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Critical collapse of a self-gravitating scalar field in a~211!-dimensional spacetime with negative cosmo-
logical constant seems to be dominated by a continuously self-similar solution of the field equations without
cosmological constant. However, previous studies of linear perturbations in this background were inconclusive.
We extend the continuously self-similar solutions to solutions of the field equations with negative cosmological
constant, and analyze their linear perturbations. The extended solutions are characterized by a continuous
parameter. A suitable choice of this parameter seems to improve the agreement with the numerical results. We
also study the dynamics of the apparent horizon in the extended background.

DOI: 10.1103/PhysRevD.70.044010 PACS number~s!: 04.20.2q, 04.25.2g, 04.40.2b

Following the numerical work of Choptuik and Pretorius
on the critical collapse of scalar matter field in 211 dimen-
sions @1# ~see also Ref.@2#!, there has been debate about
understanding and analytically reproducing their results
@3–6#. Garfinkle found a one-parameter~n! family of con-
tinuously self-similar~CSS! solutions, and proposed that one
of these is the critical solution for scalar field collapse in
211 dimensional AdS spacetime@3#. Numerical compari-
sons suggest that the critical value isn54. Subsequently,
Garfinkle and Gundlach@4# performed the linear perturbation
analysis in this background and found that the only solution
exhibiting a single growing mode is then52 solution. Be-
cause of this discrepancy, they characterized their work as
‘‘inconclusive.’’ A weak point of their approach is that it
neglects the negative cosmological constantL, although the
latter is essential for the existence of black hole solutions in
three dimensions~the BTZ black hole@7#!. This was moti-
vated in Ref. @3# by the following arguments:~i! self-
similarity requiresL50; ~ii ! close to the singularity, theL
contribution to the full solution is negligible. Although these
arguments seem reasonable, we expect the cosmological con-
stant to play a crucial role in black hole formation@1#. There-
fore, the inclusion ofL in the above analysis may solve the
above contradiction on the critical value ofn.

The Garfinkle family of CSS solutions is

ds25A~vq1uq!4c2
dudv2

~v2q2u2q!2

4
du2,

f522c ln~vq1uq!, ~1!

whereA522(12q)/qq2 andc25121/2q. These solutions sat-
isfy the three-dimensional Einstein equations

Gab2Lgab5¹af¹bf2
1

2
gab~¹f!2 ~2!

with L50. The source term in Eq.~2! is the stress-energy
tensor of the minimally-coupled massless scalar fieldf.
@Note that the scalar field in Eq.~2! and Ref.@3# differ by a
factor21/A4p.# The Garfinkle CSS solutions are singular at
u5v50. If q is a positive integern, the initial regionu
>0, v>0 can be extended across the surfacev50, which
plays the role of an apparent horizon. (q5n will be assumed
below.!

We first extend Eq.~1! to solutions of the Einstein equa-
tions with L,0 and then consider the perturbation analysis
in this background. Since the cosmological constant breaks
the self-similarity, the appropriate variables are a scaling
variable, for instanceu, and a similarity variable, which we
choose asy5(v/u)n. The metric coefficients and the scalar
field are expanded in terms of the dimensionless combination
Lu4n

r[A2guu5r 01Lu6nF~y!1•••,

s[
1

2
ln~2guv!5s01Lu4nG~y!1•••,

f[f01Lu4nH~y!1•••, ~3!

wherer 0 , s0 andf0 are the background contributions in Eq.
~1!. At each order in the expansion the functionsF, G, andH
satisfy a system of second-order coupled ordinary differen-
tial equations. We only consider the truncation of the expan-
sion ~3! to the first-order. The relevant equations are
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2yF915F85
A

4n2
y(12n)/n~12y!~11y!(5n22)/n, ~4!

2y~12y2!H912~22y2!H824yH22c
12y

11y
F8

24c
213y

~11y!2
F50, ~5!

2yF91
12n1~3n21!y

n~11y!
F82

4c2y

~11y!2
F22y2G8

12cy~12y!H850, ~6!

plus two first-order constraints that reduce the moduli space
of the initial conditions. Below we briefly discuss the solu-
tions of Eqs.~4!–~6!. More details will be given in Ref.@8#.
The solution of Eq.~4! regular at the centery51 (u5v) is

F~y!5E
1

y

y5f ~y!dy1a~12y6!, ~7!

where

f ~y!52
A

4n2E1

y

y(127n)/n~12y!~11y!(5n22)/ndy. ~8!

The constanta can be set to zero by the gauge transforma-
tion

u→uS 12
La

n
u4nD , v→vS 12

La

n
v4nD . ~9!

H can be obtained from Eq.~5!. The two independent solu-
tions of the homogeneous equation are

H15312y213y4,

H25~312y213y4!lnU11y

12yU
26y~11y2!. ~10!

The regular solution of the inhomogeneous equation is

H5C1H11C2H2 , ~11!

where

C15E
1

y

XH21cb, C252E
1

y

XH1 , ~12!

X5
c

64y5~11y!2
@~12y2!F812~213y!F#.

~13!

Finally, G(y) is obtained by integration of Eq.~6! with the
boundary conditionG(1)52F8(1)50. This condition fol-
lows from one of the constraints and implies the absence of
conical singularities:

gmnr ,mr ,nuy5054e22sr ,ur ,vuy50521. ~14!

The functionsF, G and H are shown to be analytic inz
[y1/n.

This first-order extension of the Garfinkle solutions is not
uniquely defined, as we have found a one-parameter (b)
family of regular, analytic inz, solutions:

~F,G,H !5~F,Ḡ,H̄ !1cb~0,Gb ,Hb!, ~15!

where Ḡ and H̄ are theb50 solutions, andGb52c(1
2y)2(312y13y2), Hb5H1. It can be shown that a new
integration constant will appear at each successive order in
theL-expansion. Thus, there is a manifold of exact solutions
of Eqs.~4!–~6! asymptotic to the Garfinkle solutions near the
singularityu50.

Let us determine the effect of the first-orderL-corrections
on the location of the apparent horizon. From the definition
of the apparent horizon (¹r )250, we obtain, to first-order in
L,

S y

~11y!2D 221/n

~12Lu4nc~y!!50, ~16!

where

c~y![2G26F1
~11y2!

y
F8. ~17!

For L50, the apparent horizon is the past light coney50 of
the singularityu5v50. ForL,0, the behavior of the func-
tions F andG neary50 is

F~y!;F~0!1
A

4~6n21!
y1/n,

G~y!;G~0!1
A~8n21!

4~5n21!~6n21!
y1/n,

~18!

whereF(0) andG(0) are determined numerically. On the
apparent horizon, Eqs.~18! imply

u24n5Lc~y!.
LA

4n~6n21!
y1/n22. ~19!

Therefore, the apparent horizon recedes into the regionz
5y1/n,0 and becomes spacelike. This feature is essentially
due to the termF8/y in Eq. ~17! and does not depend onb.

The linear perturbation analysis in this background can be
performed by expandingr, s andf as

r 5r 01Lu6nF~y!1eu2n22kn@ f 0~y!1Lu4nf 1~y!#,

s5s01Lu4nG~y!1eu22kn@g0~y!1Lu4ng1~y!#,
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f5f01Lu4nH~y!1eu22kn@h0~y!1Lu4nh1~y!#,
~20!

wheree is a small parameter that controls the strength of the
perturbation, and we have truncated the expansion to first-
order in Lu4n. The growing modes are given byRe(k)
.0. The critical solutions have a single growing mode@9#.

The analysis of the zeroth-order perturbationsf 0 , g0 and
h0 was carried out in Ref.@4#. Here, we only recall the main
points of this analysis. The regular solution of the differential
equation forf 0 ( f 0(1)50),

2y f091~122k! f 0850, ~21!

is

f 05c1~12y222k!. ~22!

This solution is pure gauge, i.e., it can be generated from the
unperturbed solutionr 0(u,v)5(u2n2v2n)/2 by the coordi-
nate transformation

u→uS 11
ec1

n
u22knD , v→vS 11

ec1

n
v22knD . ~23!

In the gaugef 050, the scalar field perturbationu22knh0(y)
solves the massless Klein-Gordon equation for theL50
background spacetime. The solution, in terms of hypergeo-
metric functions, depends on two integration constants. The
first one is fixed by the regularity condition, i.e., the absence
of logarithmic divergence fory51. The second integration
constant is fixed by the condition of smoothness on the null
line y50, i.e., the analyticity~in at least one gauge! of h0 as
a function ofy1/n5v/u. A necessary condition is 2kn5m,
wherem is a positive integer. Form,n this condition is also
sufficient. Forn,m,2n one can find a gauge, i.e., a value
of c1, such thath0 is analytic. By contrast, form5n and
m>2n there is no gauge in whichh0 is analytic. The
second-order equation forg0 shows thatg0 is generically
divergent on the null liney50. However, for 1,m,n there
is a gauge in whichg0 is analytic, and for the valuem
52n21.n (n.1) g0 and h0 are analytic in the same
gauge. Therefore, regularity at the origin and analyticity in
y1/n requirek5m/2n and either~i! 1,m,n or ~ii ! m52n
21 (n.1). It can be easily seen that only the solution with
n52 has a single unstable mode, namelym53 (k53/4).

The only debatable question in this analysis is whether the
requirement that the non-scalar quantityg0 is analytic aty
50 might not be too strong. In principle, it should be enough
to demand that the perturbation of a scalar quantity, such as
the Ricci scalar, is analytical aty50. At zeroth-order inL,
the Ricci scalar is

R5R0~u,y!~122eu22knr0~y!!, ~24!

where@8#

r05g01
11y

4c
@~12y!h0822kh0#. ~25!

In the gaugec150, g0 and h08 diverge fory→0 asy2m/n.
Therefore,r0 diverges. However, the zeroth-order Ricci sca-
lar R0 goes to zero asy121/n and the perturbation

dR}R0r0;u24n2my12(m11)/n, ~26!

remains finite aty50 for m,n, including m51. If the
modem51 (k51/2n) were allowed, none of the Garfinkle
solutions would be critical: forn51 there would be no
growing mode, forn52 there would be two growing modes,
m51 andm53, etc. However, as we now show, the extra
modes withm51 do not survive the first-order extension in
L.

The first-order perturbationf 1 solves the inhomogeneous
differential equation

2y f191~522k! f 185
A

2n2
y(12n)/n~11y!2(2n21)/n

3@ f 01~12y2!g0#. ~27!

In the gaugef 050, g0;y2m/n implies

f 1;y(12m)/n ~m.1! or lny ~m51! ~28!

for y→0. If m.1, the divergence off 1 can be gauged away
by the zeroth-order gauge transformation~23!. The logarith-
mic divergence of the first-order contribution to them51
mode cannot be gauged away; this mode is never analytic at
y50. A detailed analysis of the first-order perturbations will
be presented elsewhere@8#. Here, let us just note that the
analytic and numerical integrations of the first-order pertur-
bations indicate that all the modes found in the analysis of
the zeroth-order perturbations satisfy the boundary condi-
tions of regularity and analyticity at first-order for any value
of b. This shows that the analysis of Garfinkle and Gundlach
@4# is robust, i.e., it survives extension to first-order inL.

Now let us discuss the effect of the extension on the be-
havior of the apparent horizon for the perturbed critical so-
lution (n52, k53/4). The apparent horizon satisfies the
equation

y3/2

~11y3!
~12Lu8c2eu23x2eLu5h!50, ~29!

wherec is defined in Eq.~17! and

x52g02
1

2
f 01

11y2

y
f 08 . ~30!

~The exact form ofh is inessential for the following discus-
sion and will be given in Ref.@8#.! For y→0, x is dominated
by the last term in Eq.~30!:

x.2
c1

2
y23/2. ~31!

The zeroth-order approximation of Eq.~29! with L50 is

APPROXIMATELY SELF-SIMILAR CRITICAL . . . PHYSICAL REVIEW D 70, 044010 ~2004!

044010-3



v3.2
ec1

2
. ~32!

The apparent horizon is null, and exists for both signs ofe.
~The singularityu5v50 is hidden by the apparent horizon
only for ec1,0.! The situation changes dramatically when
we take into account the first-order contributions. Neglecting
the termh, we see from Eq.~19! and Eq.~31! that neary
50 the shape of the apparent horizon is determined by a
balance between theL ande contributions. The leading be-
havior is

u.u0S 12
y

3D , u0[S 22ec1

L D 1/11

. ~33!

The apparent horizon, which exists only forec1,0, is
spacelike for small positivey and becomes null (u5u0) for
y50. The numerical solution of Eq.~29! shows that on the
apparent horizonu is everywhere bounded byu0. This con-
firms a posteriori that theh contribution to Eq.~29! can be
neglected for smalle. The existence and the shape of the
apparent horizon, which hides the singularityu5v50, do
not depend on the parameterb.

Finally, we present some evidence that theO(L) correc-
tions improve the agreement with the numerical simulations
of near-critical collapse. Following Ref.@3#, we introduce the
coordinates (T,R)

T522n ln u, R5u22nr 5
12y2

2
1Le22TF~y!.

~34!

The expression of the extended Garfinkle scalar field at some
fixed T0 is

fn~y,T0!522c ln
~11y!

2
1Le22T0~H~y!2H~1!!,

~35!

wheref has been shifted by a constant to make it vanish at
y51. In Ref. @3# Garfinkle shows that the nonextended so-
lution with n54 agrees with the numerical critical solution
of Ref. @1# at an intermediate timeT0;9. For such a large
T0, the extendedfn ~35! reduces to that of the CSS solution.
However, the calibration of the numericalT0 involves some
ambiguity. In Ref.@1#, T is defined byT52 ln tc , wheretc
50 (T51`) at the accumulation point~the singularity!.
Even a tiny error in the determination of this zero from near-
critical simulations will translate into a large error on the
corresponding value ofT0. Therefore, the latter has to be
considered as an unknown parameter. A second unknown
parameter in Eq.~35! is b. T0 andb can be set by compar-
ing f2(0,T0) for the critical solutionn52 with f4(0,̀ ).
From the numerical solution of Eqs.~4!–~6!, we find H̄(0)
;0.016!cbHb(0)53cb, provided thatb is not too small.
So f2(0,T0) depends only on the productbe22T0. By com-
paring the latter with the numerical value off4(0,̀ ), we
obtain be22T0;0.022. For the~arbitrary! choiceb51 this
gives T0;1.9. In Fig. 1 we plot in terms ofR the CSS
solution withn52, the extended solution forn52 and the
CSS solution withn54. TheO(L) corrections seem to im-
prove the agreement of then52 critical solution with the
numerical results. This conclusion is strengthened by Fig. 2,
where we plot the mass aspect in terms ofR

Mn~y,T0![2Lr 214e22sr ,ur ,v52F 4y

~11y!2G (2n21)/n

2Lu4nF ~12y2!2

4
2S 4y

~11y!2D (2n21)/n

c~y!G ,

~36!

for the same values ofb andT0. However, it is clear that the
first-order extendedn52 solution agrees with the numerics
only over a small range ofT0, as opposed to then54 CSS
solutions, which agree over a large range of intermediate

FIG. 1. The scalar fieldf as a function ofR
for the n52 CSS solution~solid!, the n52 ex-
tended CSS solution~dashed!, and then54 CSS
solution ~dotted!. The n52 extended CSS solu-
tion is computed forb51 andT051.9. The sca-
lar field has been rescaled by a factor21/A4p to
facilitate comparison with the results of Ref.@3#.
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times @3#. This suggests that the question of the agreement
between the analytical and numerical critical solutions is still
an open problem.

To conclude, our analysis shows that in the near-critical
regime the shape of the apparent horizon is determined by a
balance between theL ande contributions. This is evidence
that the cosmological constant plays a role in black hole
formation. We have also shown that the apparent contradic-
tion between the results of Ref.@1# and Ref.@3# can partly be
solved by includingO(L) terms. Another result of our

analysis is that, at this order, there seems to be a one-
parameter family of critical solutions, rather than a single
critical solution. This parameter is not connected with gauge
transformations~the gauge parameter isa, which has been
set to zero!. Rather, as will be discussed in more detail in
Ref. @8#, the first-order terms linear inb in Eq. ~15!, which
solve the homogeneous equations~4!–~6!, can be reinter-
preted as zeroth-orderk522 perturbations. It follows that
the extendedn52 critical solution is unique modulo the ad-
dition of a decaying perturbation.
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FIG. 2. The mass aspectM as a function ofR
for the n52 CSS solution~solid!, the n52 ex-
tended CSS solution~dashed!, and then54 CSS
solution ~dotted!.
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