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ABSTRACT

The commonly observed Poole-Frenkel field dependence, µ ∼ exp
√
β0E, of the

mobility of photo-injected charges in molecularly-doped polymers has been shown to

arise from the spatially-correlated, Gaussian energy distribution of transport sites

encountered by charges moving through the material. Experimental current-time

transients obtained for molecularly-doped polymers exhibit universality with respect

to electric field and a metal-insulator-like transition from non-dispersive to disper-

sive transport, features usually identified with multiple trapping models that assume

an uncorrelated exponential distribution of trap energies. For materials that exhibit

both sets of features the possibility arises that both kinds of disorder coexist. We

study here, analytically and numerically, transport in a random medium containing

two kinds of energetic disorder, i.e., a spatially correlated Gaussian component and

a spatially uncorrelated exponential component associated with traps. The essential

question addressed is the degree to which the uncorrelated component of disorder

alters or destroys the Poole-Frenkel field dependence associated with the correlated

component. In our hybrid model, the bulk mobility theoretically drops to zero when

the typical trap depth exceeds the thermal energy, causing a metal-insulator-like tran-

sition. In a finite sample this corresponds to a transition to the dispersive transport

regime, in which carriers can never equilibrate. For a finite 3D computational sample,

the behavior above and below the transition point shows different finite size scaling

with the number of sites in the lattice. In agreement with experimental observations,

the Poole-Frenkel field dependence of the charge carrier mobility, and the associated

temperature dependence observed in a trap-free sample, is unaffected as the transition

to dispersive transport is approached from the conducting side.
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1. INTRODUCTION

There have been extensive experimental [6–14] and theoretical investigations [15–

17] of the transport properties of charge carriers photo-injected into the technologi-

cally important class of materials referred to asmolecularly-doped polymers (MDPs) [18–

22]. The technological importance of MDP films arises from their use as charge

transport layers in many organic optoelectronic and electrophotographic applications.

They are most extensively used as photoreceptors [23–29] in copier machines and laser

printers [30], but they have played an increasingly important role in the development

of organic photovoltaics [31–33], light emitting diodes [34], and other organic elec-

tronic devices [35–45].

Molecularly doped polymers themselves are two component materials formed

by doping organic transport molecules into an otherwise insulating polymer matrix

[30, 46]. The polymers most commonly used in MDP applications include polycar-

bonate (PC) and polystyrene (PS), whose polymeric units comprise long molecular

chains formed from a large number of smaller molecular repeat units referred to as

monomers (a sequence of n repeat units forms an n-mer, which for small n includes

dimers, trimers, etc.). Materials formed from polymer chains of the same molecular

weight (i.e., chain length) can be grown into crystals but evaporated films grown

from solution more typically form an amorphous structurally-disordered material,

comprised of many entangled polymer chains having a distribution of different chain

lengths. A given molecularly-doped polymer is characterized, then, by a specified

polymer host, and by the concentration (usually specified as a weight per cent) of

organic transport molecules that have been doped into it. For example, one of the

most widely studied MDP materials is formed by doping diphenyl hydrazone (DEH)

molecules at 30 wt. % into polycarbonate, forming a hole-transporting material
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denoted as 30% DEH:PC. The chemical structure of the DEH transport molecules

and the polymer repeat unit for this material are presented in Fig. 1.1.

Figure 1.1. The structure of the DEH molecule and polycarbonate. [1]

Even with the addition of transport molecules, MDPs remain electrically in-

sulating up to very large applied electric fields. Thus, dopant molecules in these

materials do not directly add carriers to the system, as they would in typical p-type

or n-type semiconductors. To act as a charge transport layer, as in a xerographic pho-

toreceptor, e.g., carriers must be injected, either electronically or optically, into the

otherwise insulating material, where they are then able to move through the manifold

of localized electronic states associated with the transport molecules introduced into

the material for that purpose.

In the work presented in this dissertation, several features of charge transport

in MDPs are theoretically studied and several new theoretical and numerical results

are presented. To aid in the presentation of these results, which appear in the body

of the dissertation, this introductory section provides a basic description of the un-

derlying physics of photo-injected charge transport in molecularly-doped polymers,

emphasizing the important role of energetic and spatial disorder in the transport



3

process. After describing basic experimental observations, including a number of es-

sentially universal features common to many MDPs, key theoretical ideas that have

been previously developed to explain these observations are reviewed. This review

reveals an interesting fact: very different statistical (i.e., microscopic) models of the

disorder have been used to explain different commonly-observed features of the ex-

perimental data. Indeed, this evident dichotomy in the theoretical literature forms

the basic motivation for the theoretical and numerical studies that are presented in

this dissertation, which attempts to answer the question as to whether the different

kinds of disorder invoked to explain the different classes of experimental observation

are, in fact, compatible, i.e., could they actually co-exist; or would the presence of

one type of disorder modify or destroy the characteristic features that arise naturally

with the other.

The rest of this section is laid out as follows. In the next subsection prop-

erties associated with the electronic structure of molecularly doped polymers that

allows for the process of photo-injection (or photogeneration) of charge carriers, and

for their subsequent motion through a MDP film are briefly discussed. Following

this, a description of the basic experimental set-up associated with the time-of-flight

measurements that are commonly used to measure transport properties in these ma-

terials is presented. This is followed by a description of universal features that emerge

from these measurements, and a review of transport models that have been developed

to explain them. This section concludes with a subsection outlining the motivation

for the research presented here, and an overview of the material presented in the

remaining sections of the dissertation.
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1.1. CHARGE TRANSPORT IN MOLECULARLY-DOPED
POLYMERS

Charge transport in metals and other types of ordered solids (i.e., crystals) was

initially explained using a simple model proposed by Drude, soon after the discovery

of the electron. In the Drude model [47], collisions between electrons were neglected,

and essentially free electrons were assumed to undergo collisions only with metal ions.

The mean free path was thus assumed to be governed by the lattice spacing in the

crystal, independent of the speed of the electron. The erroneous assumption that the

scattering was due to the ions was corrected later in the quantum description [48], in

which it came to be understood that electrons in an ordered lattice form energy bands,

and are better described by Bloch waves that scatter not from the ordered array of

ions but from deviations from the ordered structure arising from defects, impurities,

and lattice vibrations (i.e., phonons). Thus, the basic picture of charge transport

in many ordered materials is one in which electrons travel considerable distances in

extended momentum-like states, between scattering events that lead, e.g., to normal

electrical conduction.

In contrast to ordered crystalline materials, with well defined Bloch states

and their associated energy bands, amorphous organic materials like MDPs have no

translational symmetry, and the relative “softness” of the organic molecules making

up the material increases the importance of the electronic coupling of charge carriers

to vibrational modes of the material. Both of these effects favor the formation of

localized, rather than extended, electronic states. Thus, charge transport in MDPs

occurs not through extended free-particle-like motion, but by hopping transitions of

carriers between localized states associated with the dopant molecules [30, 46].

The spatial energy structure of a typical molecularly-doped polymer material

is indicated schematically in Fig. 1.2. In this figure, localized electronic states of the

polymer repeat units and those of the dopant molecules are seen to be of two types:
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those which are filled or occupied by electrons and those which are not. For each

molecular unit there is a highest occupied molecular orbital (or HOMO) and a lowest

unoccupied molecular orbital or (LUMO). Because of the different local environments

experienced by different molecules in the amorphous material, there is an energetic

distribution of localized HOMO and LUMO states randomly distributed throughout

the doped polymer.

Figure 1.2. Energy structure of molecularly-doped polymer.

In the polymers of interest, the energy difference ∆0 >> kT between polymer

LUMO and HOMO states is sufficiently large that at any accessible temperature

the polymer HOMO states are all occupied and the polymer LUMO states are all
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unoccupied. This is the localized state analog to having a filled valence band, an

empty conduction band, and a large band gap; as a consequence, the undoped polymer

is strongly insulating.

The energy difference ∆D between the HOMO and LUMO levels of dopant

molecules is also much larger than kT, but it is smaller than that of the polymer, and

the relative location of its energy levels with those of the polymer plays an important

role. For hole transporting materials like DEH:PC, as indicated in the figure, the

HOMO level of the dopant molecule is considerably higher than the HOMO levels

of the polymer, and the LUMO of the dopant is lower than that of the polymer.

It is this fact that allows for efficient photo-injection of mobile holes in the doped

material. This occurs when, as indicated in the figure, a dopant molecule lying near

a transparent (positively charged) contact is photo-excited (e.g., with a laser tuned

to a frequency for which ∆P > ~ω > ∆D) forming a Frenkel exciton (a particle-hole

excitation localized on the dopant molcule). In the presence of the strong electric

fields applied in an experiment, this exciton can undergo field-ionization, with the

photo-excited electron leaving the dopant molecule and entering the positive contact

of the anode to which it is attracted. The photo-ionized dopant molecule now has

a positively charged hole in its HOMO level, that can subsequently make a hopping

transition into the HOMO levels of other dopant molecules in its neighborhood (a

process in which an electron on one of the neighboring molecules actually makes

a transition onto the photo-ionized dopant molecule, neutralizing it in the process,

but allowing the positive hole to now reside on the dopant molecule from which the

electron came). Thus, photo-injected hole conduction in, e.g., DEH:PC takes place as

a sequence of hopping transitions occurring among the impurity ”band” of localized

states associated with the dopant molecules.

The localized charge carrier states of interest are associated with molecular

orbitals that fall off exponentially with distance from the dopant molecule. The
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tunneling transition probability per unit time, Wmn, of an electron moving from a

localized state n to a state m associated with a different dopant molecule (Fig. 1.3) is

proportional to the square of an appropriate transition matrix element taken between

these two states, and is thus expected to depend exponentially

Wmn ∝ exp

(
−2rmn

α

)
(1)

upon the spatial separation rmn = |~rm − ~rn| between them. In this last expression,

α is the localization length associated with the exponential decay of the molecular

orbital associated with the HOMO levels of the dopant molecules.

Figure 1.3. Hopping transition between two localized states separated by rnm, with
energies εn and εm and localization radius α.

As mentioned earlier, due to the different local environments surrounding each

dopant molecule, there are local variations in the energy εn of the dopant states

involved in the transition. Naturally, the transition rate also depends on the energy

difference εmn = εm − εn between the two states, but its functional form depends
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on the nature and strength of the electron-phonon coupling. Indeed, it is only by

absorbing or emitting phonons that a transition between electronic states of different

energy can occur while still conserving the total energy of the system. For molecularly

doped polymers, the nature of this coupling is still somewhat of an open question, with

two different microscopic pictures commonly invoked to describe individual hopping

transitions.

In one picture, the disordered material is assumed to have a broad spectrum

of vibrational modes, so that is always possible to absorb or emit a single phonon

having the energy |εmn| ∼ ~ωi needed for an electronic transition. In this picture,

hopping rates are assumed to take the form

Wmn = v0 exp

(
−2rnm

α

)
exp

(
−εm − εn + |εm − εn|

2kT

)
(2)

derived by Miller and Abrahams to describe one-phonon thermally-assisted tunnel-

ing [49]. With Miller-Abrahams rates, hops downward in energy are independent of

the energy mismatch, while hops upward in energy are reduced by a Boltzmann factor

exp− |εmn| /kT, that reflects the availability in the medium of phonons of the required

energy. In this expression ν0 is a prefactor that is usually treated as a phenomenolog-

ical parameter that describes the attempt frequency for hops between states of the

same energy.

The second picture commonly used to describe transitions between localized

states in molecularly doped polymers takes into account the relative softness of the

organic molecules involved, and theoretical evidence that suggests that the spatial

configuration of the atoms in a typical organic dopant molecule can change consid-

erably depending on whether it is electrically neutral, or ionized, i.e., whether there

is a charge carrier occupying it or not. This molecular distortion, which occurs due

to a lowering of the overall molecular potential energy in the presence of the altered
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electronic distribution arising from the presence of absence of the carrier, constitutes

a non-perturbative, multi-phonon interaction. The applicability of multiphonon rates

is supported by electronic structure calculations on organic molecules that show sig-

nificant reorganization energies (in the range of a few hundred to several hundred

meV) between the lowest energy state of the neutral organic molecule and its corre-

sponding cation [50]. Since this molecular distortion occurs on any dopant molecule

occupied by the carrier it is often viewed as “following” the carrier as it migrates

between different sites. The combined entity consisting of the charge carrier and the

molecular distortion which accompanies it is referred to as a molecular polaron (in

this case, a small polaron, to distinguish it from carriers, e.g., in semi-conductors in

which the coupling is weaker, and the accompanying distortion is of larger radius and

involves displacments of many neighboring atoms) [51–54]. A hopping transition of a

small polaron of this type requires that thermal fluctations lead to appropriate molec-

ular distortions in a pair of dopant molecules, so that a carrier on one molecule can

resonantly tunnel to the other. The small polaron transition rate has been calculated

by Holstein and Emin [55, 56] in a form

Wn,m =
J2
0 e

−2λrnm

√
2~2εBkT/π

exp

[
−εB + εnm

2kT
− ε2nm

8εBkT

]
(3)

which is equivalent to the chemical reaction rate formula derived by Marcus [57].

In this expression, J0 characterizes the strength of the transition matrix element

connecting the two states, and EB is a measure of the rearrangement energy that

occurs in the presence of the charge carrier, and is referred to as the polaron binding

energy.

It is worth pointing out that the two rates described above, i.e., the Miller-

Abraham rates and the small polaron or Marcus rates share an important feature

that arises from any microscopic model of electron-phonon coupling, and which is
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necessary in order for the electronic system (in the absence of an applied field) to be

able to come to thermal equilibrium. This feature is expressed in the condition of

detailed balance [58],

Wnm

Wmn
=

Pn

Pm
= exp

(
−εm − εn

2kT

)

which relates transitions in opposite directions, and which ensures that in equilibrium

that number of transitions per unit time from state m to n is the same as the number

occurring in the reverse direction. In this expression, Pn represents the equilibrium

probability that a carrier injected into the system occupies site n. In the presence of

the electric field ~E, the system is no longer in equilibrium, but the transition rates are

assumed to continue to locally obey detailed balance, but with site energies modified

in the usual way, i.e., εm → εm − e ~E · ~rm.

The transition rates described above exponentially reduce the likelihood of

transitions from a given transport site to another one far away in distance, and to

sites much higher in energy. In general this favors transitions to a relatively small

group of nearest-neighbors lying in the immediate vicinity of a given dopant molecule,

unless those sites are all of an energy much higher than the initial site. In such a

circumstance, the most likely transition can be to a state which is further away in

space, but closer in energy. This competition between states which are closer in

space or in energy is generally referred to as “variable range hopping” [59], and the

transport that results can be strongly influenced by the density of transport sites of

different energy (the density of states, or DOS), and the degree to which the energies

of states arranged close together in space have similar or different energies, i.e., it can

depend strongly on any existing correlations in the distribution of site energies. In

any case, the rates introduced above describe the transition rate for individual hops,

with the evolution of carriers in the system as a whole generally understood to be
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described by a set of rate equations

dPn

dt
=
∑

m

(WnmPm −WmnPn)

collectively referred to as a master equation [58].

1.2. EXPERIMENTAL OVERVIEW

The efficiency of a wide variety of applications that use molecularly doped

polymers depends upon the ability of charge carriers to move through the material.

An experimental quantity commonly used to characterize their ability to do so is the

charge carrier mobility µ = vd/E, where vd is the drift velocity that carriers develop

in the presence of an applied electric field E. The mobility is the main parameter of

interest used to characterize transport in molecularly-doped polymers, both in studies

of the underlying physics of charge transport in disordered systems and for device

optimization. A number of techniques have been developed to measure the mobility,

such as the time-of-flight (TOF) method, the dark-injection space-charge limited

current (DI-SCLC) technique [60], and the steady-state trap-free space-charge-limited

current (TF-SCLC) method [61].Here, the time-of-flight method is discussed because

it has been by far the most widely used, and because its description is of considerable

importance to some of the theoretical results presented in this dissertation.

1.2.1. Time-of-Flight Measurements of the Drift Mobility. The

time-of-flight method was first introduced by Haynes and Shockley [62]. Using this

conceptually very simple technique one can study the transit of charge carriers across

a sample directly over a relatively wide range of electric fields and temperatures. The

set-up of a typical TOF measurement for MDPs [30] is shown schematically in Fig. 1.4.

In short, the experiment is performed by coating a thin layer of the MDP material on

both sides with semitransparent electrodes, usually gold or aluminum. This layered
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Figure 1.4. Schematical representation of the time-of-flight technique.

system is then used as a capacitor in an RC circuit in which an applied voltage

V charges the capacitor, and produces an electric field E = V/L inside the MDP

material, of (measureable) thickness L. If the MDP is itself used as a photo-generator,

a highly absorbent laser is used to illuminate the surface of the sample, injecting

carriers as previously described. While this photo-generated charge carrier sheet

drifts (and spreads) across the sample, the current flowing through it (proportional

to the instantaneous drift velocity and the number of carriers in the sample) can be

monitored by measuring the voltage across the resistor. As carriers leave the sample

at the collecting electrode, the current begins to decrease. If all carriers in the sample

moved, at all times, with the same drift speed vd, the TOF current transient would

appear as illustrated in Fig. 1.5. This idealization is not very realistic, however, since

real carriers undergo both drift and diffusion, the latter of which rounds the sharp
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edge of the decay of TOF current decay. In a sufficiently thick sample, however, if

normal Fickian diffusion were taking place, the diffusive rounding would be small

compared to the width of the plateau, and hence the time of flight, or transit time τ

could be determined without difficulty. From the transit time, one can determine the

drift velocity vd = L/τ , and thus the TOF mobility, given by

µ =
L2

V τ
. (4)

In practice, there are a number of difficulties associated with this simple pic-

ture. First, as discussed below, in most measurements on MDPs the tail of the current

transient is very broad, often wider than the current plateau itself. While deviations

from the idealized current shape could arise from several influences, including the RC

circuit response time, variation in mobility due to sample inhomogeneity, local electric

field variations, etc., it is generally believed that the wide tails seen in experiment are

associated with disorder in the system. In addition to this effect which is important

to the physics, there are a number of strictly technical issues that go into the design

of a clean experiment. For example, the resistance R of the resistor clearly has to be

chosen so that the RC time constant of the circuit is much less than the transit time,

so the response observed is due to charge carriers in the MDP and not due to the

Figure 1.5. Idealized TOF photocurrent transient.
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response of the circuit itself. Typically, the sample relaxation time is greater than 1s.

the circuit response time can be designed to be less than 10−4 s by using R ∼ 106 Ω.

The transit time of many MDPs is in the range 10−4 − 10−1s for reasonable voltages

and sample thicknesses (1− 100 µm).

In addition, the applied electric field E should not be perturbed by the gen-

erated charges; it needs to be uniform across the sample, and given by E = V/L.

To ensure this, the quantity of charge produced by the laser should be much less

than the product of the sample voltage and capacitance and at the same time the

amount of charge should be large enough to give unequivocal signals. Also, at high

temperatures the field has to be kept below the dielectric breakdown strength of the

material. Satisfying these two conditions simultaneously is the major constraint of

this technique. On the other hand, one of the advantages of the TOF method is that

by choosing the direction of the electric field (or the electrode at which the charge

carriers are generated) it is possible to measure electron as well as hole mobilities

independently in the same sample.

The results of a large number of TOF experiments on photoinjected hole trans-

port in molecularly-doped polymers reveal a number of essentially universal features.

These features fall into two classes, with different theoretical models developed to

explain features from each class. The first deals with the temperature and electric

field dependence of the measured TOF mobility, while the second focuses on features

associated with the shape of the TOF transients, and in particular on the broad tails

of observed transients, mentioned briefly above. In what follows, these commonly

observed features are reviewed.

1.2.2. Electric Field and Temperature Dependence of the Mobility.

Time-of-flight experiments performed on a large class of MDPs reveal a universal

dependence of the hopping mobility µ on temperature T and applied field E . At

fixed temperature the hopping mobility has a field dependence that for a wide range
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of electric fields (E ∼ 104 − 106) V/cm obeys a Poole-Frenkel-like law [63]

µ ∝ exp
(
γ
√
E
)

(5)

where the ”Poole-Frenkel factor” γ is found to be a decreasing function of the temper-

ature. Figure 1.6 shows a semi-logarithmic plot of µ vs. E1/2 at different temperatures

for 30% DEH:PC, taken from the work of Mack, et al. [2]. The experimental data, all

Figure 1.6. Mobility vs. Field for 30% DEH:PC [2].

lying on straight lines, clearly demonstrate the PF field dependence (5) of the hopping
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mobility. At fixed field, the temperature dependence of the mobility is activated and

can generally be described by an expression of the form

µ ∝ exp

[
−
(
T0

T

)n]
(6)

where 1 6 n 6 2, and T0 is a characteristic temperature. Figure 1.7 shows two semi-

log plots of measured mobility data for PVK-TNF of Pfister [3] plotted assuming

an Arrhenius law (linearly activated) and also plotted as a function of the square of

the inverse temperature (which is referred as quadratically activated). Neither plot

fits a straight line perfectly, and it is likely that the actual temperature dependence

involves a product of both quadratically and linearly activated terms, a form that

emerges in the theoretical work presented in this dissertation.

Figure 1.7. Arrhenius type and non-Arrhenius type temperature dependence plots
for PVK-TNF [3].
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1.2.3. Universality of Time-of-flight Photocurrent Transients and

the Non-dispersive to Dispersive Transition. In addition to the character-

istic features associated with the temperature and field dependence of the mobility

itself, current-time transients J (t) obtained in time-of-flight measurements display

their own universal features. As shown in Fig. 1.8, typical room temperature TOF

transients [4], following the initial laser pulse, start with an initial injection “spike”

that rapidly decays into a nearly flat plateau extending out to a time τ, (the time

of flight, or transit time) at which the photocurrent turns over and begins a broad

algebraic decay J ∼ t−s, or “tail”, characterized by a power s ∼ 2. The decay of the

initial injection spike occurs as carriers, initially photoinjected into a broad distribu-

tion of states, thermalize or equilibrate into an approximately thermal distribution of

Figure 1.8. Current transient due to holes in 30% DEH:PC presented in linear current-
linear time representation [4].
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energy states that they subsequently maintain as they cross the sample. The observed

plateau thus describes the thermalized average drift of carriers across the sample, and

the tail emerges as a result of the very broad distribution of arrival times associated

with carriers that experience very different local environments in the sample that are

either easier or harder to traverse. Photocurrent TOF transients that display these

three distinct regimes, and in particular those that exhibit a well-defined plateau, are

referred to as “non-dispersive”. In this regime the resulting transit time τ is experi-

mentally identified with the time of intersection of asymptotes fitted to the plateau

and tail regions of the TOF transient [30].

As the temperature is lowered, the shape of MDP current-time transients

begins to change. In particular, the temporal width of the plateau region decreases,

at the expense of an increasingly prolonged initial equilibration phase and a similarly

broadened tail. At some critical temperature Tc, the plateau disappears entirely, so

that below this temperature the current transient exhibits a monotonic decrease with

time. This change in the character of the TOF transients from non-dispersive at high

temperatures to “dispersive” at low temperatures is shown in Fig. 1.9.

(a) Non-Dispersive (b) Dispersive

Figure 1.9. Non-dispersive to dispersive transition. [5]



19

The non-dispersive plateau seen at room temperature thus smears at lower

temperatures into a monotonic dispersive decay that, when plotted on linear axes,

does not allow for a clear determination of the transit time. In the dispersive regime,

however, it has been found that when the current-time transient is plotted on log-log

axis, as shown in Fig. 1.10, the different power-law decays of the injection spike and

of the tail allow for a more-or-less unambiguous determination of a “mean transit

time” from which an effective time-of-flight mobility can be determined. This “non-

dispersive to dispersive transition” is usually interpreted as a failure or inability of

the initially injected charge carriers to equilibrate during the average time that it

takes for carriers to traverse the sample. Indeed, in a sample of infinite length it

has been suggested that there is a temperature below which carriers cannot actually

equilibrate-i.e., as they traverse the sample they progressively sample states deeper

and deeper in energy, at which they reside for longer and longer dwell times before

being able to acquire the thermal energy to escape. In such a situation the bulk

steady-state mobility would vanish. Thus, the non-dispersive to dispersive transition

represents a kind of photo-conducting/photo-insulating transition for the material.

Figure 1.10. Log-log plot for dispersive transient. [5]
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In addition to this well-documented non-dispersive-dispersive transition in-

volving the shape of the current-time transients, the TOF transients of a large number

of MDPs, on either side of the transition, exhibit a scaling law, referred to as univer-

sality, in which normalized current transients j = J (t) /J(τ) obtained for different

electric fields on the same sample, when plotted together as a function of the scaled

time t/τ, lie on a single universal curve. This universality is clearly demonstrated in

data on 30% DEH:PC taken by Tutnyev, et al. [4] in Fig. 1.11.

Figure 1.11. Log-Log plot of a 17.5 µm sample for electric fields of 4, 28,and 56 V/µm
showing universality over an electric field range spanning more than one decade [4].
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1.3. THEORETICAL MODELS DEVELOPED TO EXPLAIN THE
EXPERIMENTAL OBSERVATIONS

As of yet, no single microscopic theory has been shown to lead to all of these

observed features, i.e., a Poole-Frenkel (PF) field and temperature dependence, a

dispersive to non-dispersive transition, and universality of current-time transients.

While there do exist robust disorder-based theoretical models capable of predicting

either of these two sets of features independently, the class of models that explain

the field dependence of the mobility seem to require very different microscopic as-

sumptions about the underlying disorder than those that have been shown to lead to

universality of photocurrent transients.

The observed field and temperature dependence are well-predicted in some

models [64–66] with a Gaussian density of transport site energies (schematically

indicated in Fig. 1.12). Dispersive transport and universality of TOF transients, by

contrast, are well-predicted in so-called multiple trapping models [4,67] that postulate

an exponential distribution of low energy (trap) states (as in Fig. 1.13). In what

follows, a brief review of each of these two different classes of models is presented.

Figure 1.12. Gaussian density of transport site energies.

1.3.1. Gaussian Models. The first serious model developed in an at-

tempt to describe the temperature and field dependence of the mobility of MDPs was

the Gaussian Disorder Model (GDM) introduced by Baessler and coworkers [30, 68],
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Figure 1.13. Exponential distribution of low energy (trap) states.

which describes charge transport as a biased random walk among sites arranged on a

cubic lattice, with each site having a random site energy εi independently drawn from

an uncorrelated Gaussian distribution of energetic width σ. Among the various mech-

anisms proposed as the source of this kind of disorder, it has been shown [69] that

the interaction of charge carriers with permanent dipoles can give rise to a Gaussian-

like density of states. In theoretical papers on charge carrier hopping in MDPs the

question inevitably arises as to the functional form to take for the hopping rate Wn,m

governing transitions between two localized states of the system, as discussed earlier.

The GDM employs Miller-Abrahams rates (2) that describe single-phonon assisted

tunneling. Miller-Abrahams rates are independent of temperature for hops downward

in energy, and thermally suppressed by a Boltzman factor exp [− (εnm) /kT ] for hops

up in energy. In the absence of the field rates in the GDM take the form:

Wn,m =





ν0 exp(−Γnmrnm/a) exp (−εnm/kBT ) , εnm > 0

ν0 exp(−Γnmrnm/a), εnm < 0.

(7)

In this expression ν0 is a (constant) attempt frequency, a is the lattice spacing (iden-

tified with the mean distance between dopant molecules embedded in the polymer),

εnm = εn − εm, and Γnm = Γn + Γm is the sum of independent Gaussian random

variables Γn, characterized by a specified mean 〈Γn〉 = γa and statistical width δΓn.

The parameters Γn are included in the GDM to incorporate the effects of geometric
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disorder arising from random molecular orientations and intersite distances rnm, while

the overlap parameter γ characterizes the exponential decay of the transition strength

with increased inter-site separation. The strength of the geometrical disorder in the

GDM is traditionally characterized by the parameter Σ =
√
2δΓn = δΓnm. In the

presence of the electric field ~E, site energies and transition rates are appropriately

modified, with εn → εn− e ~E · ~ρn. In the GDM it is assumed that the electron-phonon

coupling is sufficiently weak that polaronic effects can be neglected.

In practice, the GDM is a numerical model which has formed the basis for a

large number of Monte Carlo simulations [30,68] that have attempted to replicate the

temperature and field dependence seen in experiment. The results of those simulations

(usually performed at one lattice spacing, and one temperature, but for different

disorder strengths) clearly show a quadratically activated mobility emerging from

the Gaussian distribution of transport sites. The electric field dependence of the

GDM has always shown much less convincing agreement with the observed PF field

dependence. While the numerical results exhibit a PF-like region at very high fields,

they always tend to flatten out “Ohmically” at low fields. In spite of this failure at low

fields, Baessler and co-workers have developed an empirical PF-like fitting formula

characterizing the high field region that has been used extensively in comparison with

experimental data [30, 68].

Due to the large computer effort associated with performing Monte Carlo

simulations to obtain mobility data accurate enough to compare to experiment, it

has not been possible until recently to actually fit the predictions of the GDM, or any

disorder-based theories, to actual TOF mobility data taken for real molecularly-doped

polymers. Such a fit, using an alternative computational technique, has recently been

performed by Chowdhury and Parris [70], for the mobility data of 30% DEH:PC of

Mack, et al. [2]. Their results are shown in Fig. 1.14. In this fit, the lattice spacing

was computed based upon the mean DEH interdopant spacing, the wavefunction
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decay parameter was obtained from independent measurements of the concentration

dependence (i.e., on the mean interdopant spacing) of the mobility [71], and only the

parameters (ν0, σ,Σ) were varied to fit the data at high fields. In the figure, filled

symbols are the experimental data shown earlier, while open symbols connected by

solid curves show numerical predictions of the GDM optimized to fit the data. While

the results agree quite well at high fields, the characteristic flattening predicted by

the GDM at low fields emphasizes the inadequacy of the model.

Attempts to understand the failure of the GDM at low fields led to further

analysis of the energetic disorder generated by the unscreened multipole moments

of molecular charge distributions of dopants and polymer host molecules (dipole mo-

Figure 1.14. Theoretical fit of the GDM to experimental data of Mack, et al. [2] for
30% DEH:PC.
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ments in particular). The work of a number of research groups, notably Gartstein and

Conwell [72], Novikov and Vanikov [73], and Dunlap, Kenkre, and Parris [64] showed

how a random distribution of randomly oriented electric dipole moments associated

with molecular units in the material produce a random electrostatic potential energy

landscape u (~r) that is approximately Gaussian (as had been assumed in the GDM),

but which also possesses long range spatial correlations not included in the GDM.

Theoretical studies of subsequently developed correlated Gaussian disorder models

(CGDMs), such as the dipole glass model (DGM) of Novikov et al. [65], and the

polaron correlated disorder model (PCDM) of Parris, et al. [66], have shown, both

analytically and numerically, that a Gaussian energy landscape with correlations [73]

〈u (~r) u (0)〉 ∼ σ2a0r
−1 (8)

of the type that arise from the dominant dipolar contributions, leads to a convincing

PF field dependence over a very broad range of electric fields. This PF field depen-

dence has been shown to arise independently of whether the hopping rates used are

of the Miller-Abrahams single-phonon type [65], as assumed in the GDM, or are of

the multi-phonon type (3) described [66] by small-polaron theory or Marcus reaction

rate theory [57].

As with the GDM, the different correlated disorder models were studied through

the use of numerical simulations and model calculations in an attempt to replicate the

observed field and temperature dependence. Like the GDM, until recently the numer-

ically intensive nature of the models made them unwieldy instruments to attempt a

direct analysis of real TOF data. The recent work of Chowdhury and Parris [70] cited

above includes a comparison of how well the GDM and several correlated models (the

dipole glass model of Novikov et al. [74] and the PCDM of Parris et al. [66]) are able

to actually fit the experimental data of Mack et al. [2] for 30% DEH:PC.
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The conclusion of the study was that models that use Miller-Abrahams rates,

with or without correlations, are unable to quantitatively fit the full electric field and

temperature dependence of the mobility, but that a correlated polaron model which

includes the effects of the molecular distortion does a satisfactory job of capturing

the field and temperature dependence observed experimentally. The results of a fit

of the PCDM theory of Parris et al. [66] to the experimental data of Mack, et al. [2]

is reproduced in Fig. 1.15. As in the previous figure, the filled symbols are the

experimental data and the open symbols are numerical predictions of the PCDM

with the parameters (J0, σ, Eb,Σ) varied to optimize agreement with experiment.

Figure 1.15. Comparison of theoretical PCDM model with experimental data of Mack
et al. [2] for 30% DEH:PC.
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1.3.2. Multiple Trapping (Exponential) Models. Although Gaussian

disorder models that include spatial correlations and appropriate hopping rates ap-

pear to do a good job describing the temperature and electric field dependence of

the mobility in real MDPs, they have not been used, typically, as a model for under-

standing the characteristic features exhibited by the time-of-flight transients (from

which the temperature and field dependent mobility are actually deduced). Instead,

analysis of dispersive features of the TOF photocurrent transients, i.e., their univer-

sal scaling with electric field and the non-dispersive to dispersive transition, have

been analyzed using a very different model of energetic disorder. Indeed, it appears

that dispersive features associated with charge transport in MDPs are most easily

explained in the context of so-called multiple-trapping models (MTMs) [4] that as-

sume an uncorrelated exponential distribution of localized energy states. In the MTMs

that were introduced following the early work on dispersive transport by Scher and

Montroll [67], carriers were assumed to move through a medium containing a random

distribution of traps, i.e., localized states characterized by an energetic depth ε and a

release time τ ∼ exp (ε/kT ) that depends exponentially on the trap depth. Straight-

forward analysis [4] on one-dimensional MTMs reveals that when the distribution

ρ (ε) ∼ exp (−ε/ε0) (9)

of trap depths is itself exponentially dependent on ε, appropriately scaled TOF tran-

sients exhibit universality with respect to the electric field, and exhibit a dispersive-

to-nondispersive transition as the temperature is lowered.

Above the transition, in the non-dispersive regime, MTMs do an excellent job

of reproducing the shape of real TOF transients. In the TOF transient exhibited

in Fig. 1.8 the solid curve represents experimental data [4] for 30% DEH:PC, while



28

the open symbols are the result of calculations performed using a multiple trapping

model with an exponential distribution of trap depths.

In the MTM, as the temperature is lowered to a point where the mean thermal

energy kT falls below the average trap depth ε0, a transition to a dispersive transport

regime occurs. In this regime, the bulk steady-state mobility vanishes, but in a

sample of finite thickness carriers will eventually traverse the sample, and the photo-

current transient will show a knee on a double-log plot (as in Fig. 1.10). Scher and

Montroll [67] showed that the current I(t) before the knee, in this case, takes the

form

I(t) ∝ t−(1−α) (10)

while the current after the knee is given by

I(t) ∝ t−(1+α) (11)

where in both expressions α = kT/ε0 is a “dispersion parameter” determined by the

width of the underlying exponential distribution of trap energies. In this dispersive

regime, if the location of the knee is identified as the mean transit time, an effective

TOF mobility can be defined within the MTM. Rather than the Poole-Frenkel form

predicted by correlated Gaussian disorder models, the MTM mobility has a much

weaker algebraic dependence

µ ∝ υ

(
E

L

)(1−α)/α

(12)

on the electic field. In this expression, υ = υ0 exp(−βε0) is an effective detrapping

rate.
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Thus, while the MTM does an excellent job of describing characteristic fea-

tures of TOF photocurrent transients themselves, it clearly fails as a model for pre-

dicting the temperature dependence and the universal Poole-Frenkel field dependence

observed in experiment.

Similarly, Gaussian models have not been shown to exhibit a transition to

dispersive transport, and there are good reasons to believe that they do not. Indeed,

the physical mechanism that underlies the transition that occurs in MTMs is an

inability of the charge carriers to equilibrate once the temperature falls below the

critical temperature Tc = ε0/k. For particles occupying an exponential distribution

of trap states, the mean energy of a carrier in equilibrium would be proportional to

the integral

〈ε〉 ∝
∫ ∞

0

(−ε)ρ (ε) eε/kTdε = −
∫ ∞

0

εe−ε/ε0eε/kTdε (13)

where the Boltzmann factor has a positive exponent, since the energy of a state with

trap depth ε is −ε. For high enough temperatures, the integral is well-behaved, since

the density of states makes the integrand exponentially small at large values of ε.

For T > Tc, however, the integral diverges and the mean energy of a carrier falls to

negative infinity. This cannot happen in a Gaussian density of states, because the

Gaussian factor always modulates the integral. Thus, in a Gaussian model there is no

critical temperature below which the mean energy is not finite, and the bulk mobility

should not vanish at any finite temperature.

1.4. MOTIVATION FOR PRESENT RESEARCH AND OVERVIEW

The simultaneous presence of these two different features, i.e., a PF field de-

pendence, and universality of current time transients leads to the question of whether
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the energy distribution associated with the localized states frequented by carriers in

these materials contains contributions from both kinds of disorder.

One can imagine, e.g., a situation in which transport sites are embedded in a

medium possessing a spatially-correlated Gaussian background field u(~r) arising from

random molecular charge distributions, but which also includes a perhaps small in-

trinsic concentration of uncorrelated low energy traps characterized by an exponential

distribution of trap depths. Shallow and deep traps of this sort are frequently known

to arise in organic materials, e.g., from broken bonds, chemical impurities, and other

short-range defects.

In a two component medium of this sort, each of the two characteristic features

commonly observed in MDPs could arise from the particular part of the energetic

distribution of localized states to which it is sensitive, providing a natural explanation

for their coexistence. Of course this is not guaranteed a priori, since inclusion of the

type of disorder associated with one feature could significantly alter or destroy the

behavior associated with the other. Thus, for such a theoretical explanation to be

plausible it must be first established that these two mechanisms do not significantly

interfere with one another.

It is this question that is addressed in this research. In particular, analytical

and numerical calculations are presented of the field and temperature dependent

mobility of carriers that undergo hopping transport on an ordered lattice with site

energies εn = un + υn that are the sum of two independent components. The first

component un is drawn from a spatially-correlated Gaussian distribution of energetic

width σ0, as in CDMs previously studied. The second component assigns to each site,

with probability c, an additional energy υn drawn from an exponential distribution

of energetic width ε0. In this way one can able to study the degree to which the trap

distribution alters or destroys the PF field dependence that would otherwise arise from

the correlated component. In the process, it allows to determine the dependence of
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the mobility on the additional parameters that characterize the distribution of traps

in the system.

The rest of this dissertation is laid out as follows. The next section focuses

on a description of statistical features associated with the energy distributions that

characterize the energetic landscape on which the transport studies presented in the

rest of the dissertation are based. Following that, a series of analytical calculations on

quasi-one dimensional systems characterized by several different distributions of site

energies is presented. In order to separate out characteristic effects associated with

each, transport in systems containing (i) only an exponential distribution of traps,

(ii) only an exponential distribution of barriers, and (iii) a combined exponential

distribution of traps and barriers embedded in a correlated Gaussian energy landscape

are separately considered. The results of that last investigation contain some of the

main analytical results, which suggest that a hybrid model of this sort can, in fact,

capture the main features seen in experiment. Unfortunately, analytical results are

only possible in a one-dimensional calculation, and it is well known that 1D results do

not always provide a reliable (qualitative or quantitative) indication of what actually

happens in a 3D system. In section 4, therefore, the result of extensive numerical

calculations that largely confirm the basic features observed in the 1D calculations is

presented. The last section contains a brief summary.
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2. STATISTICAL PROPERTIES

The focus of this section is on deriving properties of the site energy distribution

functions that will be used later in the dissertation to describe a carrier moving

through a correlated Gaussian energy landscape in which are distributed a fixed

concentration of exponentially distributed traps. Thus, the possibility that the energy

of a carrier located at the nth site in the system is allowed to be a sum εn = un + υn

of two terms. The first term is the correlated component un, which is an element of

a correlated Gaussian field u = (u1, u2, . . . , uN) characterized by a joint probability

distribution function

ρ (u) =
exp

(
−1

2
u · Σ−1 · u

)
√
2π |Σ|

(14)

in which Σ is the correlation matrix with diagonal elements Σn,n = 〈u2
n〉 = σ2

0 equal

to the variance of the marginal distribution

ρ1 (un) =
e−u2

n/2σ
2
0

√
2πσ2

0

, (15)

of site energies, while the off-diagonal elements of Σ describe the long range spatial

correlations [73]

Σn,m = 〈unum〉 = σ2
0

[
a0r

−1
nm

]
m 6= n (16)

that are assumed to arise from unscreened molecular charge distributions in the

medium, and thus have a form that has been shown to arise from the interaction

between a carrier and random molecular dipole moments [73] in the material. In this

last expression, a0 is a minimum separation distance between transport sites,
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comparable to the size of the dopant molecules themselves, which is generally smaller

than or equal to the mean separation distance a between nearest neighbors. As

described elsewhere [73], the long range (i.e., r−2) dependence of the charge dipole

interaction on distance makes this the dominant contribution to the correlated com-

ponent of the potential energy background in which the transport sites are embedded.

In addition to this correlated component, a certain fraction c of sites in the

system represent either traps or “anti-traps”, i.e., barriers. At trap sites, the energy

is altered relative to the correlated background in which it is embedded, by a random

negative amount υn drawn from an exponential distribution of trap depths. At a

barrier site, the random energy is positive and drawn from an exponential distribution

of barrier heights. In principle, these could be two different distributions. Taking into

account the fractional occupation of traps or barriers along the path, the energies υn

are assumed to be independently drawn from a distribution

ρ2 (υn) = cρe (υn) + (1− c) δ (υn) (17)

where for traps (υn < 0)

ρe (υn) = ε−1
0 exp (− |υn| /ε0) , (18)

for barriers (υn > 0),

ρe (υn) = ε−1
0 exp (−υn/ε0) ,

and in the presence of a symmetric distribution of traps and barriers

ρe (υn) = (2ε0)
−1 exp (− |υn| /ε0) . (19)
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Note that υn = 0 for sites that are not traps (or barriers), which occur in

fractional concentration (1− c) . For mathematical convenience, both positive and

negative trap depths, are allowed and calculations later in the dissertation that cor-

respond to both of these situations are presented. In the numerical results presented

in section 4 on 3D systems both traps and barriers are included, both of which are

documented components of disordered organic solids [46]. This purely mathematical

assumption makes the mean value 〈υn〉 = 0 = 〈un〉 of the uncorrelated component

equal to that of the correlated component, and allows the full width σ of the total

distribution of site energies in the system to be more easily to characterized. In the

rest of this section, the details of the statistical description associated with this sym-

metrical exponential distribution are worked out. The anlysis for the situation where

there are only traps, or only barriers, follows along similar lines.

For the symmetric distribution, the uncorrelated energies υn are characterized

by vanishing first moments 〈υn〉 = 0 and second moments 〈v2n〉 that can be calculated

using Eq.(18) and (17)

〈
v2n
〉
=

c

2ε0

∫ ∞

−∞
dυn υ2

n exp

(
−|vn|

ε0

)
= 2c (ε0)

2 . (20)

Thus, one can write

〈υnυm〉 = 2cε20 δn,m = σ2
t δn,m,

in which σt =
√
2cε0.

With the assumption that the two contributions to the full site energy εn =

un + υn are uncorrelated with each other, the moments of the full distribution are

then also readily computed

〈εn〉 = 0 〈ε2n〉 = σ2
0 + σ2

t = σ2
0 + 2cε20 (21)
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The corresponding correlation function is

〈εnεm〉 = σ2
0(a0r

−1
nm) n 6= m.

Figure 2.1 shows a spatial plot of site energy as a function of position, i.e., the energy

landscape, for the two parent distributions and for the combined distribution. For

these plots, the width of the correlated Gaussian component is σ0 = 0.1 eV, the width

of the uncorrelated exponential distribution is ε0 = 0.1 eV, and the concentration of

traps and barriers is c = 0.1. The combined distribution contains characteristics of

Figure 2.1. Energy Landscape for the correlated Gaussian, the uncorrelated expo-
nential, and the combined distribution.

the two parent distributions, a fact that can be seen more easily if the frequency

axis of the histogram for each distribution is plotted using a logarithmic axis, as in

Fig. 2.2, in which the Gaussian distribution appears as an inverted parabola, and

the exponential distribution as a linear “tent” function. The combined distribution

remains very Gaussian near the centroid, but has tails of exponential character.

The combined site energy distribution function ρ(ε) itself is given by the con-

volution

ρ(ε) =

∞∫

−∞

dvnρ2 (vn)

∞∫

−∞

dun ρ1(un)δ[ε− (un + vn)]. (22)
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Figure 2.2. Log frequency histogram for the correlated Gaussian, uncorrelated expo-
nential and the combined distribution.

Substituting the parent distributions from (15), (17), and (19) into this expression

one finds that

ρ(ε) =
1)√
2πσ2

0

∞∫

−∞

dvn [cρe (vn) + (1− c) δ(vn)]

∞∫

−∞

dun exp(−u2
n/2)δ[un − (ε− vn)]

ρ(ε) =
1√
2πσ2

0

∞∫

−∞

[
c
1

2ε0
exp

(
−|vn|

ε0

)
+ (1− c) δ(vn)

]
exp(−(ε− vn)

2

2σ2
0

)dvn

=
1√
2πσ2

0




∞∫

−∞

c

2ε0
exp

(
−|vn|

ε0

)
exp(−(ε− vn)

2

2σ2
0

)dvn




+
1√
2πσ2

0

[
(1− c)

ε0
exp(− ε2

2σ2
0

)

]

The remaining integrals are all of Gaussian form, and thus expressable in terms of the

regular and complementary error function. Details are worked out in an Appendix;

the final result can be expressed in the following relatively compact form

ρ(ε) = cρ̂(ε) + (1− c) ρ1(ε) (23)

with

ρ̂(ε) =
1

4ε0
exp

(
σ2
0

2ε20

)
f(ε) (24)
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ρ1(ε) =
1√
2πσ2

0

exp(− ε2

2σ2
0

) (25)

and

f(ε) = exp

(
ε

ε0

)
1− erf

(
ε+

σ2
0

ε0

)

√
2σ2

0


+ exp

(−ε

ε0

)
1 + erf

(
ε− σ2

0

ε0

)

√
2σ2

0


 .

Note from Fig. 2.2 that, because an exponential function falls off more slowly than a

Gaussian, the tails of the total distribution are dominated by the exponential energy

dependence of the uncorrelated component. To see this, substitute the asymptotic

expansion erf (x) ∼ 1−x−1π−1/2e−x2

of the error function into the expression for f(ε)

to obtain, after some algebra, the relation valid for |ε| >> σ2
0/ε0

f(ε) ∼ 2 exp

(−ε

ε0

)

which asymptotically gives for the combined distribution when c > 0,

ρ(ε) ≃ cρ̂(ε) ≃ c

2ε0
exp

(
σ2
0

2ε20

)
exp

(− |ε|
ε0

)
.
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3. ANALYTICAL CALCULATIONS IN ONE-DIMENSION

In this section a number of new results relevant to photo-injected carriers

moving at high electric fields through disordered energy landscapes of the type de-

scribed in the Introduction are derived. The assumption of high electric fields is

important, since it implies that longitudinal motion in the direction of the applied

field is much larger than the diffusional spreading that takes place transverse to it.

Intuitively, in this situation, the transport path taken by a carrier is asymptotically

well-approximated by a quasi-one dimensional path through the material that begins

on the injecting contact and ends on the collecting one. Analysis of motion along

such a path allows for the derivation of some essentially exact results that allow us

to gain insight into what could happen in bulk materials.

As mentioned in the introduction, the main concern is with the situation in

which the energy landscape through which the particle moves contains two contribu-

tions, a correlated Gaussian one arising from unscreened dipole moments associated

with the molecular constituents of the MDP, and an uncorrelated exponential com-

ponent associated with chemical defects, broken bonds, and other short-range contri-

butions to the energetic disorder. To that end, it is useful to develop some intuition

regarding what happens when each of these components occurs separately.

Motion in a 1D trap-free correlated Gaussian potential was analytically stud-

ied in Refs. [75] and [76]. Those calculations were, themselves, based upon an exact

solution due to Derrida [77] to the so-called “random bias problem” involving steady-

state motion along a rather arbitrary 1D nearest-neighbor chain of transport sites.

The theoretical translation of those exact results to a form appropriate to the descrip-

tion of motion in a correlated energy landscape of the type associated with MDPs led
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in Refs. [75] and [76] to exact analytical results that, for the first time, predicted the

Poole-Frenkel response to the electrical field commonly observed in those materials.

In view of these earlier results, here a series of three separate 1D calculations

are presented, each similar in many ways to those presented in Refs. [75] and [76],

but which differ from the earlier calculations in the details regarding the energy

landscape through which the particle moves. The three cases consider here include

situations where the energy landscape is (i) entirely described by a concentration c

of randomly distributed traps drawn from an exponential distribution of trap depths,

(ii) entirely described by a concentration c of randomly distributed barriers with

an exponential distribution of barrier heights, and (iii) described by a hybrid two

component system containing both a correlated Gaussian energy landscape as studied

in Refs. [75] and [76], as well as a fractional concentration c of randomly distributed

traps and barriers drawn from the symmetric exponential distribution described in

the last section.

The first two calculations, which do not include the correlated Gaussian com-

ponent, do not predict a Poole-Frenkel response to the driving field, but they each

exhibit a transition as the temperature is lowered to a regime where the bulk mobility

vanishes. For the case of exponentially distributed traps, this is to be expected since

this calculation contains essentially the same physics included in multiple-trapping

models (although the specific calculation presented here is new). Naturally, the tran-

sition in this case can be identified with the nondispersive to dispersive transition

predicted by MTMs. The second case considered here, provides a high-field example

of a “random barrier model” and shows that, at least in 1D, an exponential distri-

bution of barriers can also lead to a transition to a “non-conducting”, or dispersive

regime, even though the mean energy of a carrier in such a system is always well de-

fined and finite. Hence, it suggests the possibility of another mechanism for dispersive

transport other than the normal picture where the carriers fail to equilibrate.
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The third calculation, in which traps and barriers are embedded in a correlated

Gaussian landscape, is the primary focus of the research contained in this dissertation

since it holds the possibility of explaining the disparate features commonly observed

in MDPs. In this case, due to the traps and barriers, one also finds a transition to a

dispersive regime. For this particular model, the transition appears to dominated by

the presence of the traps, which by themselves lead to a higher critical temperature

than do barriers alone. In spite of the transition, which suggests trap-dominated

transport, the analysis continues to predict a Poole-Frenkel field dependence, and

a temperature dependence that has both quadratic and linear activation factors, as

observed experimentally, provided that small polaron transport rates are assumed.

The temperature and field dependence is predicted, moreover, to persist right up to

the transition point, as is also observed in experiments. The analytical calculations

presented in this section, therefore, sets the stage, and provides an impetus for the

3D numerical calculations presented in the next section, which are designed to verify

whether these features are maintained in higher dimensions.

3.1. MOTION THROUGH A 1D MEDIUM CONTAINING A
RANDOM DISTRIBUTION OF TRAPS

In this section a carrier moving in 1D through a medium containing a finite

concentration c of traps is considered, each with a trap depth independently drawn

from an exponential distribution of width ε0. As in section 2, the site energy dis-

tribution function for individual sites along this 1D path can be written in the form

ρ (εn) = cρe (εn) + (1− c) δ (εn) , (26)

where, for ε < 0

ρe (ε) = ε−1
0 exp (ε/ε0) . (27)
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The calculation starts with the master equation

dPn

dt
=
∑

m

[Wn,mPm (t)−Wm,nPn (t)] (28)

governing the evolution of the probability Pn (t) of finding the carrier at the nth site

along the path at time t, in which the hopping rate Wn,m from site m to site n is

assumed to depend on the separation distance and on the energies of the two sites as

in Eq. (3). In view of the exponential dependence of the transition rate on separation

distance, transitions are restricted to nearest neighbors , which are assumed to be

separated by a mean separation distance a. Also, for mathematical convenience one

can follow the authors of Ref. [75] and drop the “inversion term” in Eq. (3) and re-

express the resulting polaron hopping rate in a symmetric form which can be written

as

Wn,m = ν0 exp
[
− εnm
2kT

]
(29)

in which an overall prefactor is introduced

ν0 =
J2
0 e

−2λa

√
2~2εBkT/π

exp
[
− εB
2kT

]
(30)

that is linearly activated due to the dependence on the polaron binding energy, but

is independent of the energy mismatch between neighboring sites. In this approxima-

tion, taking the field E to be directed towards increasing n, and taking into account

the detailed balance relation Wn,n+1/Wn+1,n = e−β(εn−εn+1+eEa) obeyed by the transi-

tion rates in the presence of the field, the authors of Ref. [75] claim, based on exact

results of Derrida [77], that at the field strengths typically used in the experiments
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of interest, the drift velocity for such a system can be written in the form

v = µE =
ν0ae

1
2
βeEa

∑N−1
m=0 e

−mβeE〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉

, (31)

where, according to Ref. [75], the correlation function

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 = 1

N

N∑

n=1

e−βεne
1

2
βεn+me

1

2
βεn+m+1 (32)

is to be identified with a particular sum of products of Boltzmann factors that arise

in the course of the calculation. With this identification, the correlation function

itself can be computed as an average taken with respect to the distribution (26).

Interestingly, the basic result (31) does not appear to have been derived anywhere in

the literature. In the interest of completeness, therefore, the opportunity is taken to

provide such a derivation here.

A derivation of (31) begins with an exact result due to Derrida [77] for the

steady-state drift velocity v for a general 1D nearest neighbor chain with transition

rates Wn,n+1 and Wn,n−1 governing hopping transitions into site n from sites n+1 and

n− 1, respectively. For a chain of length N subject to periodic boundary conditions,

Derrida derives the following expression for the drift velocity

v =
aN

∑N
n=1 rn

[
1−

N∏

n=1

(
Wn,n+1

Wn+1,n

)]
(33)

where the quantities rn are given by the expression

rn =
1

Wn+1,n

[
1 +

N−1∑

i=1

i∏

j=1

(
Wn+j−1,n+j

Wn+j+1,n+j

)]
. (34)
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As described above, one can assume a symmetric detailed balance relation that, in

the presence of the field can be written

Wn±1,n = υ0 exp

[
−1

2
β (εn±1 − εn ∓ F )

]
(35)

where F = eEa is the potential energy change induced across two sites by the field.

Substituting these hopping rates into Eq. (33) one finds

v =
aN

∑N
n=1 rn

[
1−

N∏

n=1

(
e−

1

2
βεne

1

2
βεn+1e−

1

2
βF

e−
1

2
βεn+1e

1

2
βεne

1

2
βF

)]

=
aN

∑N
n=1 rn

[
1−

N∏

n=1

e−
1

2
β[εn−εn+1]e−βF

]

=
aN

∑N
n=1 rn

[
1− e−NβF

N∏

n=1

e−
1

2
β[εn−εn+1]

]

=
aN

∑N
n=1 rn

[
1− e−NβF e−

1

2
β[ε1−εN ]

]

in which the rn must now be obtained using Eq. (34). Expanding, and using detailed

balance,

rn =
1

Wn+1,n

[
1 +

(
Wn,n+1

Wn+2,n+1

)
+

(
Wn,n+1

Wn+2,n+1

)(
Wn+1,n+2

Wn+3,n+2

)
+ . . .

]

=
1

Wn+1,n

[
1 +

(
e[−

1

2
β(εn−εn+1+F )]

e[−
1

2
β(εn+2−εn+1−F )]

)
+

(
e[−

1

2
β(εn−εn+1+F )]

e[−
1

2
β(εn+2−εn+1−F )]

× e[−
1

2
β(εn+1−εn+2+F )]

e[−
1

2
β(εn+3−εn+2−F )]

)]
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This last expression can be systematically simplified.

rn =
e

1
2
βεn+1

e
−

1
2
βεn

e
−

1
2
βF

υ0

[
1 + e−

1

2
βεne−

1

2
βεn+2e−βF

+e−
1

2
βεne−

1

2
βεn+1e−

1

2
βεn+2e−

1

2
βεn+3e−2βF + . . .

]

and so

rn =
e
−

1
2
βF

υ0

[(
e

1
2
βεn+1

e
−

1
2
βεn
)
+
(
e−βεne

1

2
βεn+1e

1

2
βεn+2

)
e−βF

+
(
e−βεne

1

2
βεn+2e

1

2
βεn+3

)
e−2βF + . . .

]

The final expression for rn then takes the form

rn =
e
−

1
2
βF

υ0

N−1∑

m=0

e−mβF e−βεneβεn+meβδn+m

where 2δn = εn+1 − εn. Substituting the quantities rn into the equation for the drift

velocity, one finds without approximation

v =
υ0ρe

1
2
βF
[
1− e−[NβF+ 1

2
β[ε1−εN ]]

]

1
N

∑N−1
m=0 e

−mβF
∑N

n=1 e
−βεneβεn+meβδn+m

. (36)

Here NβF = NβeEa = βeEL is the ratio of the potential energy drop across the

entire sample (which may be tens of electron volts) to the mean thermal energy

kT (which is measured in meV). Hence the exponential term in the bracket of the

numerator is completely negligible. Dropping this term, and introducing the definition

(32) reduces this last expression to (31), as desired.
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With this derivation of Eq. (31), it remains to carry out the computation of

the correlation function (32), using the distribution defined by (26) and (27). As

it turns out, the necessary integrals over the trap distribution are all of exponential

form, and easily evaluated. To this end it is useful to note that for any λ > 0,

〈eλβε〉 = (1− c) +
c

1 + λβε0
, λ > 0. (37)

For λ > 0 and λβε0 < 1, on the other hand,

〈e−λβε〉 = (1− c) +
c

1− λβε0
, λ > 0, λβε0 < 1. (38)

Finally, for λ > 0 and λβε0 > 1, the mean value 〈e−λβε〉 diverges, i.e.,

〈e−λβε〉 → ∞, λ > 0, λβε0 > 1. (39)

Thus, e.g., for m = 0 the correlation function (32) can be computed as

〈e−βεne
1

2
βεne

1

2
βεn+1〉 = 〈e− 1

2
βε〉〈e 1

2
βε〉 (40)

where using the fact that energies at different sites are uncorrelated. Using (37) and

(38) obtaining from this last expression for βε0 < 2,

〈e 1

2
βε〉 = 2 + βε0 (1− c)

2 + βε0
(41)

and

〈e− 1

2
βε〉 = 2− βε0 (1− c)

2− βε0
. (42)
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For βε0 > 2, the first term (41) remains unchanged, while (42) diverges. Thus, for

m = 0 and βε0 < 2 the correlation function (32) can be written

〈e−βεne
1

2
βεne

1

2
βεn+1〉 = 4− β2ε20 (1− c)2

4− β2ε20
(43)

while for βε0 > 2 it diverges. For m > 0 one needs to evaluate

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 = 〈e−βε〉〈e 1

2
βε〉2. (44)

For βε0 > 1 this diverges, according to (39). For βε0 < 1 , using (37) and (38), one

finds that

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 =

(
1− βε0 (1− c)

1− βε0

)(
2 + βε0 (1− c)

2 + βε0

)2

(45)

Substituting these correlation functions into the denominator of (31), one finds that

most of the terms factor out of the sum, which can then be computed as a geometric

series in powers of exp(−βeEa). Performing the resulting sum, one finds that for

βε0 < 1,

v = ν0ae
1
2
βeEa

[
4− β2ε20 (1− c)2

4− β2ε20

+ 2

(
1− βε0 (1− c)

1− βε0

)(
2 + βε0 (1− c)

2 + βε0

)2

csch (βeEa/2) e−
1

2
βeEa

]−1

(46)

For βε0 > 1 the drift velocity and mobility vanish, as a result of the diverging corre-

lation functions that appear in the denominator of (31) in that regime. This is the

signature, in this steady-state calculation, of the non-dispersive to dispersive transi-

tion predicted by multiple trapping models, and indeed the transition deduced here

occurs at the same critical temperature Tc = ε0/k as predicted by those models. This
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Figure 3.1. Normalized mobility µ(T )/µ(0) as a function of ε0/kT .

behavior is shown in Fig. 3.1 which shows the normalized mobility as a function of

ε0/kT . The concentration dependence of the mobility is shown in Fig. 3.2.

The field dependence of the mobility is governed by the hyperbolic and expo-

nential factors that appear in this expression. Interestingly, the arguments of these

functions are independent of any disorder parameters and just depend on the ratio of

the potential energy drop eEa due to the field across a single lattice spacing, to the

thermal energy kT .

At low fields, as E → 0, the hyperbolic cosecant diverges as the inverse of its

argument, and the exponential function approaches unity. In this limit the system
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Figure 3.2. Normalized mobility µ(c)/µ(0) as a function of trap concentration c.

exhibits a linear (Ohmic) response:

v ∼ ν0a

4
(

1−βε0(1−c)
1−βε0

)(
2+βε0(1−c)

2+βε0

)2βeEa (47)

µ =
βν0a

2e

4
(

1−βε0(1−c)
1−βε0

)(
2+βε0(1−c)

2+βε0

)2 = βeD (48)

where

D =
ν0a

2

4
(

1−βε0(1−c)
1−βε0

)(
2+βε0(1−c)

2+βε0

)2 (49)
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is the low-field diffusion constant. This reduces to D0 = ν0a
2 when c = 0 and to the

following when c = 1.

D1 =
ν0a

2

4
(

1
1−βε0

)(
2

2+βε0

)2

When the arguments of the hyperbolic cosecant and the exponential function

become of the order of unity, the drift velocity (Fig. 3.3) eventually increase because of

the e
1

2
βeEa term. Thus, with a random distribution of exponentially distributed traps,

the mobility increases exponentially with field from its Ohmic limit. This behavior is

shown in Fig. 3.4.

Figure 3.3. Normalized Drift Velocity as a function of E.
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Figure 3.4. Normalized Mobility as a function of E.
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3.2. MOTION THROUGH A 1D MEDIUM CONTAINING A
RANDOM DISTRIBUTION OF BARRIERS

In this section the calculation presented above is repeated for the case in which

the exponentially distributed site energies that appear in concentration c are positive,

and thus potentially represent barriers to transport. For this situation, the relevant

site energy distribution function takes a form similar to that of the last calculation

ρ (εn) = cρe (εn) + (1− c) δ (εn) , (50)

except that now, for positive energies ε > 0

ρe (ε) = ε−1
0 exp (−ε/ε0) . (51)

The calculation proceeds as in the last section. Starting with the master equation

(28) one obtains, as shown in the last section, the drift velocity

v = µE =
ν0ae

1
2
βeEa

∑N−1
m=0 e

−mβeEa
〈
e−βεne

1

2
βεn+me

1

2
βεn+m+1

〉 , (52)

where

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 = 1

N

N∑

n=1

e−βεne
1

2
βεn+me

1

2
βεn+m+1. (53)

In this case, for m = 0 the correlation function can be computed as

〈e−βεne
1

2
βεne

1

2
βεn+1〉 = 〈e− 1

2
βε〉〈e 1

2
βε〉 (54)

where each average is now over the distribution given by (50) and (51). Again, the

integrals required to carry out the average are of exponential form, and one finds,
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e.g., that

〈e 1

2
βε〉 =

∞∫

0

ρ (ε) e
1

2
βεdε

=

∞∫

0

[
c

ε0
e−ε/ε0 + (1− c) δ (ε)

]
e

1

2
βεdε

=
c

ε0

∞∫

0

exp

[
−ε

(
2− βε0
2ε0

)]
dε+ (1− c)

which diverges when βε0 > 2 and simplifies for βε0 < 2 to

〈e 1

2
βε〉 = (1− c) +

2c

2− βε0
=

2− βε0 (1− c)

2− βε0
, βε0 < 2. (55)

Similarly, at any temperature:

〈e− 1

2
βε〉 = (1− c) +

2c

2 + βε0
=

2 + βε0 (1− c)

2 + βε0
. (56)

Thus, for m = 0 the correlation function (53) diverges for βε0 > 2 and otherwise is

given by

〈e−βεne
1

2
βεne

1

2
βεn+1〉 = 4− β2ε20 (1− c)2

4− β2ε20
, βε0 < 2. (57)

For m > 0 evaluate:

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 = 〈e−βε〉〈e 1

2
βε〉2 (58)

which also diverges for βε0 > 2 and otherwise reduces to

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 =

(
1− βε0 (1− c)

1 + βε0

)(
2− βε0 (1− c)

2− βε0

)2

. (59)
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With this last expression, the denominator of (52) can be written

N−1∑

m=0

e−mβeEa〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉

=
4− β2ε20 (1− c)2

4− β2ε20
+

(
1− βε0 (1− c)

1 + βε0

)(
2− βε0 (1− c)

2− βε0

)2 ∞∑

m=1

e−mβeEa

=
4− β2ε20 (1− c)2

4− β2ε20

+

(
1− βε0 (1− c)

1 + βε0

)(
2− βε0 (1− c)

2− βε0

)(
e−βeEa

1− e−βeEa

)

=
4− β2ε20 (1− c)2

4− β2ε20

+
1

2

(
1 + βε0 (1− c)

1 + βε0

)(
2− βε0 (1− c)

2− βε0

)2

csch (βeEa/2) e−
1

2
βeEa

giving, for exponentially distributed barriers of mean barrier height ε0 in concentra-

tion c, the result, valid for βε0 < 2,

v = ν0ae
1
2
βeEa

[
4− β2ε20 (1− c)2

4− β2ε20

+
1

2

(
1 + βε0 (1− c)

1 + βε0

)(
2− βε0 (1− c)

2− βε0

)2

csch (βeEa/2) e−
1

2
βeEa

]−1

. (60)

Thus, in the random barrier problem a mobility transition occurs at a critical tem-

perature Tc = ε0/2k, which is half of that which arises in the random trap problem.

Thus barriers are less effective than traps in reducing the mobility. This behavior is

shown in Fig. 3.5 which shows the normalized mobility as a function of ε0/kT . The

concentration dependence of the mobility is shown in Fig. 3.6. One can note that this

transition occurs even though, in this problem, the mean energy of a carrier in
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Figure 3.5. Normalized mobility as a function of ε0.

thermal equilibrium remains finite at all positive temperatures–so in this case the mo-

bility transition is not due to an inability of carriers to come to thermal equilibrium.

Above the transition, the field dependence of the mobility (60) is clearly very

similar to that predicted by (46). Thus, e.g., a similar low field (Ohmic) response is

found:

v =
ν0a

4
(

1+βε0(1−c)
1+βε0

)(
2−βε0(1−c)

2−βε0

)2βeEa, (61)
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Figure 3.6. Normalized mobility as a function of barrier concentration.

and so

µ =
βν0a

2e

4
(

1+βε0(1−c)
1+βε0

)(
2−βε0(1−c)

2−βε0

)2 = βeD, (62)

where

D =
ν0a

2

4
(

1+βε0(1−c)
1+βε0

)(
2−βε0(1−c)

2−βε0

)2
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reduces to D0 = ν0a
2 when c = 0 and to

D1 =
ν0a

2

4
(

1
1+βε0

)(
2

2−βε0

)2

for c = 1. The drift velocity (shown in Fig. 3.7) and mobility (shown in Fig. 3.8)

increase exponentially with electric field deviating from PF like behavior.

Figure 3.7. Normalized Drift Velocity as a function of E.

Figure 3.8. Normalized Mobility as a function of E.
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3.3. MOTION THROUGH A 1D CORRELATED GAUSSIAN
POTENTIAL WITH A FINITE CONCENTRATION OF
EXPONENTIALLY DISTRIBUTED TRAPS AND BARRIERS

The previous calculations of this section have established that a finite con-

centration of traps and/or barriers with depths/heights distributed according to an

exponential distribution gives rise in 1D to a steady-state mobility that undergoes

a transition to an essentially insulating phase as the temperature is lowered below

a critical temperature that depends on the average trap depth or barrier height. In

such a system, the electric field dependence of the mobility is very different from

the Poole-Frenkel form commonly observed in molecularly-doped polymers. In this

section the motion of carriers which undergo hopping transport through a correlated

Gaussian potential landscape in the presence of traps and barriers is considered, that

could in principle, give rise to a transition of the type previously analyzed.

As in previous subsections of this section, using the same conventions already

introduced, the calculation starts with the master equation (28) governing the evo-

lution of the probability Pn (t) of finding the carrier at the nth site at time t, which

leads in steady state to an expression for the drift velocity

v = µE =
ν0a

∑N−1
m=0 e

−mβeEa
〈
e−βεne

1

2
βεn+me

1

2
βεn+m+1

〉 , (63)

where

〈e−βεne
1

2
βεn+me

1

2
βεn+m+1〉 = 1

N

N∑

n=1

e−βεne
1

2
βεn+me

1

2
βεn+m+1. (64)

The correlation functions (64) required are now more complicated then in the previous

two calculations because, as described in section 2, the energy εn = un + vn at a site

is now assumed to arise from two components, a correlated part un with values drawn

from a Gaussian marginal distribution of width σ as described in section 2, and an
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uncorrelated part vn drawn from a distribution

ρ (vn) = cρv (vn) + (1− c) δ (vn) , (65)

where

ρv (v) = (2ε0)
−1 exp (− |v| /ε0) . (66)

Nonetheless, with the assumption that the two components are independent of each

other, the correlation functions factor. Re-expressing the correlation function in the

form
〈
e−βεneβεn+meβδn+m

〉
, where 2δn+m = εn+m+1 − εn+m, one can write

〈
e−βεneβεn+meβδn+m

〉
=
〈
e−βuneβun+meβδun+m

〉 〈
e−βvneβvn+meβδvn+m

〉
.

The part of the correlation function

〈
e−βuneβun+meβδun+m

〉
(67)

associated with the correlated part of the potential was calculated in Ref. [75] in the

approximation that the site-energy difference un+1 − un between neighboring sites is

small compared to kT (as occurs when energies of neighboring sites are correlated)

so that exponential factors involving δun+m can be set equal to unity. With this

approximation, one finds that for m = 0, the correlated part (67) of the correlation

function reduces to unity, while for m > 0, one has [75]

〈e−βuneβun+m〉 = exp
(
β2σ2

0

[
1− αm−1

])
m > 0, α = a0/a (68)

There is no reason to expect the part of energy difference between neighboring

sites due to the uncorrelated part to be small, and so one refrains from making that
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approximation for the vn. Thus, in terms of the uncorrelated part of the correlation

function, taking into account our results for the correlated part, one can write for

m = 0

〈
e−βεneβεn+meβδn+m

〉
=
〈
e−

1

2
βvn
〉〈

e
1

2
βvn+1

〉
(69)

and for m > 0

〈
e−βεneβεn+meβδn+m

〉
=
〈
e−βuneβun+m

〉〈
e−βvne

1

2
βvn+me

1

2
βvn+m+1

〉

= exp
(
β2σ2

0

[
1− αm−1

]) 〈
e−βvn

〉 〈
e

1

2
βvn+m

〉〈
e

1

2
βvn+m+1

〉

= exp
(
β2σ2

0

[
1− αm−1

]) 〈
e−βvn

〉 〈
e

1

2
βvn
〉2

To compute the remaining parts of the correlation function, first evaluate,

using the distributions (65) and (66), the mean value

〈
eλv
〉
=

∞∫

−∞

ρ (v) eλvdv

〈
eλv
〉
=

∞∫

−∞

cρe (v) e
λvdv + (1− c)

∞∫

−∞

δ (v) eλvdv

=
c

2ε0





0∫

−∞

exp

(
v

[
1 + λε0

ε0

])
dv +

∞∫

0

exp

(
−v

[
1− λε0
2ε0

])
dv



+ (1− c) .

Evaluating the integral one finds

〈
eλv
〉
=

1− λ2ε20 (1− c)

(1− λ2ε20)
. (70)

Using this result, respectively, with λ = −β/2, β/2 and −β one finds that for βε0 < 1

〈
e−

1

2
βvn
〉
=

4− β2ε20 (1− c)

(4− β2ε20)
(71)
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〈
e−

1

2
βvn+1

〉
=

4− β2ε20 (1− c)

(4− β2ε20)
(72)

〈
e−βvn

〉
=

1− β2ε20 (1− c)

(1− β2ε20)
. (73)

Using these results in our earlier expression for the correlation function one can write

for m = 0, and βε0 < 1

〈
e−βεneβεn+meβδn+m

〉
=

[
4− β2ε20 (1− c)

(4− β2ε20)

]2
, (74)

while for m > 0 and βε0 < 1

〈
e−βεneβεn+meβδn+m

〉
= eβ

2σ2
0[1−αm−1]

[
1− β2ε20 (1− c)

(1− β2ε20)

] [
4− β2ε20 (1− c)

(4− β2ε20)

]2
(75)

Based upon our previous results for traps and barriers, one can already anticipate that

the divergence of correlation functions for βε0 > 1 will lead to a mobility transition.

In the rest of what follows it is understood that the expressions are considered only

in the regime for which βε0 < 1. Although some of the expressions do not diverge

until βε0 > 2, this regime cannot be reached before the transition at βε0 = 1 occurs,

and need not, therefore, be considered.

With the results (74) and (75), the denominator in the expression (63) for the

drift velocity can be written

[
4− β2ε20 (1− c)

(4− β2ε20)

]2
+

[
1− β2ε20 (1− c)

(1− β2ε20)

] [
4− β2ε20 (1− c)

(4− β2ε20)

]2
eβ

2σ2
0

∞∑

m=1

e−mβeEae−β2σ2
0
αm−1

(76)
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where the term with m = 0 is displayed explicitly. For typical values of the energetic

disorder in MDPs, βσ0 ∼ 3−5, and so the the exponential factor eβ
2σ2

0 in the remaining

terms will tend to enhance their contribution relative to the m = 0 term.

Because of the correlations in the potential, the remaining sum can now no

longer be computed as a simple geometric series. However, because of the competi-

tion between the two exponential factors appearing in it, the summand will rise and

decay relatively slowly over a large number of sites, so that the sum itself can be

approximated by an integral

∞∑

m=1

e−mβeEae−β2σ2
0
αm−1 ∼ a−1

∞∫

a

exp
[
−
(
Fy + σ̂2a0y

−1
)]

dy (77)

over a continuous position variable y ∼ ym = ma. Here F = βeE and σ̂ = σ0/kT. For

sufficiently large disorder and at fields of interest, the integrand in this last expression

becomes strongly peaked and can be evaluated using a saddle point integration. Thus

setting

a−1

∫ ∞

a

exp
[
−
(
Fy + σ̂2a0y

−1
)]

dy = a−1

∫ ∞

a

exp [−g (y)] dy

with g = (Fy + σ̂2a0y
−1) , one determines the location of the peak, which occurs

when

d

dy

(
Fy + σ̂2a0y

−1
)
= 0, (78)
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at y = y0 =
√
σ̂2a0/F . Using this, calculate

g (y0) = 2
√
σ̂2Fa0 (79)

g′ (y0) = 0 (80)

g′′ (y0) =
2σ̂2a0
y30

(81)

so that one can write, near y0,

g (y) ∼ g (y0) +
1

2

2σ̂2a0
y30

(y − y0)
2 = g (y0) +

(y − y0)
2

2α2
(82)

where α2 = y30/2σ̂
2a0. With this the expression one finds that

a−1

∫ ∞

a

exp [−g (y)] dy

= a−1 exp
(
−2
√

σ̂2Fa0

)∫ ∞

−∞
exp

[
−(y − y0)

2

2α2

]
dy.

Evaluating the Gaussian integral and substituting the definitions introduced above,

an approximation to the sum in (76)is obtained:

∞∑

m=1

e−mβeEae−β2σ2
0
αm−1 ∼ (a0/a)

√
πβσ0 (βeEa0)

−3/4 exp

(
−
√

4β2σ2
0 (βeEa0)

)
.

(83)

By inserting this last expression into (76), and the resulting expression into the de-

nominator of (63), one obtains, after dividing by the field E, the mobility:

µ =
υ0aE

−1 [(4− β2ε20 (1− c)) / (4− β2ε20)]
2

1 +

[
1−β2ε2

0
(1−c)

(1−β2ε2
0)

]
eβ

2σ2
0 (a0/a)

√
πβσ0 (βeEa0)

−3/4 × exp
(
−
√

4β2σ2
0 (βeEa0)

)

(84)
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As discussed above, when the m = 0 term can be neglected, this can be

simplified further. Making this approximation and using the definition (30) of υ0 the

following results are obtained

µ =
µ0 exp [−εB/2kT ] exp (−β2σ2

0) exp
(√

4β2σ2
0 (βeEa0)

)

[
1−β2ε2

0
(1−c)

(1−β2ε2
0)

] [
4−β2ε2

0
(1−c)

(4−β2ε2
0)

]2 (85)

in which

µ0 =
J2
0 e

−2λaa2 (βeEa0)
3/4

Ea0
√
2~2εBσ0

(86)

is algebraic in the field and temperature, and thus slowly varying with respect to the

exponential terms appearing in (85).

Equation (85) is one of the main results of this dissertation. It predicts, ana-

lytically, most of the features observed in MDPs: (i) a Poole-Frenkel field dependence,

with a Poole-Frenkel factor that decreases with increasing temperature, (ii) a temper-

ature dependence at fixed field which has a combination of quadratically and linearly

activated components, and (iii) a non-dispersive to dispersive transition as the tem-

perature is lowered below a critical value Tc = ε0/k (Fig. 3.9). Although the model

has both barriers and traps the critical temperature exhibited in the

presence of both is the higher value associated with the traps alone. The steady-state

calculation presented here does not allow for a determination regarding the universal-

ity of current-time transients in this model, but since the transition is driven by the

exponential distribution of traps it is reasonable to expect that it shares the dispersive

features of multiple trapping models.

In Figs. 3.9 - 3.12 the predictions of this 1D model are graphically illustrated.

Figure 3.9 shows the mobility transition that occurs as the value of ε0/kT approaches

the critical value of unity, below which the system is not thermodynamically stable.
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Figure 3.9. Mobility as a function of ε0/kT for different values of the electric field.

The steady-state drift mobility smoothly approaches zero at this point, as the terms

proportional to c in the denominator of Eq. (85) diverge. The data in this figure were

computed for four different values of the electric field for a system with Gaussian

disorder σ0 = 0.1 eV, a combined trap/barrier concentration c = 0.1 and a constant

temperature of T = 298 K, by varying the trap depth ε0.

The dependence of the trap or barrier concentration c on the mobility is il-

lustrated in Fig.3.10. Here µ(0) is the mobility when c is zero. Here one can see

that the drop in mobility with increasing concentration c becomes more drastic with

increasing values of ε0.
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Figure 3.10. Mobility as a function of trap concentration.

The activated field dependence, aside from algebraic prefactors, is contained

entirely in the Poole-Frenkel factor in Eq. (85), which can be written in the form

exp
√
γE where γ = 4β2σea0, depends only on the correlated Gaussian part of the

distribution, and is insensitive to the presence of the traps. The PF dependence is

shown in Fig. 3.11. For this computation, the concentration, the Gaussian width,

and the temperature were kept at the same constant values as in the previous figure.

In this figure, a dimensionless parameter ε = |εc − ε0|/εc is defined which provides

the relative deviation of the width ε0 of the exponential distribution from the critical

value εc = kT . Starting from ε = 1 which is the pure Gaussian distribution, the
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Figure 3.11. Mobility as a function of E1/2 for different values of ε.

dimensionless parameter decreases as ε0 approaches the critical value. The plot clearly

shows that the mobility also approaches zero, and yet maintains the characteristic

Poole-Frenkel behavior right up to the transition.

Finally, Fig. 3.12 shows how the PF field dependence changes as the temper-

ature is lowered.

Previous comparisons of 1D analytic calculations of this sort with numeri-

cal simulations in 3D show that the 1D calculations generally capture the correct

functional dependence on temperature and field, although they tend to overesti-

mate the Poole-Frenkel coefficient γ. Physically, this results because the assumed
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Figure 3.12. Mobility as a function of E1/2 at different temperatures.

one-dimensional path through the material artificially eliminates the possibility that

carriers can find alternate routes around difficult energetic barriers that they en-

counter, which they can, of course, do in higher dimensions.

In the next section 3D numerical calculations are presented that explore the

degree to which the 1D calculation presented in this section captures the behavior of

the full 3D system.
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4. NUMERICAL CALCULATIONS FOR 3D SYSTEMS

In this section the result of numerical calculations are presented in order to

test whether the features predicted by the 1D analytical calculations discussed in

section 3 are also exhibited by 3D systems, and in particular whether a hybrid model

which includes both a correlated Gaussian potential energy landscape as well as a

finite concentration of exponentially distributed energetic defects might explain the

main features observed in the measured time-of-flight mobility of molecularly-doped

polymers.

It is not at all obvious that the predictions of the 1D calculation should extend

to 3D systems without significant modification. Transport in disordered systems

can depend very strongly on dimensionality, as can be seen by considering the very

different behavior of percolating lattices in different dimensions. Indeed, the mobility

of a 3D cubic lattice vanishes when a finite concentration c ∼ 75% of its bonds are

removed, because of the disappearance at that concentration of a connected cluster of

transport sites that span the lattice. In 1D, this “transition” occurs with the removal

of the first bond [78].

Unfortunately, analytical calculations of transport in disordered systems in

higher dimensions are much more difficult than in 1D. It is sometimes possible to

analytically construct an effective medium theory (as in the percolation problem) [79],

which can often be quite accurate, but such theories become problematic with realistic

hopping rates that connect sites that are greater than nearest neighbors, as occurs,

e.g., in a real MDP. There is also the problem that with an effective medium theory the

results involve an approximation the validity of which is usually difficult to determine

in advance.
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Hopping transport on ordered lattices, in which there is no energetic disorder,

is well understood both in the absence of a field, where it leads to diffusion, and for

fields of arbitrary strength, where it leads to a well-defined field dependent mobility.

Indeed solutions to the master equation for ordered systems are often the starting

point for the development of a useful effective medium theory. Both for reference

purposes and to serve as a point of comparison with the numerical results of this

section, the Appendix contains a section in which hopping transport on such an

ordered lattice is worked out in considerable detail.

However, molecularly-doped polymers, are certainly not ordered, as empha-

sized earlier. Thus, to perform realistic calculations of hopping transport in 3D

disordered materials of this sort it is necessary to perform numerical computations of

some sort.

Most of the early numerical work on MDPs was done through Monte Carlo

simulations [68] which use the microscopic transition rates to generate random moves

by a particle executing a biased random walk on the underlying set of transport sites.

Monte Carlo calculations have the advantage that they are conceptually simple, and

they can be implemented on a realization of the disordered system which is arbitrarily

large. Their main disadvantage is that they must be run for many realizations of

the random walk in order to obtain sufficient statistics, and to ensure that one is

sufficiently sampling the rare regions of the disordered medium.

An alternative method for computing the mobility is through numerical so-

lutions to the master equation that governs the evolution of the site probabilities

themselves, and as has already been described in this dissertation. This is the ap-

proach taken in the research presented in this section. Advantages of the approach

are that, first, if a large enough region of the disorder material is simulated, only one

realization of the disordered system needs to be implemented (or a few, if statisti-

cal error bars are desired), and secondly, that the numerical solution to the master
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equation automatically includes information about all possible random walks that

could take place on the disordered structure that is the target of the computation.

The main disadvantage is that the size of the system that one can simulate is con-

siderably smaller than is possible using Monte Carlo simulations. At any rate, in the

next section the numerical approach that has implemented here as a tool for study-

ing hopping transport in a correlated Gaussian energy landscape possessing a finite

concentration of exponentially distributed traps and barriers is described. Following

that, the results of numerical calculations that appear to confirm many, although

perhaps not all, of the essential features seen in the 1D analytical results developed

in the last section are presented.

4.1. NUMERICAL APPROACH

In this section, the numerical approach that has been implemented here to

compute the mobility for 3D disordered systems is described. Briefly, the approach

is to solve, in steady-state and with periodic boundary conditions, the equations

of motion for the transport site occupation probabilities p~n of a sufficiently large

realization of the disordered system of interest. For the computations presented in this

paper, this was done for sites located on a periodically repeated cubic lattice having

edge lengths Lx,Ly, and Lz, where the edge lengths varied (for reasons described

below) in powers of 2 from L = 24 = 16 to L = 27 = 256 and containing a total of N =

LxLyLz sites. Typical calculations are performed with L = 64 which incorporates

N ∼ 2.6× 105 transport sites.

In the presence of the field, the steady-state probabilities describe a non-

equilibrium condition of constant average particle flow along the direction of the

applied field. For each realization of the lattice, and at each value of the magnitude

of the electric field ~E = Ex̂ (directed along the x axis of the cubic lattice), the
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longitudinal component of the mobility is numerically computed.

µ = 〈vℓ〉/E

from the corresponding component 〈vℓ〉 = 〈~v〉 · x̂ of the steady-state drift velocity 〈~v〉.

The latter is obtained from the steady-state solution to the master equation

dP~n

dt
=
∑

~m

[W~n,~mP~m (t)−W~m,~nP~n (t)] ≡
∑

~m

H~n,~mP~m (t) , (87)

in which ~n = (nx, ny, nz) is a vector lattice index having integer components labeling

the lattice point at ~r~n = ~na, the quantity W~n,~m denotes the transition rate from site ~m

to site ~n, which in the results presented here is assumed to depend on the separation

distance and energy of the two sites involved according to Eq. (3), and P~n (t) is the

probability that the carrier is at lattice site ~n at time t. For a given initial condition

P~n (0) the carrier’s mean position 〈~r (t)〉 and velocity 〈~v (t)〉 can then be expressed as

〈~r (t)〉 =
∑

~n

~r~nP~n (t) ,

〈~v (t)〉 =
d

dt
〈~r (t)〉 =

∑

~n,~m

~r~nH~n,~mP~m (t) ,

and the required steady-state drift velocity

〈~v〉 = lim
t→∞

〈~v (t)〉 =
∑

~n,~m

~r~nH~n,~mp
(s)
~m (88)

can be computed from the transition rates and the steady-state site occupation prob-

abilities

p
(s)
~m = lim

t→∞
P~m (t) . (89)
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The latter can be obtained by solving the linear set of equations

∑

~m

H~n,~mp
(s)
~m (t) = 0 (90)

that result from (87) by setting dP~n/dt = 0. Thus, once the site energies have

been assigned, as described below, and the field specified, transition rates W~n,~m are

computed, according to Eq. (3), connecting each site to its 27 nearest neighbors lying

within a 3× 3× 3 cube centered on that site. With the transition rates determined,

Eq. (90) is solved using an over-relaxation algorithm, and the resulting occupation

probabilities used to compute the drift velocity and the mobility as outlined above.

For the calculations of mobility performed in the current study, the zero-field

energy of each site of the lattice was computed as the sum ε~n = ε
(1)
~n + ε

(2)
~n of two

randomly drawn energies.

The uncorrelated trap energies ε
(2)
~n were drawn as discussed in section 2, in-

dependently from a distribution

ρ
(
ε(2)
)
= cε−1

0 exp
(
−
∣∣ε(2)

∣∣ /ε0
)
+ (1− c) δ

(
ε(2)
)

that randomly assigns exponentially distributed traps (or barriers) of mean depth

(or height) ε0 to transport sites in fractional concentration c. The remaining sites, in

fractional concentration (1− c), have ε(2) = 0.

The spatially correlated component of the energy was obtained by producing

individual realizations of a discrete Gaussian potential energy field ε
(1)
~n = u~n of zero

mean having the desired (translationally invariant) correlations C~m ≡ 〈u~nu~n+~m〉, de-

fined on our integer lattice with ~n = (n1, n2, n3) , and ni = 1, 2, . . . , L. To accomplish
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this, for each realization one first generates what ends up being the Fourier transform

û~k =
1√
N

∑

~n

u~n e−i~k·~n (91)

of the desired energy field. Here the discrete complex field û~k is defined on the set Ω

of N wavevectors ~k = (k1, k2, k3) in the 1st Brillouin zone of the associated reciprocal

lattice, with ki = 2πmi/L and mi ∈ {−M,−M + 1, · · · ,M − 1}, and M = L/2. The

field û~k is constructed as follows: for each wavevector ~k with positive z component,

a complex value û~k = η~ke
iφ~k for the random field at wavevector ~k is numerically

determined in two steps. In the first step the real quantity η~k is independently chosen

from a Gaussian distribution

P~k(η) =
1√
2πσ2

~k

e−η2/2σ2
~k (92)

having zero mean and a ~k-dependent variance

σ2
~k
=

1√
N

∑

~n

C~n e−i~k·~n =
1√
N

∑

~n

〈u~mu~m+~n〉 e−i~k·~n (93)

that is the Fourier transform of the desired correlation function. In the second step

an independent random phase φ~k is chosen uniformly in the interval [0, 2π]. For the

value û0 of the field at ~k = 0, the phase φ0 is set equal to zero. The values of û~k for

wavevectors ~k with negative z component are then assigned according to the relation

û~k = û∗
−~k
. When averaged over many realizations, the moments of the complex fields

thus constructed satisfy the relations

〈û~k〉 = 〈η~k〉〈eiφ~k〉 = 0 (94)

〈û∗
~k
û~k′〉 = 〈|û~k|2〉δ~k′,~k + 〈û∗

~k
û∗
~k
〉δ~k′,−~k = σ2

~k
δ~k′,~k, (95)
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where the average 〈û∗
~k
û∗
~k
〉 = 〈|η~k|2〉〈e2iφ~k〉 vanishes when φ~k is chosen randomly on

[0, 2π].

With the û~k chosen as described above, the values u~n of the energy field of

interest are obtained as the inverse Fourier transform

u~n =
1√
N

∑

~k∈Ω

û~k e
i~k·~n (96)

of the discrete complex field u~k. As required, the final energies are real, i.e.,

u∗
~n =

1√
N

∑

~k

û∗
~k
e−i~k·~n =

1√
N

∑

~k

û−~k e
−i~k·~n

=
1√
N

∑

~k

û~k e
i~k·~n = u~n

where the summation index is relabeled, with ~k → −~k, and used the fact that û−~k =

û∗
~k
. Furthermore, being a sum of Gaussian variables, the values of the real discrete

field u~n are themselves Gaussian distributed random variables that obey the relations

〈u~n〉 =
1√
N

∑

~k

〈û~k〉 ei
~k·~n = 0

〈u~nu~n′〉 = 〈u∗
~nu~n′〉 = 1√

N

∑

~k,~k′

〈û∗
~k
û~k′〉 e−i~k·~nei

~k′·~n′

=
1√
N

∑

~k,~k′

σ2
~k
δ~k,~k′e

−i~k·~nei
~k′·~n′

=
1√
N

∑

~k

σ2
~k
e−i~k·(~n−~n′) = C~n−~n′.

In our numerical implementation of these ideas, one (i) chooses

C~n−~m = 〈u~nu~m〉 =
σ2a

(|ρ~n − ρ~m|+ a)
=

σ2

(|~n− ~m|+ 1)
(97)
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equal to the autocorrelation function associated with charge-dipole interactions, (ii)

numerically computes via fast Fourier transforms the variance

σ2
~k
=

1√
N

∑

~n

C~n ei
~k·~n, (98)

(iii) constructs a random energy field ûk as outlined above, and (iv) performs another

fast (inverse) Fourier transform, as in (96), to obtain the discrete energy field ε
(1)
~n = u~n

required.

4.2. NUMERICAL RESULTS

The numerical calculations presented in this section, obtained using the method

outlined above, were performed for a system, which in the absence of traps (by which

from here on refer to both traps and barriers) had parameter values chosen to match

those which have been shown to give a good fit, as reported by Chowdhury and Par-

ris [70], to the experimental TOF mobility measured for 30% DEH:PC by Mack et

al. [2]. The calculation of Chowdhury and Parris [70], shown in Fig.1.14, was per-

formed using the techniques described in the last section on a system with edge lengths

of Lx = Ly = Lz = 64 sites. The lattice spacing a separating dopant molecules was

determined using the relation

a = n−1/3 =

(
M

c0Aρm

)1/3

in which n is the number density of dopant molecules in the system, c0 = 0.30 is

the weight percent of dopant molecules in the material, M = 1.12 g/mol is the

molecular weight of the DEH dopant molecules, A is Avogadro’s constant, and ρm =

1.12 g/cm3 the mass density of the resulting MDP. This relation gives a lattice

spacing a = 11.94 Å. The wavefunction decay parameter λ = 0.5 Å−1 was taken

from an analysis of the concentration dependence of the mobility by Borsenberger
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and Schein [71]. In their fit to the data, Chowdhury and Parris determined values of

the energetic disorder parameter σ = 0.1eV, the polaron binding energy Eb = 0.37eV,

and the intersite matrix element J0 = 0.63eV that gave good fits to the experimental

data for this system. Since these values seem to characterize real MDPs, their use

to define a baseline system from which to compute purely theoretical results seems

to offer the best possibility of making the results of the calculation relevant to actual

systems of interest. For most of the calculations performed, the temperature was kept

constant at room temperature T = 298 K, and the concentration and average trap

depth were varied to study the general effects of trapping on the field and temperature

dependence of the mobility.

A general finding from the numerical studies, is that the inclusion of a signifi-

cant fraction (i.e., tens of percent) of traps into our baseline system have very little

effect on the Poole-Frenkel field dependence that arises from the correlated Gaussian

part of the distribution, provided that the trap depth does not significantly exceed

the critical value predicted by the 1D calculation. Indeed, Fig. 4.1 shows a “Poole-

Frenkel” plot (by which refer to a semi-log plot of the mobility plotted as a function

of the square root of the electric field) for a series of systems in which an increasing

concentration c of traps having a mean trap depth ǫ0 = 0.9kT have been added to the

baseline system described above. The results show, as one might expect, a monotonic

decrease in the mobility with increasing trap concentration.

By carrying out calculations of this sort for different values of the mean trap

depth, the plot presented in Fig. 4.2 is obtained which shows a plot of the mobility

as a function of trap concentration for different values of the parameter ǫ0/kT . The

attentive reader will deduce from this plot that in our numerical calculations the

mobility does not appear to vanish for ǫ0/kT > 1, as one might be led to expect from

the predictions of the 1D calculation. Such a deduction on the part of the reader would

be reinforced by the results shown in Fig. 4.3, which shows a plot of the mobility for
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Figure 4.1. Field dependence of the mobility with an increasing concentration of
traps of mean trap depth ǫ0 = 0.9kT .

four different electric fields plotted as a function of the dispersion parameter ǫ0/kT

for a system with a 10% concentration of traps. In this plot, the mobility does indeed

exhibit the expected decrease with increasing values of the dispersion parameter,

but the initial impression is that the point at which the mobility vanishes is not at

ǫ0/kT = 1, but at ǫ0/kT = 2, which just happens to be the critical value that emerges

in the 1D calculation for random barriers, not random traps.

Is the 1D calculation wrong? It is hard to imagine that it could be, given

that the driving mechanism for the mobility transition, an inability of the carriers to

equilibrate, should be operative in 3D as well as in 1D (and would for thermodynamic

reasons give the same critical temperature). As it turns out, further investigation

suggests that the actual critical point associated with bulk material is indeed at

ǫ0/kT = 1 as predicted by the 1D calculation. The effects seen in these last two

figures represent artifacts associated with finite-size effects.



78

Figure 4.2. Mobility as a function of trap concentration for different values of the
dispersion parameter ǫ0/kT as shown.

Finite-size scaling is an important factor in simulations preformed on equilib-

rium systems, since it is generally understood that real phase transitions only occur

in infinite systems. The transition occurring here is in a non-equiibrium system, but

similar considerations apply.

Indeed, the calculations are performed for a large, but ultimately finite sam-

ples. Thus, every realization that has been generated has a lowest energy state, and

any carrier in such a system has a finite energy. It is relatively easy to estimate the

most probable value for the lowest energy in a system of N sites, but the important

point to realize is that the mobility in these numerical simulations can never actually

vanish, as it can in a bulk system, where a carrier can continue to sample states of

lower and lower energy in the tails of the distribution.



79

Figure 4.3. Mobility as a function of ǫ0/kT for a system with a 10% concentration
of traps and other parameters as indicated.

To numerically explore the dispersive to non-dispersive transition thus requires

one to consider how the mobility should scale with the size of the system on either side

of the transition (Fig. 4.4). Above the transition, one expects that as the system size

is increased, the mobility should eventually converge to a stable value that represents

the finite bulk mobility. Below the transition, however, as the system size increases,

the mobility should continue to monotonically decrease, as lower energy states in the

tail of the distribution are more thoroughly sampled by the larger number of sites in

the system.

Motivated by these ideas a study of the dependence, above and below the

transition on system size was carried out. Because of the Fast Fourier transform

techniques that are used to generate the correlated Gaussian potential the system

size can only be changed by factors of two. In doing this one has to be careful to

maintain equal edge lengths transverse to the field direction (along the x axis) so

as not to break the symmetry of the problem (this was motivated in part by the
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(a) Lx = Ly = Lz = 32. (b) Lx = Ly = Lz = 64.

(c) Lx = 128, Ly = Lz = 64. (d) Lx = 64, Ly = Lz = 128.

Figure 4.4. Mobility vs. ε0/kT for different electric fields and different lattice sizes.

discovery of odd unphysical effects when this symmetry were broken). As an example

of the effects of system size on the mobility on either side of the transition is presented

in Fig. 4.4, which compares the effects of different lattice sizes. It is clear from this
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figure that the apparent location of the transition moves to the right as the size of

the system is increased.

Figure 4.5 which combines these data makes the behavior on either side of

the transition even more apparent. Indeed, from this last figure it appears that the

data to the left of the predicted transition point at ǫ0/kT = 1 are converging to a

finite value, while to the data to the right of it appear to be continuing to fall with

increasing size of the lattice. As an alternative way of presenting the data, in Fig. 4.6

Figure 4.5. Mobility vs. ε0/kT for different sizes of the lattice.

a double-log plot of the mobility at fixed field as a function of 1/N is illustrated. In

this plot, the numerical data for ǫ0/kT < 1 appear to be approaching a limiting value

as 1/N → 0, while the data for ǫ0/kT > 1 continues to decrease as 1/N → 0 at

an increasing rate. Although this is not a proof, one can consider it as a convincing

evidence that the actual transition point in the 3D system is, in fact, at ǫ0/kT = 1

as predicted by the 1D calculation.

Clearly it would be useful to continue these studies to larger system sizes.

Unfortunately, the calculations that are presented thus far, in which the system size
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Figure 4.6. Mobility vs. 1/N.

ranges up to 64×128×128 sites seems to be as large as can be investigated using the

current computational algorithm and the state of modern computational facilities.

Even if there remains, perhaps, some question as to the actual location of

the critical point, it seems clear that such a point exists in the 3D system. In the

1D calculation, the Poole-Frenkel field dependence (and the associated temperature

dependence) persists right up to the transition. Determining what actually happens

at the transition point is clearly difficult numerically, for the reasons outlined above.

However, if the critical point of the transition does, indeed, occur at ǫ0/kT = 1 , then

one can numerically examine the field dependence of the mobility up to and beyond

this point. In Fig. 4.7 a calculation of the field dependence of the mobility for values

of the dispersion parameter ǫ0/kT that go right up to the critical value is presented, in

panel (a), and which exceeds it by a factor of 2, in panel (b). These calculations were

performed using the largest size lattice implemented, i.e, Lx = 64, Ly = Lz = 128.

The results of panel (a) clearly show that, at least for this finite sized system, the
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(a) ε0/kT = 0.0 to 1.0. (b) ε0/kT = 1.1 to 2.0.

Figure 4.7. Mobility vs. E1/2 for Lx = 64, Ly = Lz = 128.

PF field dependence is essentially unchanged as the critical point is approached. For

values of the dispersion parameter greater than the critical value, there is a marked

decrease in the mobility and the appearance of additional curvature that represents

deviations from ideal PF behavior. It should be emphasized that this second panel,

if it indeed represents the system below the actual transition point only gives the

steady-state mobility for a periodically repeated system with a lower cut-off in the

energy spectrum, and thus does not necessarily represent what would be measured

in a time-of-flight experiment conducted on a sample with a length corresponding to

some 104 sites. Nonetheless, the appearance of curvature in this region is additional

evidence that the transition point really does occur at ǫ0/kT = 1. On the non-

dispersive side of the transition the PF remains unchanged, as predicted by the 1D

model.
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5. CONCLUSIONS

In this dissertation, hopping transport of photo-injected charge carriers in

molecularly doped polymers was studied for three different models of energetic disor-

der: two models described by different uncorrelated exponential energy distributions,

and one described by a combination of correlated Gaussian energetic disorder and

uncorrelated exponential energetic disorder. Previously, the commonly-observed tem-

perature dependence and the Poole-Frenkel field dependence of the mobility had been

explained using correlated Gaussian disorder models [64,66], while universal features

of current-time transients had been explained using multiple trapping models [4, 67]

that postulate an uncorrelated exponential distribution of low energy sites. The main

question this research has addressed is whether these two totally different kinds of

energetic disorder can coexist in these materials without one component altering or

destroying the characteristic features associated the other.

Analysis of the first model studied in this dissertation provides a theoretical

description of the steady state mobility of carriers moving through an energy land-

scape entirely described by a concentration c of randomly distributed traps drawn

from an exponential distribution of trap energies of average trap depth ε0. For this

system, a mobility transition is exhibited, i.e., the mobility vanishes as the tempera-

ture is lowered below a critical value Tc = ε0/k, due to an inability of carriers at lower

temperatures to achieve thermal equilibrium. As in multiple trapping models, this

transition is identified with the nondispersive-to-dispersive transition seen in experi-

mental measurements. A Poole-Frenkel response to the driving field is not observed

for this system, which instead shows a field dependence that is exponential in the

first power of the field. The resulting mobility monotonically decreases as c and βε0

are increased.
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The second model analytically studied in this dissertation describes a particle

moving through a medium with a finite concentration c of exponentially distributed

barriers of average barrier height ε0. As with traps, a transition occurs as the tempera-

ture is lowered, but in this model the mobility vanishes at a lower critical temperature

Tc = ε0/2k than that which arises in the previous study. Moreover, in this barrier

model the energy spectrum is bounded from below so, at any temperature, the car-

rier can always equilibrate to a finite mean carrier energy. Thus, at least in this 1D

model, a transition to dispersive transport does not result from a thermodynamic

instablity. For the barrier model, aside from the critical temperature, the electric

field dependence, the concentration dependence, and the temperature dependence of

the mobility exhibit features similar to the model that contains only traps.

The third model considered analytically was one in which both traps and barri-

ers were embedded in a correlated Gaussian landscape. Analysis of this hybrid model

leads to features that are qualitatively similar to those observed in MDPs. First,

in common with the previous two models, there is a critical temperature Tc = ε0/k

below which the bulk mobility vanishes. In this model containing both traps and

barriers, the critical point appears to be determined by the presence of traps, which

have a higher critical temperature than the barriers. In an infinite sample this corre-

sponds to a transition to a transport regime, in which carriers can never equilibrate.

Secondly, The Poole-Frenkel field dependence of the charge carrier mobility, and the

associated temperature dependence observed in a trap-free sample, is predicted to be

largely unaffected as the transition to dispersive transport is approached from the

conducting side. The mobility monotonically (algebraically) decreases as a function

of the fractional concentration c of exponentially distributed traps/barriers. This

decrease became increasingly steep with increasing values of ε0.

To test the features predicted by the 1D analytical calculations, a series of

numerical calculations for 3D systems were carried out using computational methods.



86

Initial calculations on the 3D version of the model exhibited a strong mobility decrease

with increasing values of βε0, but initial calculations seemed to suggest that the

transition point was given not by the condition βε0 = 1, but by the condition βε0 = 2,

appropriate to barriers. Further investigation revealed this to be an artifact of the

finite sample size used in the initial numerical investigation. Additional investigations

into the scaling behavior of the mobility with sample size confirmed that the mobility

in a bulk system should vanish when βε0 > 1 as predicted by the 1D analytical model.

On the non-dispersive side of the transition the PF behavior and the temperature

dependence of mobility remained largely unchanged, as also predicted by the 1D

model. Finally, numerical results on finite but large 3D systems show, as expected,

that the mobility decreases monotonically with increasing trap concentration.

In summary,the results of extensive analytical and numerical studies, as pre-

sented in this dissertation, suggest that the two different classes of essential features

commonly observed for photo-injected charges in molecularly-doped polymers (the

field and temperature dependence of the mobility on the one hand, and the disper-

sive aspects of TOF transients on the other) could, in fact, arise from the coexistence

of correlated Gaussian disorder arising from molecular charge distributions, and un-

correlated exponential disorder arising from chemical impurities and/or structural

defects.



APPENDIX A

DERIVATION OF STATISTICAL PROPERTIES OF THE

DISTRIBUTION
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In this Appendix, details are provided for the evaluation of the distribution

derived in section 2. Beginning with Eq.(22)

ρ(ε) =

∞∫

−∞

dvnρ2 (vn)

∞∫

−∞

dun ρ1(un)δ[ε− (un + vn)]

=

∞∫

−∞

dvnρ2 (vn)

∞∫

−∞

dun ρ1(un)δ[un − (ε− vn)]

Substituting the two independent distributions from (15), (17), and (19)

ρ(ε) =

∞∫

−∞

dvncρe (vn) + (1− c) δ(vn)

∞∫

−∞

dun

exp(−u2
n

2
)√

2πσ2
0

δ[un − (ε− vn)]

ρ(ε) =
1√
2πσ2

0

∞∫

−∞

[
c
1

2ε0
exp

(
−|vn|

ε0

)
+ (1− c) δ(vn)

]
dvn × exp(−(ε− vn)

2

2σ2
0

)

=
1√
2πσ2

0




∞∫

−∞

c

2ε0
exp

(
−|vn|

ε0

)
exp(−(ε− vn)

2

2σ2
0

)dvn




+


(1− c)

∞∫

−∞

δ(vn) exp(−
(ε− vn)

2

2σ2
0

)dvn




=
1√
2πσ2

0




0∫
−∞

c
2ε0

exp
(

vn
ε0

)
exp(−ε2+2εvn−v2n

2σ2
0

)dvn

+
∞∫
0

c
2ε0

exp
(

−vn
ε0

)
exp(−ε2+2εvn−v2n

2σ2
0

)dvn + (1− c) exp(− ε2

2σ2
0

)




=
1√
2πσ2

0




0∫
−∞

c
2ε0

exp

{
− [ε0v2n−2vn(ε0ε+σ2

0)+ε0ε2]
2ε0σ2

0

}
dvn

+
∞∫
0

c
2ε0

exp

{
− [ε0v2n−2vn(ε0ε−σ2

0)+ε0ε2]
2ε0σ2

0

}
dvn + (1− c) exp(− ε2

2σ2
0

)



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For calculation simplicity and clarification let

I1 =

0∫

−∞

exp

{
− [ε0v

2
n − 2vn (ε0ε+ σ2

0) + ε0ε
2]

2ε0σ2
0

}
dvn

I2 =

∞∫

0

exp

{
− [ε0v

2
n − 2vn (ε0ε− σ2

0) + ε0ε
2]

2ε0σ
2
0

}
dvn

The two integrals,I1 and I2 can be evaluated separately using the following general

solution,with erfc(x) indicating the complementary error function ;

∫ ∞

0

exp−
(
ax2 + bx+ c

)
=

1

2

√
π

a
exp

(b2 − 4ac)

4a
× erfc

(
b

2
√
a

)

I1 =

0∫

−∞

exp

{
− [ε0v

2
n − 2vn (ε0ε+ σ2

0) + ε0ε
2]

2ε0σ
2
0

}
dvn

Let vn = −Vn

dvn = −dVn

I1 =

∞∫

0

{
− [ε0V

2
n − 2Vn (ε0ε+ σ2

0) + ε0ε
2]

2ε0σ2
0

}
dVn

I1 =

√
πσ2

0

2
exp

(
2ε0σ

2
0ε+ σ4

0

2ε20σ
2
0

)
erfc

(
ε0ε+ σ2

0

ε0σ2
0

√
2

)

I2 =

∞∫

0

exp

{
− [ε0v

2
n − 2vn (ε0ε− σ2

0) + ε0ε
2]

2ε0σ2
0

}
dvn

I2 =

√
πσ2

0

2
exp

(−2ε0σ
2
0ε+ σ4

0

2ε20σ
2
0

)
erfc

(−(ε0ε− σ2
0)

ε0σ2
0

√
2

)

I = I1 + I2

= σ0

√
π

2





exp
(

2ε0σ2
0
ε+σ4

0

2ε2
0
σ2
0

)
erfc

(
ε0ε+σ2

0

ε0σ0

√
2

)

+exp
(

−2ε0σ2
0ε+σ4

0

2ε2
0
σ2
0

)
erfc

(
−(ε0ε−σ2

0)

ε0σ0

√
2

)




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This solution can be written as I = σ0

√
π
2
I/ where

I/ = exp

(
2ε0σ

2
0ε+ σ4

0

2ε20σ
2
0

)
erfc

(
ε0ε+ σ2

0

ε0σ0

√
2

)

+exp

(−2ε0σ
2
0ε+ σ4

0

2ε20σ
2
0

)
erfc

(−(ε0ε− σ2
0)

ε0σ0

√
2

)

and expanding the two exponential terms

I/ = I
/
1 + I

/
2

= {exp
(

σ2
0

2ε20

)
exp

(
ε

ε0

)
erfc

(
ε0ε+ σ2

0

ε0σ0

√
2

)

+exp

(
σ2
0

2ε20

)
exp

(−ε

ε0

)
erfc

(−(ε0ε− σ2
0)

ε0σ0

√
2

)
}

With these simplifications the total distribution is expressed as:

ρ(ε) =
1√
2πσ2

0

{
cσ0

2ε0

√
π

2
I/ + (1− c) exp(− ε2

2σ2
0

)

}

ρ(ε) =
c

4ε0
I/ +

(1− c)

σ0

√
2π

exp(− ε2

2σ2
0

)

I
/
1 =

{
exp

(
σ2
0

2ε20

)
exp

(
ε

ε0

)
erfc

(
ε0ε+ σ2

0

ε0σ0

√
2

)}

I
/
1 =



exp

(
σ2
0

2ε20

)
exp

(
ε

ε0

)
1− erf

(
ε+

σ2
0

ε0

)

√
2σ2

0







I
/
2 =

{
exp

(
σ2
0

2ε20

)
exp

(−ε

ε0

)
erfc

(−(ε0ε− σ2
0)

ε0σ0

√
2

)}

I
/
2 =



exp

(
σ2
0

2ε20

)
exp

(−ε

ε0

)
1 + erf

(
ε− σ2

0

ε0

)

√
2σ2

0







I/ =
(
I
/
1 + I

/
2

)

I/ = exp

(
σ2
0

2ε20

)
f(ε)
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where

f(ε) = exp

(
ε

ε0

)
1− erf

(
ε+

σ2
0

ε0

)

√
2σ2

0


+ exp

(−ε

ε0

)
1 + erf

(
ε− σ2

0

ε0

)

√
2σ2

0




ρ(ε) = c

[
1

4ε0
exp

(
σ2
0

2ε20

)
f(ε)

]
+ (1− c)

[
1√
2πσ2

0

exp(− ε2

2σ2
0

)

]

The final simplified full site energy distribution is expressed by the following equation:

ρ(ε) = cρ̂(ε) + (1− c) ρ1(ε) (A.1)

with

ρ̂(ε) =
1

4ε0
exp

(
σ2
0

2ε20

)
f(ε) (A.2)

ρ1(ε) =
1√
2πσ2

0

exp(− ε2

2σ2
0

) (A.3)

and

Here, the following identities are used to perform the calculations :erfc(x) = 1−

erf(x),erf(−x) = −erf(x), and erf(x) = 1−erfc(x). Since an exponential function falls

off more slowly than a Gaussian, the tails of the total distribution are dominated by

the exponential energy dependence of the traps.Substituting the asymptotic expansion
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erf (x) ∼ 1− x−1π−1/2e−x2

of the error function into the f(ε)

erf

(
ε+

σ2
0

ε0

)

√
2σ2

0

= 1−
√

2σ2
0

π

1(
ε+

σ2
0

ε0

) exp




−

(
ε+

σ2
0

ε0

)2

2σ2
0





erf

(
ε− σ2

0

ε0

)

√
2σ2

0

= 1−
√

2σ2
0

π

1(
ε− σ2

0

ε0

) exp




−

(
ε− σ2

0

ε0

)2

2σ2
0





f(ε) = exp

(
ε

ε0

)

1− 1 +

√
2σ2

0

π

1(
ε+

σ2
0

ε0

) exp




−

(
ε+

σ2
0

ε0

)2

2σ2
0








+exp

(−ε

ε0

)

1 + 1−

√
2σ2

0

π

1(
ε− σ2

0

ε0

) exp




−

(
ε− σ2

0

ε0

)2

2σ2
0








f(ε) = exp

(
ε

ε0

)


√

2σ2
0

π

1(
ε+

σ2
0

ε0

) exp




−

(
ε+

σ2
0

ε0

)2

2σ2
0








+exp

(−ε

ε0

)

2−

√
2σ2

0

π

1(
ε− σ2

0

ε0

) exp




−

(
ε− σ2

0

ε0

)2

2σ2
0








f(ε) = exp

(
ε

ε0

)


√

2σ2
0

π

1(
ε+

σ2
0

ε0

) exp




−

(
ε+

σ2
0

ε0

)2

2σ2
0






+ 2 exp

(−ε

ε0

)

− exp

(−ε

ε0

)


√

2σ2
0

π

1(
ε− σ2

0

ε0

) exp




−

(
ε− σ2

0

ε0

)2

2σ2
0








if |ε| >>
σ2
0

ε0

f(ε) ∼ 2 exp

(−ε

ε0

)
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making the combined distribution for high concentrations c ∼ 1,

ρ(ε) ≃ cρ̂(ε)

ρ(ε) ≃ c

4ε0
exp

(
σ2
0

2ε20

)
f(ε)

ρ(ε) ≃ c

4ε0
exp

(
σ2
0

2ε20

)
2 exp

(− |ε|
ε0

)

ρ(ε) ≃ c

2ε0
exp

(
σ2
0

2ε20

)
exp

(− |ε|
ε0

)



APPENDIX B

HOPPING TRANSPORT IN ORDERED LATTICES
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The probability distribution Pn(t) for finding the particle in each of the dif-

ferent localized states {n} in which it might find itself. Equations which describe the

evolution of such probabilities,arising from an underlying stochastic process, are usu-

ally referred to as Master Equations.Markovian Master Equation (ME) for an ordered

chain with an external electric field can be written as:

dPn

dt
= W−Pn+1 −W+Pn −W−Pn +W+Pn−1 (B.1)

where the W+ and W− are transition rates in the forward direction and backward

direction, i.e., they describe the transition probability per unit time between the

different states of the system.

B.1. SYSTEM WITHOUT AN APPLIED ELECTRIC FIELD

If the external field is zero W− = W+ = W and the master equation is simpli-

fied as:

Figure B.1. Hopping between three neighboring states without electric field.
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dPn

dt
= −2WPn +WPn+1 +WPn−1 (B.2)

Define discrete Fourier transform pairs

Pk(t) =
∞∑

n=−∞

Pn (t) e
ikn (B.3)

and

Pn (t) =
1

2π

2π∫

0

dk Pk (t) e
−ikn (B.4)

Here Pk (t) = Pk+2π (t) is periodic in the variable k,with period 2π,and thus is ex-

pressible as a discrete Fourier expansion, as indicated, where the Fourier expansion

coefficients are given by the usual formula on the right hand side. Using this, master

equation can be expressed in terms of the quantities Pk (t) ;

dPk

dt
=
∑

n

dPn

dt
eikn

Substituting to the master equation and simplifying

dPk

dt
= −2W

∑

n

Pne
ikn +W

∑

n

Pn+1e
ikn +W

∑

n

Pn−1e
ikn

= −2WPk +W
∑

n

Pne
ikneik +W

∑

n

Pne
ikne−ik

= −2WPk + 2WPk

(
eik + e−ik

2

)

dPk

dt
= −2WPk [1− Cos(k)]
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Defining Wk = 2W [1− Cos(k)] and substituting to the above equation will provide

an uncoupled equation of motion for the Pk.

dPk

dt
= −2WkPk

Which gives

Pk(t) = Pk(0)e
−Wkt

For the initial condition we can consider that the particle starts at the origin, i.e.,

Pn(0) = δn,0 . From Pk(0) =
∞∑

n=−∞
Pn(0)e

ikn we get Pk(0) = 1, Pk(t) = e−Wkt Then,

Pn(t) =

2π∫

0

dk

2π
Pk(t)e

−ikn

Pn(t) =

2π∫

0

dk

2π
e−Wkte−ikn

Pn(t) =
1

2π

∫ π

−π

dk e−2Wt e2WtCosk e−ikn

Pn(t) =
1

2π
e−2Ft

∫ π

−π

dk e2WtCosk e−ikn

Bessel function is defined as Jn(z) =
∫ π

−π
dk
2π
eizCoske−ikn Then

Pn(t) = e−2WtJn(2iWt)

Modified Bessel function is defined as In(z) = Jn(iz) Therefore,

Pn(t) = e−2WtIn(2Wt) (B.5)
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From this Pn(t) one can compute the first two moments of the distribution: The first

moment

〈n(t)〉 =
∑

n

Pn(t)n

or

〈n(t)〉 =
∑

n

ne−2WtIn(2Wt)

At the same time one can express 〈n(t)〉 in terms of derivatives of Pk(t), evaluated at

k = 0 .

Pk(t) =
∑

n

Pn(t)e
ikn

dPk(t)

dk
= i
∑

n

nPn(t)e
ikn

[
dPk(t)

dk

]

k=0

= i
∑

n

nPn(t) = i 〈n(t)〉

Also Pk(t) = e−Wkt = e−2W (1−Cos(k))t

dPk(t)

dk
= e−2Wte−2WtCosk(− sin nk)

dPk(t)

dk
= −Pk(t)(sin k)2Wt

[
dPk(t)

dk

]

k=0

= 0

Therefore

〈n(t)〉 = 0
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For a particle starting at the origin

〈x(t)〉 = 〈n(t)〉 a = 0

The second moment

〈
n2(t)

〉
=
∑

n

Pn(t)n
2

dPk(t)

dk
= i
∑

n

nPn(t)e
ikn (B.6)

d2Pk(t)

dk2
= −

∑

n

n2Pn(t)e
ikn

[
d2Pk(t)

dk2

]

k=0

= −
∑

n

n2Pn(t) = −
〈
n2(t)

〉

Also;

dPk(t)

dk
= −Pk(t)(sin k)2Wt

d2Pk(t)

dk2
= −2Wt

{
(sin k)

dPk(t)

dk
+ Pk(t) cos k

}

= −2Wt
{
−(sin2 k)2WtPk(t) + Pk(t) cos k

}

=
(
2Wt(sin2 k)

)2
Pk(t)− 2WtPk(t) cos k

[
d2Pk(t)

dk2

]

k=0

= −2Wt

〈
n2(t)

〉
= 2Wt

When multiplied by the square of the lattice spacing a ,

〈
n2(t)

〉
a2 =

〈
x2(t)

〉
= 2a2Wt



100

Defining the diffusion constant D = a2W,

〈
x2(t)

〉
= 2Dt (B.7)

B.2. SYSTEM WITH AN APPLIED ELECTRIC FIELD

Now consider an ordered chain with an electric field E and the Eq.(B.1)

Figure B.2. Hopping between three neighboring states with electric field.

dPn

dt
= W−Pn+1 −W+Pn −W−Pn +W+Pn−1 (B.8)
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Using Fourier transform

Pk(t) =
∞∑

n=−∞

Pn (t) e
ikn

dPk

dt
=
∑

n

dPn

dt
eikn

Substituting for the dPn

dt
term;

dPk

dt
=−W+

∑

n

Pne
ikn −W−

∑

n

Pne
ikn +W−

∑

n

Pn+1e
ikn +W+

∑

n

Pn−1e
ikn

dPk

dt
=−W+

∑

n

Pne
ikn −W−

∑

n

Pne
ikn +W−

∑

n

Pne
ikne−ik +W+

∑

n

Pne
ikneik

dPk

dt
=−W+Pk −W−Pk +W−Pke

−ik +W+Pke
ik (B.9)

Now letting the rates W+ and W− as Miller-Abrahams like rates- W+ = W , W− =

We−β∆ the above equation can be expressed as

dPk

dt
= −W

(
1 + e−β∆

)
Pk +We−ike−β∆Pk +WeikPk

Defining Wk = W
[
1 + e−β∆ − e−ike−β∆ − eik

]
the expression can be simplified to:

dPk

dt
= −WkPk

which has a solution

Pk(t) = Pk(0)e
−Wkt (B.10)



102

Using the same boundary conditions and the equation for the first moment as the

non electric field case

Pk(t) = e−Wkt

〈n(t)〉 = −i

[
dPk(t)

dk

]

k=0

= −i
d
{
exp

[
−W

(
1 + e−β∆ − e−ike−β∆ − eik

)
t
]}

dk
|k=0

= −i
[
iWt

(
1− e−β∆

)]

〈n(t)〉 = Wt
(
1− e−β∆

)

Using this relation one can calculate the mobility

µ =
Vd

E
=

〈x(t)〉
tE

where 〈x(t)〉 = a 〈n(t)〉

µ =
Wa

(
1− e−β∆

)

E
(B.11)

To generalize the above derivation one can specifically not assign values for the two

rates (W+ = W , W− = We−β∆). Keeping the two rates as it is and using Eq.B.9

dPk

dt
= −W+Pk −W−Pk +W−Pke

−ik +W+Pke
ik

=
[
W+

(
eik − 1

)
+W−

(
e−ik − 1

)]
Pk

∫
dPk

Pk
=
[
W+

(
eik − 1

)
+W−

(
e−ik − 1

)] ∫
dt

Pk(t) = Pk(0) exp
[
W+

(
eik − 1

)
+W−

(
e−ik − 1

)]
t
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Using the fact that Pk(0) = 1

Pk(t) = exp
[
W+

(
eik − 1

)
+W−

(
e−ik − 1

)]
t

〈n(t)〉 = −i

[
dPk(t)

dk

]

k=0

= −i
d

dk

{
exp

[
W+

(
eik − 1

)
+W−

(
e−ik − 1

)]
t
}
k=0

= −it
[
W+e

ik(i) +W−e
−ik(−i)

]
k=0

〈n(t)〉 = [W+ −W−] t

using the mobility equation

µ =
a 〈n(t)〉

tE
(B.12)

µ =
a [W+ −W−]

E
(B.13)
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