗ b)

to P1, where a and b are not known to P1 and P2. During this process, no

information regarding a and b is revealed to P1 and P2. The output Epk(a ∗ b)

is known only to P1.
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• Secure Squared Euclidean Distance (SSED) Protocol:

P1 with input (Epk(X), Epk(Y )) and P2 securely compute the encryption of

squared Euclidean distance between vectors X and Y . Here X and Y are two

m dimensional vectors given by Epk(X) = 〈Epk(x1), . . . , Epk(xm)〉 and Epk(Y ) =

〈Epk(y1), . . . , Epk(ym)〉. At the end of SM, the output Epk(|X − Y |2) is known

only to P1.

• Secure Bit-Decomposition (SBD) Protocol:

P1 with input Epk(z) and P2 securely compute the encryptions of the individual

bits of z, where 0 ≤ z < 2l. The output [z] = 〈Epk(z1), . . . , Epk(zl)〉 is known

only to P1. Here z1 and zl denote the most and least significant bits of integer

z respectively.

• Secure Minimum (SMIN) Protocol:

P1 with input ([u], [v]) and P2 with sk securely compute the encryptions of the

individual bits of minimum number between u and v. That is, the output is

[min(u, v)] which will be known only to P1. During this protocol, no information

regarding u and v is revealed to P1 and P2.

• Secure Minimum out of n Numbers (SMINn) Protocol:

In this protocol, P1 has n encrypted vectors ([d1], . . . , [dn]) and P2 has sk. Here

[di] = 〈Epk(di,1), . . . , Epk(di,l)〉 such that di,1 and di,l are the most and least

significant bits of integer di respectively, for 1 ≤ i ≤ n. P1 and P2 jointly

compute the output [min(d1, . . . , dn)]. At the end, [min(d1, . . . , dn)] is known

only to P1. During SMINn, no information about di’s is revealed to P1 and P2.

• Secure Bit-OR (SBOR) Protocol:

P1 with input (Epk(o1), Epk(o2)) and P2 securely compute Epk(o1 ∨ o2), where

o1 and o2 are two bits. The output Epk(o1 ∨ o2) is known only to P1.
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Next, each of these protocols are discussed in detail. Also, this work either proposes

a new solution or refers to the most efficient known implementation to each one of

them.

6.4.1. Secure Multiplication (SM). Consider that P1 holds private input

(Epk(a), Epk(b)) and P2 holds the secret key sk. The goal of the secure multiplication

(SM) protocol is to return the encryption of a ∗ b, i.e., Epk(a ∗ b) as output to P1.

During this protocol, no information regarding a and b is revealed to P1 and P2.

The basic idea of SM is based on the following property which holds for any given

a, b ∈ ZN :

a ∗ b = (a+ ra) ∗ (b+ rb)− a ∗ rb − b ∗ ra − ra ∗ rb (6.1)

where all the arithmetic operations are performed under ZN . The overall steps in

SM are shown in Algorithm 9. Briefly, P1 initially randomizes a and b by computing

a′ = Epk(a) ∗ Epk(ra) and b′ = Epk(b) ∗ Epk(rb), and sends them to P2. Here ra and

rb are random numbers in ZN known only to P1. Upon receiving, P2 decrypts and

multiplies them to get h = (a+ ra) ∗ (b+ rb) mod N . Then, P2 encrypts h and sends

it to P1. After this, P1 removes extra random factors from h′ = Epk((a+ra)∗ (b+rb))

based on Equation 6.1 to get Epk(a ∗ b). Note that, for any given x ∈ ZN, “N − x”

is equivalent to “−x” under ZN . Hereafter, the notation r ∈R ZN is used to denote

r as a random number in ZN .

Example 6. Suppose a = 59 and b = 58. For simplicity, let ra = 1 and rb = 3.

Initially, P1 computes a′ = Epk(60) = Epk(a)∗Epk(ra), b
′ = Epk(61) = Epk(b)∗Epk(rb)

and sends them to P2. Then, P2 decrypts and multiplies them to get h = 3660. After

this, P2 encrypts h to get h′ = Epk(3660) and sends it to P1. Upon receiving h′, P1

computes s = Epk(3483) = Epk(3660−a∗rb), and s′ = Epk(3425) = Epk(3483−b∗ra).

Finally, P1 computes Epk(a ∗ b) = Epk(3422) = Epk(3425− ra ∗ rb). �
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Algorithm 9 SM(Epk(a), Epk(b))→ Epk(a ∗ b)
Require: P1 has Epk(a) and Epk(b); P2 has sk
1: P1:

(a). Pick two random numbers ra, rb ∈ ZN

(b). a′ ← Epk(a) ∗ Epk(ra)

(c). b′ ← Epk(b) ∗ Epk(rb); send a′, b′ to P2

2: P2:

(a). Receive a′ and b′ from P1

(b). ha ← Dsk(a
′) and hb ← Dsk(b

′)

(c). h← ha ∗ hb mod N

(d). h′ ← Epk(h)

(e). Send h′ to P1

3: P1:

(a). Receive h′ from P2

(b). s← h′ ∗ Epk(a)
N−rb

(c). s′ ← s ∗ Epk(b)
N−ra

(d). Epk(a ∗ b)← s′ ∗ Epk(ra ∗ rb)N−1

6.4.2. Secure Squared Euclidean Distance (SSED). Suppose P1 holds

two encrypted vectors (Epk(X), Epk(Y )) and P2 holds sk. Here X and Y are two

m-dimensional vectors such that Epk(X) = 〈Epk(x1), . . . , Epk(xm)〉 and Epk(Y ) =

〈Epk(y1), . . . , Epk(ym)〉. The goal of SSED is to securely compute Epk(|X−Y |2), where

|X − Y | denotes the Euclidean distance between X and Y . During this protocol, no

information regarding X and Y is revealed to P1 and P2. The basic idea of the SSED

protocol follows from the following equation:

|X − Y |2 =
m∑

i=1

(xi − yi)
2 (6.2)
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Algorithm 10 SSED(Epk(X), Epk(Y ))→ Epk(|X − Y |2)
Require: P1 has Epk(X) and Epk(Y ); P2 has sk
1: P1, for 1 ≤ i ≤ m do:

(a). Epk(xi − yi)← Epk(xi) ∗ Epk(yi)
N−1

2: P1 and P2, for 1 ≤ i ≤ m do:

(a). Compute Epk((xi − yi)
2) using the SM protocol

3: P1 computes Epk(|X − Y |2)←∏m

i=1 Epk((xi − yi)
2)

The main steps involved in SSED are shown in Algorithm 10. Briefly, for 1 ≤ i ≤ m,

P1 initially computes Epk(xi − yi) by using the homomorphic properties. Then P1

and P2 jointly compute Epk((xi − yi)
2) using the SM protocol, for 1 ≤ i ≤ m. Note

that the outputs of SM are known only to P1. By applying homomorphic properties

on Epk((xi − yi)
2), P1 computes Epk(|X − Y |2) locally based on Equation 6.2.

Example 7. Suppose P1 holds two encrypted data records Epk(X) = 〈Epk(63), Epk(1),

Epk(1), Epk(145), Epk(233), Epk(1), Epk(3), Epk(0), Epk(6), Epk(0)〉 whereas Epk(Y ) =

〈Epk(56), Epk(1), Epk(3), Epk(130), Epk(256), Epk(1), Epk(2), Epk(1), Epk(6), Epk(2)〉.

During the SSED protocol, P1 initially computes Epk(x1−y1) = Epk(7), . . . , Epk(x10−

y10) = Epk(−2). Then, P1 and P2 jointly compute Epk((x1 − y1)
2) = Epk(49) =

SM(Epk(7), Epk(7)), . . . , Epk((x10 − y10)
2) = SM(Epk(−2), Epk(−2)) = Epk(4). P1

locally computes Epk(|X − Y |2) = Epk(
∑10

i=1(xi − yi)
2) = Epk(813). �

6.4.3. Secure Bit-Decomposition (SBD). Assume that P1 has Epk(z)

and P2 has sk, where z is not known to both parties and 0 ≤ z < 2l. The goal

of the secure bit-decomposition (SBD) protocol is to compute the encryptions of

the individual bits of binary representation of z [100]. That is, the output is [z] =

〈Epk(z1), . . . , Epk(zl)〉, where z1 and zl denote the most and least significant bits of z

respectively. At the end, the output [z] is known only to P1. Since the goal of this
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work is not to investigate the existing SBD protocols, the most efficient SBD scheme

that was recently proposed in [100] is used in the proposed protocols.

Example 8. Let us suppose that z = 55 and l = 6. Then the SBD protocol with

private input Epk(55) gives [55] = 〈Epk(1), Epk(1), Epk(0), Epk(1), Epk(1), Epk(1)〉 as

the output to P1. �

6.4.4. Secure Minimum (SMIN). In this protocol, P1 with input ([u], [v])

and P2 with secret key sk securely compute the encryptions of the individual bits

of min(u, v), i.e., the output is [min(u, v)]. [u] = 〈Epk(u1), . . . , Epk(ul)〉 and [v] =

〈Epk(v1), . . . , Epk(vl)〉, where u1 (resp., v1) and ul (resp., vl) are the most and least

significant bits of u (resp., v). At the end of SMIN, the output [min(u, v)] is known

only to P1.

By assuming that 0 ≤ u, v < 2l, this work proposes a novel SMIN protocol.

The basic idea of the proposed SMIN protocol is for P1 to randomly choose the

functionality F (by flipping a coin), where F is either u > v or v > u, and to

obliviously execute F with P2. Since F is randomly chosen and known only to P1,

the output of the functionality F is oblivious to P2. Based on the output and chosen

F , P1 computes [min(u, v)] locally using homomorphic properties.

The overall steps involved in the SMIN protocol are shown in Algorithm 11.

To start with, P1 initially chooses the functionality F as either u > v or v > u

randomly. Then, using SM, P1 computes Epk(ui ∗ vi) with the help of P2. Now,

depending on F , P1 proceeds as follows, for 1 ≤ i ≤ l:

• If F : u > v, compute

Wi = Epk(ui) ∗ Epk(ui ∗ vi)N−1 = Epk(ui ∗ (1− vi))

Γi = Epk(vi − ui) ∗ Epk(r̂i) = Epk(vi − ui + r̂i)
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Algorithm 11 SMIN([u], [v])→ [min(u, v)]

Require: P1 has [u] and [v], where 0 ≤ u, v < 2l; P2 has sk
1: P1:

(a). Randomly choose the functionality F

(b). for i = 1 to l do:

• Epk(ui ∗ vi)← SM(Epk(ui), Epk(vi))

• if F : u > v then:

– Wi ← Epk(ui) ∗ Epk(ui ∗ vi)N−1

– Γi ← Epk(vi − ui) ∗ Epk(r̂i); r̂i ∈R ZN

else

– Wi ← Epk(vi) ∗ Epk(ui ∗ vi)N−1

– Γi ← Epk(ui − vi) ∗ Epk(r̂i); r̂i ∈R ZN

• Gi ← Epk(ui ⊕ vi)

• Hi ← Hri
i−1 ∗Gi; ri ∈R ZN and H0 = Epk(0)

• Φi ← Epk(−1) ∗Hi

• Li ← Wi ∗ Φr′i
i ; r

′
i ∈R ZN

(c). Γ′ ← π1(Γ) and L′ ← π2(L); send Γ′ and L′ to C

2: P2:

(a). Receive Γ′ and L′ from P1

(b). Mi ← Dsk(L
′
i), for 1 ≤ i ≤ l

(c). if ∃ j such that Mj = 1 then α← 1
else α← 0

(d). M ′
i ← Γ′

i
α, for 1 ≤ i ≤ l; send M ′ and Epk(α) to P1

3: P1:

(a). Receive M ′ and Epk(α) from P2; compute M̃ ← π−1
1 (M ′)

(b). for i = 1 to l do:

• λi ← M̃i ∗ Epk(α)
N−r̂i

• if F : u > v then Epk(min(u, v)i)← Epk(ui) ∗ λi

else Epk(min(u, v)i)← Epk(vi) ∗ λi
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• If F : v > u, compute:

Wi = Epk(vi) ∗ Epk(ui ∗ vi)N−1 = Epk(vi ∗ (1− ui))

Γi = Epk(ui − vi) ∗ Epk(r̂i) = Epk(ui − vi + r̂i)

where r̂i is a random number in ZN known only to P1.

• Observe that if F : u > v, then Wi = Epk(1) only if ui > vi, and Wi = Epk(0)

otherwise. Similarly, when F : v > u, Wi = Epk(1) only if vi > ui, and Wi =

Epk(0) otherwise. Also, depending of F , Γi stores the encryption of randomized

difference between ui and vi which will be used in later computations.

• Compute the encrypted bit-wise XOR between the bits ui and vi as Gi =

Epk(ui ⊕ vi) using the formulation Gi = Epk(ui) ∗Epk(vi) ∗Epk(ui ∗ vi)N−2. For

any two bits o1 and o2, the property o1⊕ o2 = o1 + o2− 2(o1 ∗ o2) always holds.

• Compute an encrypted vector H by preserving the first occurrence of Epk(1)

(if there exists one) in G by initializing H0 = Epk(0). The rest of the entries

of H are computed as Hi = Hri
i−1 ∗ Gi. Note that at most one of the entry in

H is Epk(1) and the remaining entries are encryptions of either 0 or a random

number. Also, if there exists an index j such that Hj = Epk(1), then index j

is the first position (from the most significant bit) at which the corresponding

bits of u and v differ.

• Then, P1 computes Φi = Epk(−1)∗Hi. Note that “−1” is equivalent to “N−1”

under ZN . From the above discussions, it is clear that Φi = Epk(0) at most

once since Hi is equal to Epk(1) at most once. Also, if Φj = Epk(0), then index

j is the position at which the bits of u and v differ first.
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• Compute an encrypted vector L by combining W and Φ. Note that Wi stores

the result of ui > vi or vi > ui which depends on F known only to P1. Precisely,

P1 computes Li = Wi∗Φr′i
i , where r

′
i is a random number in ZN . The observation

here is if ∃ an index j such that Φj = Epk(0), denoting the first flip in the bits

of u and v, then Wj stores the corresponding desired information, i.e., whether

uj > vj or vj > uj in encrypted form.

After this, P1 permutes the encrypted vectors Γ and L using two random permutation

functions π1 and π2. Specifically, P1 computes Γ′ = π1(Γ) and L′ = π2(L), and sends

them to P2. Upon receiving, P2 decrypts L′ component-wise to get Mi = Dsk(L
′
i),

for 1 ≤ i ≤ l, and checks for index j (decide the output of F ). That is, if Mj = 1,

then the output of F is 1, and 0 otherwise. Let the output be α. Note that since

F is not known to P2, the output α is oblivious to P2. In addition, P2 computes a

new encrypted vector M ′ where M ′
i = Γ′

i
α, for 1 ≤ i ≤ l, sends M ′ and Epk(α) to

P1. After receiving M ′ and Epk(α), P1 computes the inverse permutation of M ′ as

M̃ = π−1
1 (M ′). Then, P1 performs the following homomorphic operations to compute

the encryption of ith bit of min(u, v), i.e., Epk(min(u, v)i), for 1 ≤ i ≤ l:

• Remove the randomness from M̃i by computing

λi = M̃i ∗ Epk(α)
N−r̂i

• If F : u > v, compute the ith encrypted bit of min(u, v) as Epk(min(u, v)i) =

Epk(ui) ∗ λi = Epk(ui + α ∗ (vi − ui)). Otherwise, compute Epk(min(u, v)i) =

Epk(vi) ∗ λi = Epk(vi + α ∗ (ui − vi)).

In the SMIN protocol, one main observation (upon which the correctness of the final

output can also be justified) is that if F : u > v, then min(u, v)i = (1−α)∗ui+α∗vi
always holds, for 1 ≤ i ≤ l. Similarly, if F : v > u, then min(u, v)i = α∗ui+(1−α)∗vi
always holds.



146

Example 9. Consider that u = 55, v = 58, and l = 6. In addition, assume that P1’s

random permutation functions are given as below. Suppose that P1 holds [u] = [55] =

i = 1 2 3 4 5 6
↓ ↓ ↓ ↓ ↓ ↓

π1(i) = 6 5 4 3 2 1
π2(i) = 2 1 5 6 3 4

〈Epk(1), Epk(1), Epk(0), Epk(1), Epk(1), Epk(1)〉 and [v] = [58] = 〈Epk(1), Epk(1), Epk(1),

Epk(0), Epk(1), Epk(0)〉. Without loss of generality, let us assume that P1 chooses the

functionality F : v > u. Then, various intermediate results based on the SMIN

protocol are as shown in Table 6.2. Following from Table 6.2, observe that:

• At most one of the entry in H is Epk(1) (= H3) and the remaining entries are

encryptions of either 0 or a random number in ZN . Index j = 3 is the first

position at which the corresponding bits of u and v differ.

• Φ3 = Epk(0) since H3 is equal to Epk(1). Also, since M5 = 1, P2 sets α to 1.

At the end, only P1 knows [min(u, v)] = [u] = [55]. �

6.4.5. Secure Minimum out of n Numbers (SMINn). Consider P1 with

input ([d1], . . . , [dn]) and P2 with sk, where [di] = 〈Epk(di,1), . . . , Epk(di,l)〉 and 0 ≤

di < 2l, for 1 ≤ i ≤ n. The goal of the SMINn protocol is to compute [min(d1, . . . , dn)] =

[dmin] without revealing any information about di’s to P1 and P2. This work constructs

a new SMINn protocol by utilizing SMIN as the building block. The proposed SMINn

protocol is an iterative approach and it computes the desired output in an hierarchi-

cal fashion. In each iteration, minimum between a pair of values is computed and are

feeded as input to the next iteration. Therefore, generating a binary execution tree

in a bottom-up fashion. At the end, only P1 knows the final result [dmin].

The overall steps involved in the proposed SMINn protocol are highlighted in

Algorithm 12. Initially, P1 assigns [di] to a temporary vector [d′i], for 1 ≤ i ≤ n. Also,
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Table 6.2: Example of SMIN where F : v > u, u = 55 and v = 58

[u] [v] Wi Γi Gi Hi Φi Li Γ′
i L′

i Mi λi mini

1 1 0 r 0 0 −1 r 1 + r r r 0 1

1 1 0 r 0 0 −1 r r r r 0 1

0 1 1 −1 + r 1 1 0 1 1 + r r r −1 0

1 0 0 1 + r 1 r r r −1 + r r r 1 1

1 1 0 r 0 r r r r 1 1 0 1

1 0 0 1 + r 1 r r r r r r 1 1

*All column values are in encrypted form (Epk(.)) except Mi column. Also, r is a random
in ZN which is different for each row and column.

he/she creates a global variable num and initialize it to n, where num represents the

number of (non-zero) vectors involved in each iteration. Since the SMINn protocol

executes in a binary tree hierarchy (bottom-up fashion), it has ⌈log2 n⌉ iterations,

and in each iteration, the number of vectors involved varies. In the first iteration

(i.e., i = 1), P1 with private input ([d′2j−1], [d
′
2j ]) and P2 with sk involve in the

SMIN protocol, for 1 ≤ j ≤
⌊
num
2

⌋
. At the end of the first iteration, only P1 knows

[min(d′2j−1, d
′
2j)] and nothing is revealed to P2, for 1 ≤ j ≤

⌊
num
2

⌋
. Also, P1 stores

the result [min(d′2j−1, d
′
2j)] in [d′2j−1], updates [d

′
2j ] to zero and num to

⌈
num
2

⌉
.

During the ith iteration, only the non-zero vectors are involved, for 2 ≤ i ≤

⌈log2 n⌉. For example, during second iteration (i.e., i = 2), only [d′1], [d
′
3], and so on

are involved. Note that in each iteration, the output is revealed only to P1 and num

is updated to
⌈
num
2

⌉
. At the end of SMINn, P1 assigns the final encrypted binary

vector of global minimum value, i.e., [min(d1, . . . , dn)] which is stored in [d′1] to [dmin].

Example 10. For example, assume that P1 holds 〈[d1], . . . , [d6]〉 (i.e., n = 6). Then,

based on the SMINn protocol, the binary execution tree (in a bottom-up fashion) to
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Algorithm 12 SMINn([d1], . . . , [dn])→ [dmin]

Require: P1 has ([d1], . . . , [dn]); P2 has sk
1: P1:

(a). [d′i]← [di], for 1 ≤ i ≤ n

(b). num← n

2: P1 and P2, for i = 1 to ⌈log2 n⌉ do:

(a). for 1 ≤ j ≤
⌊
num
2

⌋
do:

• if i = 1 then:

– [d′2j−1]← SMIN([d′2j−1], [d
′
2j ])

– [d′2j ]← 0

else

– [d′2i(j−1)+1]← SMIN([d′2i(j−1)+1], [d
′
2ij−1])

– [d′2ij−1]← 0

(b). num←
⌈
num
2

⌉

3: P1 sets [dmin] to [d′1]

compute [min(d1, . . . , d6)] is as shown in Figure 6.1. Note that, [d′i] is initially set to

[di], for 1 ≤ i ≤ 6. �

6.4.6. Secure Bit-OR (SBOR). P1 holds (Epk(o1), Epk(o2)) and P2 holds

sk, where o1 and o2 are two bits not known to both parties. The goal of the SBOR

protocol is to securely compute Epk(o1 ∨ o2). At the end of this protocol, only P1

knows Epk(o1∨o2). During this process, no information related to o1 and o2 is revealed

to P1 and P2. Using SM, P1 and P2 compute Epk(o1 ∨ o2) as follows:

• P1 with input (Epk(o1), Epk(o2)) and P2 with sk involve in the SM protocol. At

the end of this step, the output Epk(o1 ∗ o2) is known only to P1. Note that,

since o1 and o2 are bits, Epk(o1 ∗ o2) = Epk(o1 ∧ o2).
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[dmin]← [d′1]← [min(d′1, d
′
5)]

[d′1]← [min(d′1, d
′
3)]

[d′1]← [min(d′1, d
′
2)]

[d′1] [d′2]

[d′3]← [min(d′3, d
′
4)]

[d′3] [d′4]

[d′5]

[d′5]← [min(d′5, d
′
6)]

[d′5] [d′6]

Figure 6.1: Binary execution tree for n = 6 based on the SMINn protocol

• Epk(o1 ∨ o2) = Epk(o1 + o2) ∗ Epk(o1 ∧ o2)
N−1.

In general, for any given two bits o1 and o2, the property o1 ∨ o2 = o1 + o2 − o1 ∧ o2

always holds.

6.5. SECURITY ANALYSIS OF BASIC PRIMITIVES UNDER THE
SEMI-HONEST MODEL

First of all, it is worth pointing out that the outputs in the above mentioned

protocols are always in encrypted format, and are known only to P1. In addition, all

the intermediate results revealed to P2 are either random or pseudo-random. Note

that, the SBD protocol proposed in [100] is secure under the semi-honest model.

Since the proposed SMIN protocol (which is used as a sub-routine in SMINn)

is more complex than other protocols mentioned above, this work provides its security

proof rather than providing proofs for each protocol. Therefore, only a formal security

proof for the SMIN protocol is included in this work based on the standard simulation

argument [50]. Nevertheless, similar proof strategies can be used to show that other

protocols are secure under the semi-honest model. Informally speaking, this work

claims that all the intermediate results seen by P1 and P2 in the mentioned protocols

are either random or pseudo-random.
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Proof of Security for SMIN: As mentioned in Section 2, to formally prove

that SMIN is secure [50] under the semi-honest model, one need to show that the

simulated execution image of SMIN is computationally indistinguishable from the

actual execution image of SMIN. An execution image generally includes the messages

exchanged and the information computed from these messages. Therefore, according

to Algorithm 11, let the execution image of P2 be denoted by ΠP2(SMIN), where

ΠP2(SMIN) = {〈Γ′
i, µi + r̂i mod N〉, 〈L′

i, α〉 | for 1 ≤ i ≤ l}

Observe that µi+ r̂i mod N is derived upon decrypting Γ′
i, where the modulo operator

is implicit in the decryption function. Also, P2 receives L
′ from P1 and let α denote the

(oblivious) comparison result computed from L′. Without loss of generality, suppose

the simulated image of P2 be ΠS
P2
(SMIN), where

ΠS
P2
(SMIN) = {〈s′1,i, s′2,i〉, 〈s′3,i, α′〉 | for 1 ≤ i ≤ l}

Here s′1,i and s′3,i are randomly generated from ZN2 , and s′2,i is randomly generated

from ZN . In addition, α′ is a random bit. Since Epk is a semantically secure encryption

scheme with resulting ciphertext size less than N2, Γ′
i and L′

i are computationally

indistinguishable from s′1,i and s′3,i, respectively. Also, as r̂i is randomly generated,

µi + r̂i mod N is computationally indistinguishable from s′2,i. Furthermore, because

the functionality is randomly chosen by P1 (at step 1(a) of Algorithm 11), α is either

0 or 1 with equal probability. Thus, α is computationally indistinguishable from

α′. Combining all these results together, this work concludes that ΠP2(SMIN) is

computationally indistinguishable from ΠS
P2
(SMIN). This implies that during the

execution of SMIN, P2 does not learn any information regarding u, v and the actual

comparison result. Intuitively speaking, the information P2 has during an execution

of SMIN is either random or pseudo-random, so this information does not disclose
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anything regarding u and v. Additionally, as F is known only to P1, the actual

comparison result is oblivious to P2.

On the other hand, the execution image of P1, denoted by ΠP1(SMIN), can be

given by

ΠP1(SMIN) = {M ′
i , Epk(α) | for 1 ≤ i ≤ l}

Here M ′
i is an encrypted value, which is random in ZN2 , received from P2 (at step

3(a) of Algorithm 11). Let the simulated image of P1 be ΠS
P1
(SMIN), where

ΠS
P1
(SMIN) = {s′4,i, b | for 1 ≤ i ≤ l}

Both s′4,i and b are randomly generated from ZN2 . Since Epk is a semantically secure

encryption scheme with resulting ciphertext size less than N2, M ′
i and Epk(α) are

computationally indistinguishable from s4,i and b. Therefore, ΠP1(SMIN) is compu-

tationally indistinguishable from ΠS
P1
(SMIN). This implies that P1 cannot learn any

information regarding u, v and the comparison result during the execution of SMIN.

Based on the above analysis, it is clear that the proposed SMIN protocol is

secure under the semi-honest model. In a similar way, one can formally prove that all

the protocols given in the previous section are secure under the semi-honest model.

Hence, in the rest of this section, assume that the basic primitives presented in Section

6.4 are secure under the semi-honest model.

6.6. THE PROPOSED SkNN PROTOCOLS

This sub-section first presents a basic SkNN protocol and demonstrates why

such a simple solution is not secure. Then, it discusses the second approach, a fully

secure kNN protocol. Both protocols are constructed using the security primitives

discussed in the previous sub-section as building blocks.



152

As mentioned earlier, this work assumes the existence of two non-colluding

semi-honest cloud service providers C1 and C2 which together form a federated cloud.

Also, assume that user profile vectors were encrypted by individual users (using the

public key of C2) and sent to C1. Now the goal of SkNN is to recommend k potential

friends to the target user Bob using k-nearest neighbors technique. For this purpose,

assume C1 selects a random set of n user profiles denoted by T = {t1, . . . , tn}. Let the

encrypted user profiles of T be denoted by Epk(T ). Also, assume that all attribute

values and their Euclidean distances lie in [0, 2l). Note that the secret key sk is known

only to C2.

The proposed SkNN protocols retrieve the top k user profiles that are closest

to the Bob’s query Q in an efficient and secure manner. At a high level, C1 and C2

involve in a set of sub-protocols to securely retrieve (in encrypted form) the set of k

profiles corresponding to the k-nearest neighbors of the input profile Q. At the end

of the proposed protocols, only Bob will receive the user IDs of k-nearest neighbors

to Q as the output.

6.6.1. The Basic Protocol. In the basic secure k-nearest neighbor query

protocol, denoted by SkNNb, the desirable properties are relaxed to produce an effi-

cient protocol (more details are given in the later part of this section).

The main steps involved in the SkNNb protocol are given in Algorithm 13.

Initially, C1 with private input (Epk(Q), Epk(ti)) and C2 with the secret key sk jointly

involve in the SSED protocol, where Epk(ti) = 〈Epk(ti,1), . . . , Epk(ti,m)〉, for 1 ≤ i ≤ n.

The output of this step, denoted by Epk(di), is the encryption of squared Euclidean

distance between Q and ti, i.e., di = |Q− ti|2. As mentioned earlier, Epk(di) is known

only to C1, for 1 ≤ i ≤ n. Note that computation of exact Euclidean distance between

encrypted vectors is hard to achieve as it involves square root. However, in the k-

nearest neighbor problem, it is sufficient to compare the squared Euclidean distances

as it preserves relative ordering. After this, C1 sends {〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉}
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Algorithm 13 SkNNb(Epk(T ), Epk(Q))→ 〈ID(t′1), . . . , ID(t′k)〉
Require: C1 has Epk(T ) and Epk(Q); C2 has sk
1: C1 and C2:

(a). for i = 1 to n do:

• Epk(di)← SSED(Epk(Q), Epk(ti))

(b). C1 sends {〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} to C2

2: C2:

(a). Receive {〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉} from C1

(b). di ← Dsk(Epk(di)), for 1 ≤ i ≤ n

(c). Generate δ ← 〈i1, . . . , ik〉, such that 〈di1 , . . . , dik〉 are the top k smallest
distances among 〈d1, . . . , dn〉

(d). Send δ to C1

3: C1:

(a). Receive δ from C2

(b). ID(t′j)← ID(tij), for 1 ≤ j ≤ k

(c). Send 〈ID(t′1), . . . , ID(t′k)〉 to Bob

to C2, where entry 〈i, Epk(di)〉 correspond to data record ti, for 1 ≤ i ≤ n. Upon

receiving 〈1, Epk(d1)〉 , . . . , 〈n,Epk(dn)〉, C2 decrypts the encrypted distance in each

entry to get di = Dsk(Epk(di)). Then, C2 generates an index list δ = 〈i1, . . . , ik〉 such

that 〈di1 , . . . dik〉 are the top k smallest distances among 〈d1, . . . , dn〉. After this, C2

sends δ to C1. Upon receiving δ, C1 simply sets ID(t′j) to ID(tij), for 1 ≤ j ≤ k, and

recommends 〈ID(t′1), . . . , ID(t′1)〉 as top k potential friends to Bob.

6.6.2. Fully Secure kNN Protocol. The above-mentioned SkNNb proto-

col reveals the data access patterns to C1 and C2. That is, for any given Q, C1 and

C2 know which data records correspond to the k-nearest neighbors of Q. Also, it

reveals di values to C2 and top k profile IDs to C1. However, leakage of such infor-

mation may not be acceptable. Along this direction, a fully secure protocol, denoted
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by SkNNm (where m stands for maximally secure), is proposed here to retrieve the

k-nearest neighbors of Q. The proposed SkNNm protocol preserves all the desirable

properties of a secure kNN protocol as mentioned in the Introduction.

The main steps involved in the proposed SkNNm protocol are as shown in

Algorithm 14. Initially, C1 with private input (Epk(Q), Epk(ti)) and C2 with the

secret key sk jointly involve in the SSED protocol. The output of this step is

Epk(di) = Epk(|Q − ti|2) which will be known only to C1, for 1 ≤ i ≤ n. Then,

C1 with input Epk(di) and C2 with sk securely compute the encryptions of the

individual bits of di using the SBD protocol. Note that the output of this step

[di] = 〈Epk(di,1), . . . , Epk(di,l)〉 is known only to C1, where di,1 and di,l are the most

and least significant bits of di respectively. Note that 0 ≤ di < 2l, for 1 ≤ i ≤ n.

After this, C1 and C2 compute the top k (in encrypted form) closest pro-

files that are closest to Q in an iterative manner. More specifically, they compute

Epk(ID(t
′
1)) in the first iteration, Epk(ID(t

′
2)) in the second iteration, and so on. Here

t′s denotes the sth nearest neighbor to Q, for 1 ≤ s ≤ k. At the end of k iterations,

only C1 knows 〈Epk(ID(t
′
1)), . . . , Epk(ID(t

′
k))〉. To start with, in the first iteration,

C1 and C2 jointly compute the encryptions of the individual bits of the minimum

value among d1, . . . , dn using SMINn. That is, C1 with input 〈[d1], . . . , [dn]〉 and C2

compute [dmin], where dmin is the minimum value among d1, . . . , dn. The output [dmin]

is known only to C1. Now, C1 performs the following operations locally:

• Compute the encryption of dmin from its encrypted individual bits as below

Epk(dmin) =
l−1∏

γ=0

Epk(dmin,γ+1)
2l−γ−1

= Epk(dmin,1 ∗ 2l−1 + · · ·+ dmin,l)

where dmin,1 and dmin,l are the most and least significant bits of dmin respectively.
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Algorithm 14 SkNNm(Epk(T ), Epk(Q))→ 〈ID(t′1), . . . , ID(t′k)〉
Require: C1 has (Epk(T ), Epk(Q)) and π; C2 has sk
1: C1 and C2: Epk(di)← SSED(Epk(Q), Epk(ti)) and [di]← SBD(Epk(di)), for 1 ≤ i ≤ n

2: for s = 1 to k do:

(a). C1 and C2: [dmin]← SMINn([d1], . . . , [dn])

(b). C1:

• Epk(dmin)←
∏l−1

γ=0 Epk(dmin,γ+1)
2l−γ−1

• if s 6= 1 then, for 1 ≤ i ≤ n

– Epk(di)←
∏l−1

γ=0 Epk(di,γ+1)
2l−γ−1

• for i = 1 to n do:

– τi ← Epk(dmin) ∗ Epk(di)
N−1

– τ ′i ← τ rii , where ri ∈R ZN

• β ← π(τ ′); send β to C2

(c). C2:

• β′
i ← Dsk(βi), for 1 ≤ i ≤ n

• Compute U , for 1 ≤ i ≤ n:

– if β′
i = 0 then Ui = Epk(1)

– else Ui = Epk(0)

• Send U to C1

(d). C1:

• V ← π−1(U) and V ′
i ← V

ID(ti)
i , for 1 ≤ i ≤ n

• Epk(ID(t′s))←
∏n

i=1 V
′
i

• γs ← Epk(ID(t′s)) ∗ Epk(rs), where rs ∈R ZN

• Send γs to C2 and rs to Bob

(e). C1 and C2, for 1 ≤ i ≤ n:

• Epk(di,γ)← SBOR(Vi, Epk(di,γ)), for 1 ≤ γ ≤ l

3: C2:

(a). for 1 ≤ s ≤ k do:

• γ′
s ← Dsk(γs); send γ′

s to Bob

4: Bob:

(a). for 1 ≤ s ≤ k do:

• Receive rs from C1 and γ′
s from C2

• ID(t′s)← γ′
s − rs mod N
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• Compute the encryption of difference between dmin and each di. That is, C1

computes τi = Epk(dmin) ∗ Epk(di)
N−1 = Epk(dmin − di), for 1 ≤ i ≤ n.

• Randomize τi to get τ ′i = τ rii = Epk(ri ∗ (dmin − di)), where ri is a random

number in ZN . Note that τ ′i is an encryption of either 0 or a random number,

for 1 ≤ i ≤ n. Also, permute τ ′ using a random permutation function π (known

only to C1) to get β = π(τ ′) and send it to C2.

Upon receiving β, C2 decrypts it component-wise to get β′
i = Dsk(βi), for 1 ≤ i ≤ n.

After this, he/she computes an encrypted vector U of length n such that Ui = Epk(1)

if β′
i = 0, and Epk(0) otherwise. This work assumes that exactly one of the entries

in β equals to zero and rest of them are random. This further implies that exactly

one of the entries in U is an encryption of 1 and rest of them are encryptions of 0’s.

However, if β′ has more than one 0’s, then C2 can randomly pick one of those indexes

and assign Epk(1) to the corresponding index of U and Epk(0) to the rest. Then,

C2 sends U to C1. After receiving U , C1 performs inverse permutation on it to get

V = π−1(U). Note that exactly one of the entry in V is Epk(1) and the remaining

are encryption of 0’s. In addition, if Vi = Epk(1), then ti is the closest profile vector

to Q. However, C1 and C2 do not know which entry in V corresponds to Epk(1).

Now C1 computes Epk(ID(t
′
1)) locally, the encryption of the user ID of the

closest profile to Q, and updates the distance vectors as follows:

• Compute V ′
i ← V

ID(ti)
i , for 1 ≤ i ≤ n. After this, by using homomorphic

properties, C1 computes the encrypted user ID of t1 as Epk(ID(t
′
1)) =

∏n

i=1 V
′
i .

• It is important to note that the first nearest profile to Q should be obliviously

excluded from further computations. However, since C1 does not know the

profile corresponding to Epk(ID(t
′
1)), one need to obliviously eliminate the pos-

sibility of choosing this profile again in next iterations. For this, C1 obliviously

updates the distance corresponding to Epk(t
′
1) to the maximum value, i.e., 2l−1.
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More specifically, C1 updates the distance vectors with the help of C2 using the

SBOR protocol as below, for 1 ≤ i ≤ n and 1 ≤ γ ≤ l.

Epk(di,γ) = SBOR(Vi, Epk(di,γ))

Note that when Vi = Epk(1), the corresponding distance vector di is set to the

maximum value. That is, under this case, [di] = 〈Epk(1), . . . , Epk(1)〉. However,

when Vi = Epk(0), the OR operation has no affect on di.

The above process is repeated until k iterations, and in each iteration [di] correspond-

ing to the current chosen profile is set to the maximum value. However, since C1 does

not know which [di] is updated, he/she has to re-compute Epk(di) in each iteration

using the corresponding [di], for 1 ≤ i ≤ n. In iteration s, Epk(ID(t
′
s)) is known only

to C1.

At the end of the iterative step (i.e., step 2 of Algorithm 14), only C1 has

〈Epk(ID(t
′
1)), . . . , Epk(ID(t

′
k))〉 - the list of encrypted user IDs of k-nearest neighbors

to the input query profile Q. Then C1 proceeds as follows:

• Randomize the encrypted user IDs. More specifically, C1 computes Epk(γs) =

Epk(ID(t
′
s)) ∗Epk(rs), for 1 ≤ s ≤ k. Here rs is a random number in ZN known

only to C1. Send γs to C2 and rs to Bob, for 1 ≤ s ≤ k.

Upon receiving γs, C2 decrypts it to get γ′
s = Dsk(γs) and sends it to Bob, for

1 ≤ s ≤ k. Note that, due to randomization by C1, decryption operation on γs

always yields a random number in ZN .

Finally, upon receiving rs from C1 and γ′
s from C2, Bob computes the user ID

of sth potential friend as ID(t′s) = γ′
s − rs mod N , for 1 ≤ s ≤ k.

6.6.3. Security Analysis. First, due to the encryption of profile vectors

and by semantic security of the Paillier cryptosystem, user’s profile data is protected

from C1 and C2 in both protocols.
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In the SkNNb protocol, the decryption operations at step 2(b) of Algorithm

13 reveal di values to C2. In addition, since C2 generates the top k index list (at step

2(c) of Algorithm 13) and sends it to C1, the data access patterns are revealed to

C1 and C2. In addition, the top k user IDs are revealed to C1. Therefore, the basic

SkNNb protocol is secure under the assumption that di values can be revealed to C2,

output can be revealed to C1, and data access patterns can be revealed to C1 and C2.

On the other hand, the security analysis of SkNNm is as follows. At step 1 of

Algorithm 14, the outputs of SSED and SBD are in encrypted format, and are known

only to C1. In addition, all the intermediate results decrypted by C2 in SSED are

uniformly random in ZN . Also, as mentioned in [100], the SBD protocol is secure.

Thus, no information is revealed during step 1 of Algorithm 14. In each iteration,

the output of SMINn is known only to C1 and no information is revealed to C2. Also,

C1 and C2 do not know which profile belongs to current global minimum. Thus,

data access patterns are protected from both C1 and C2. At step 2(c) of Algorithm

14, a component-wise decryption of β reveals the tuples that satisfy the current

global minimum distance to C2. However, due to permutation by C1, C2 cannot

trace back to the corresponding data profiles. Also, note that decryption of β gives

either encryptions of 0’s or random numbers in ZN . Similarly, since U is an encrypted

vector, C1 cannot know which tuple corresponds to current global minimum distance.

Thus, data access patterns are further protected at this step from C1. In addition,

the update process at step 2(e) of Algorithm 14 does not leak any information to C1

and C2. In summary, C1 and C2 do not know which data profiles correspond to the

output set 〈t′1, . . . , t′k〉. Also, unlike SkNNb, it is worth pointing out that the output

of SkNNm is revealed only to Bob.

Based on the above discussions, it is clear that the proposed SkNNm protocol

protects the confidentiality of the data and hides the data access patterns from both

C1 and C2.
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6.6.4. Complexity Analysis. The computation complexity of SkNNb is

bounded by O(n ∗ m + k) encryptions, decryptions and exponentiations. In prac-

tice k ≪ n ∗ m; therefore, the computation complexity of SkNNb is bounded by

O(n∗m) encryptions and exponentiations (assuming that encryption and decryption

operations under Paillier cryptosystem take similar amount of time).

On the other hand, the computation complexity of SkNNm is bounded by

O(n) instantiations of SBD and SSED, O(k) instantiations of SMINn, and O(n∗k∗ l)

instantiations of SBOR. Note that the computation complexity of the SBD protocol

proposed in [100] is bounded by O(l) encryptions and O(l) exponentiations. Also,

the computation complexity of SSED is bounded by O(m) encryptions and O(m)

exponentiations. In addition, the computation complexity of SMINn is bounded by

O(l∗n∗ log2 n) encryptions and O(l∗n∗ log2 n) exponentiations. Since SBOR utilizes

SM as a sub-routine, the computation cost of SBOR is bounded by (small) constant

number of encryptions and exponentiations. Based on the above analysis, the total

computation complexity of the SkNNm protocol is bounded by O(n ∗ (l+m+ k ∗ l ∗

log2 n)) encryptions and exponentiations.

6.7. EMPIRICAL ANALYSIS

This sub-section discusses the performances of the proposed protocols in detail

under different parameter settings. By using Paillier cryptosystem [55], the proposed

protocols were implemented in C. Various experiments were conducted on a Linux

machine with an Intel R© Xeon R© Six-CoreTM CPU 3.07 GHz processor and 12GB

RAM running Ubuntu 10.04 LTS.

Since it is difficult to control the parameters in a real dataset, synthetic

datasets are randomly generated depending on the parameter values in considera-

tion. Using these synthetic datasets one can perform a more elaborated analysis on
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the computation costs of the proposed protocols under different parameter settings.

The datasets were encrypted attribute-wise, using the Paillier encryption whose key

size is varied in the experiments, and the encrypted data were stored on the above ma-

chine. Then, a random query was chosen and executed over the encrypted data based

on the protocols protocols. For the rest of this section, the performance of Bob is not

discussed as he will not participate in any computations. Instead, the evaluations are

based on the performance of federated cloud in SkNNb and SkNNm separately. In ad-

dition, the computation costs of the two protocols are compared. In the experiments,

the Paillier encryption key size K is set to either 512 or 1024 bits.

6.7.1. Performance of SkNNb. This sub-section analyzes the computation

costs of SkNNb by varying the number of profiles (n), number of attributes in a profile

(m), number of nearest neighbors (k), and encryption key size (K). The results are

as shown in Figure 6.2. Note that the SkNNb protocol is independent of the domain

size of attributes (l).

First, by fixing k = 5 and K = 512, the computation costs of SkNNb are

evaluated for varying n and m. As shown in Figure 6.2(a), the computation costs of

SkNNb grows linearly with n and m. For example, when m = 6, the computation

time of SkNNb increases from 44.08 to 87.91 seconds when n is varied from 2000 to

4000. A similar trend is observed for K = 1024 as shown in Figure 6.2(b). For any

fixed parameters, the observation is that the computation time of SkNNb increases

almost by a factor of 7 when K is doubled.

Next, by fixing m = 6 and n = 2000, the running times of SkNNb for varying

k and K are computed. The results are shown in Figure 6.2(c). Irrespective of K, the

computation time of SkNNb does not change much with varying k. This is because

most of the cost in SkNNb comes from the SSED protocol which is independent of

k. E.g., when K = 512 bits, the computation time of SkNNb changes from 44.08 to

44.14 seconds when k is changed from 5 to 25. Based on the above discussions, it is
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(a) SkNNb for k = 5 and K = 512
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(b) SkNNb for k = 5 and K = 1024
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(c) SkNNb for m = 6 and n = 2000
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(d) SkNNm for n = 2000 and K = 512
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(e) SkNNm for n = 2000 and K = 1024
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Figure 6.2: Time complexities of SkNNb and SkNNm for varying values of n, m, l, k
and encryption key size K

clear that the running time of SkNNb mainly depends on (or grows linearly with) n

and m which further justifies the complexity analysis in Section 6.6.4.

6.7.2. Performance of SkNNm. The computation costs of SkNNm for vary-

ing values of k, l and K are evaluated. Throughout this sub-section, the values
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of m and n are fixed to 6 and 2000, respectively. However, the running time of

SkNNm grows almost linearly with n and m.

For K = 512 bits, the computation costs of SkNNm for varying k and l are

as shown in Figure 6.2(d). Following from Figure 6.2(d), for l = 6, the running

time of SkNNm varies from 11.93 to 55.65 minutes when k is changed from 5 to 25

respectively. Also, for l = 12, the running time of SkNNm varies from 20.68 to 97.8

minutes when k is changed from 5 to 25 respectively. In either case, the cost of

SkNNm grows almost linearly with k and l.

A similar trend is observed for K = 1024 as shown in Figure 6.2(e). In

particular, for any given fixed parameters, the computation cost of SkNNm increases

by almost a factor of 7 when K is doubled. For example, when k = 10, SkNNm took

22.85 and 157.17 minutes to generate the 10 nearest neighbors of Q under K = 512

and 1024 bits respectively. Furthermore, when k = 5, the observation is that around

69.7% of cost in SkNNm is accounted due to SMINn which is initiated k times in

SkNNm (once in each iteration). Also, the cost incurred due to SMINn increases from

69.7% to at least 75% when k is increased from 5 to 25.

In addition, by fixing n = 2000,m = 6, l = 6 and K = 512, the running times

of both protocols are compared for varying values of k. As shown in Figure 6.2(f),

the running time of SkNNb remains to be constant at 0.73 minutes since it is almost

independent of k. However, the running time of SkNNm changes from 11.93 to 55.65

minutes as the value of k increases from 5 to 25.

Based on the above results, it is clear that the computation costs of SkNNm are

significantly higher than that of SkNNb. However, SkNNm is more secure than

SkNNb; therefore, the two protocols act as a trade-off between security and effi-

ciency. Also, it is important to note that user’s computation cost is mainly due

to the encryption of his/her profile vector during outsourcing. As an example, for

m = 6, Bob’s computation costs are 4 and 17 milliseconds when K is 512 and 1024
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bits respectively. In the proposed protocols, it is worth pointing out that users do

not involve in any computations; therefore, they are very efficient from the end-user’s

perspective.

6.7.3. Towards Performance Improvement. At first, it seems that the

proposed protocols are costly and may not scale well for large values of n. How-

ever, in both protocols, the computations involved on each profile are independent of

others. Therefore, one can parallelize the operations on profile vectors for efficiency

purpose. To further justify this claim, this work implemented a parallel version of the

SkNNb protocol using OpenMP programming and compared its computation costs

with its serial version. As mentioned earlier, the machine used in this experiments

has 6 cores which can be used to perform parallel operations on 6 threads. For

m = 6, k = 5 and K = 512 bits, the comparison results are shown in Figure 6.3.

The observation is that the parallel version of SkNNb is roughly 6 times more effi-

cient than its serial version. This is because of the fact that the parallel version can

execute operations on 6 data records at a time (i.e., on 6 threads in parallel). E.g.,

when n = 10000, the running times of parallel and serial versions of SkNNb are 40

and 215.59 seconds respectively.

Similar efficiency gains can be achieved by parallelizing the operations in

SkNNm. Based on the above discussions, especially in a cloud computing environment

where high performance parallel processing can be easily achieved, this work claims

that the scalability issue of the proposed protocols can be eliminated or mitigated.

In addition, using the existing map-reduce techniques, one can drastically improve

the performance further by executing parallel operations on multiple nodes.

Following from the above empirical analysis, it is clear that SMINn is the

most costly sub-routine utilized in SkNNm. Therefore, by improving the efficiency of

SMINn, one can improve the overall computation cost of SkNNm.
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6.8. CONCLUSION

k-nearest neighbors is one of the commonly used query in many data mining

applications such as detection of fraud by credit card companies and prediction of

tumor cells levels in blood. With the recent growth of cloud computing as a new

IT paradigm, data owners are more interested to outsource their databases as well

as DBMS functionalities to the cloud. Under an outsourced social networking envi-

ronment, where encrypted users’ profile data are stored in the cloud, secure query

processing over encrypted data becomes challenging. In the literature, various secure

k-nearest neighbor (SkNN) techniques have been proposed. However, the existing

SkNN techniques over encrypted data are not secure.

Along this direction, two novel SkNN protocols over encrypted data in the

cloud are proposed. The first protocol, which acts as a basic solution, leaks some

information to the cloud. On the other hand, the second protocol is fully secure,

that is, it protects the confidentiality of the data and also hides the data access

patterns. However, the second protocol is more expensive compared to the basic

protocol. Also, this work evaluated the performance of both protocols under different

parameter settings. As a future work, it will be interesting to investigate and extend

this research to other complex conjuctive queries over encrypted data.
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7. CONCLUSIONS AND POSSIBLE FUTURE RESEARCH

The popularity of online social networks (OSNs) is on a constant rise due to

various advantages such as online communication and sharing information of interest

among friends. In general, users often wish to make new friends; therefore, improving

the chances of expanding their social connections as well as getting information from a

broader range of friends. Friend recommendation is a well-known application in many

OSNs and has been studied extensively in the recent past. However, with the grow-

ing concerns about user privacy, there is a strong need to develop privacy-preserving

friend recommendation methods for social networks. Therefore, this document pro-

posed a set of private friend recommendation protocols as a way to facilitate the friend

recommendation process possible even when the user’s information in consideration

is kept as private.

The proposed protocol in Section 3 computes the recommendation scores of

all users within a radius of h from the target user A by using the similarity metric

proposed in [14] as a baseline. More specifically, the proposed protocol generates the

(scaled) recommendation scores along with the corresponding user IDs in such a way

that the relative ordering among the users in the TOP-K list of recommended users

is preserved (i.e., same accuracy as in [14]). In addition, this work demonstrated a

new security issue in the current online social networks due to the inherent message

flow information between different entities. To mitigate this issue or to provide bet-

ter security, this work also proposed an extended version of the proposed protocol

using randomization technique. Furthermore, a detailed empirical analysis based on

different parameter settings were provided.

The proposed protocols in Section 4 facilitate users in a group G to get friend

recommendations based on the social network structure and the users’ social tags. For
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a target user ui, the proposed protocols compute the social closeness scores between

ui and each user in the subset Gi ⊂ G in a privacy-preserving manner by utilizing an

ontology tree T constructed by the domain expert such as the network administrator.

The proposed protocols in Section 5 recommend new friends to a given target

user A using the common neighbors proximity measure under the assumption that

users’ friend lists are private. The first protocol PPFRh is based on an additive homo-

morphic encryption scheme, and its accuracy is essentially based on the parameters

of universal hash function ha,b. Whereas the second protocol PPFRsp utilizes the

concept of protecting the source privacy through randomizing the message passing

path and also recommends friends accurately. The PPFRsp protocol is more efficient

than the PPFRh protocol. The proposed PPFR protocols act as a trade-off among

security, efficiency and accuracy.

The proposed protocols in Section 6 generate friend recommendations to a

given target user assuming an outsourced social networking environment, where users’

profile data are encrypted and stored in the cloud. Both protocols are constructed

based on the k-nearest neighbor technique. That is, the proposed protocols compute

k-nearest profiles (in encrypted form) to a given target profile and obliviously recom-

mend the corresponding candidates as top k potential friends to the target user. The

experimental results showed that the SkNNb protocol is significantly more efficient

than SkNNm. However, SkNNm provides better security than SkNNb.

The proposed protocols in Sections 3 to 5 assume that either users’ friend lists,

social tags, or messages exchanged with other users of an online social network (OSN)

as private information. As a future work, it is also desirable to develop protocols that

can recommend friends based on other details such as education and employment in

a privacy-preserving manner. Also, the proposed protocols in Section 4 assume that

the network administrator builds the ontology tree T based on the domain knowledge

of a particular group. However, extending it to multiple groups may not seem to be
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feasible at this point of time; therefore, it can be treated as an interesting direction

for future research.

In the literature, many friend recommendation protocols have been proposed

based on different similarity metrics. However, only recently, researchers have focused

on constructing hybrid friend recommendation protocols by taking both network

structure as well as users’ profile contents into consideration. Hence, a possible

extension to this work is to explore alternative ways for developing hybrid privacy-

preserving friend recommendation methods by combining different scoring functions.
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