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Critical collapse of a self-gravitating scalar field in(z+1)-dimensional spacetime with negative cosmo-
logical constant seems to be dominated by a continuously self-similar solution of the field equations without
cosmological constant. However, previous studies of linear perturbations in this background were inconclusive.
We extend the continuously self-similar solutions to solutions of the field equations with negative cosmological
constant, and analyze their linear perturbations. The extended solutions are characterized by a continuous
parameter. A suitable choice of this parameter seems to improve the agreement with the numerical results. We
also study the dynamics of the apparent horizon in the extended background.
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Following the numerical work of Choptuik and Pretorius whereA=22(1~9/4g2 andc?=1—1/2q. These solutions sat-
on the critical collapse of scalar matter field ir-2 dimen-  isfy the three-dimensional Einstein equations
sions[1] (see also Ref[2]), there has been debate about
understanding and analytically reproducing their results 1 5
[3—6]. Garfinkle found a one-parametér) family of con- Gap~AGab=Vad Vo~ 59an(V ¢) 2
tinuously self-similafCS9 solutions, and proposed that one

of thes_e is t_he critical solution for scalar ﬁeld collapsg iNwith A=0. The source term in Eq2) is the stress-energy
2+1 dimensional AdS spacetiml@]. Numerical compari- engor of the minimally-coupled massless scalar fieild

sons suggest that the critical valueriss4. Subsequently, [Note that the scalar field in Eq2) and Ref[3] differ by a

Garfinkle and Gundlach4] performed the linear perturbation f 1A= 1Th finkl uti inaul
analysis in this background and found that the only solutiorha:tl?rzo /If ;T|]s aepggtri\l,g i?]tggesmscl# é'oi?ﬁiZ{ er:g:gﬁ f rat

exhibiting a single growing mode is the=2 solution. Be- ~0, v=0 can be extended across the surface0, which

cause of this discrepancy, they characterized their work : :
“inconclusive.” A weak point of their approach is that it aEE)éivghe role of an apparent horizog{n will be assumed

neglects the negative cosmological constantalthough the We first extend Eq(1) to solutions of the Einstein equa-

latter is essential for the existence of black hole solutions iq- ; ; : ;

: . . . ions with A<<0 and then consider the perturbation analysis
thrte% d_mcgwfmg?ths BIEZ Elﬁfk hole[?]) . This twa};s mc|>]:u— in this background. Since the cosmological constant breaks
va ?l 'Itn el SAXO' € 0|0W|rlg tﬁrgu_menls(lt ‘:‘rem' the self-similarity, the appropriate variables are a scaling
simiiarity requiresa = o, (”).CO.Se 0 the singuiarity, variable, for instancel, and a similarity variable, which we
contribution to the full solution is negligible. Although these choose ag=(v/u)". The metric coefficients and the scalar

arguments seem rgasonaple, we expect the cpsmologmal “HEid are expanded in terms of the dimensionless combination
stant to play a crucial role in black hole formatifd]. There- an

fore, the inclusion ofA in the above analysis may solve the
above contradiction on the critical value f

= _— = 6n ...
The Garfinkle family of CSS solutions is F=N=0g=To T AUTF(Y) +- -,

(02— y29)2 o=5In(2g,,) = 0o+ AU"G(Y)+- - -,

2
7 de-,

N| =

ds?=A(p 9+ u)*’dudy —

¢=pot+ AUH(y)+- - -, ()]
¢=—2cIn(v9+u"), (1)
wherery, oy and ¢, are the background contributions in Eq.
(1). At each order in the expansion the functidh<z, andH

*Email address: cavaglia@phy.olemiss.edu satisfy a system of second-order coupled ordinary differen-
"Email address: gclement@lapp.in2p3.fr tial equations. We only consider the truncation of the expan-
*Email address: fabbria@bo.infn.it sion (3) to the first-order. The relevant equations are
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A
_yFrr+5Fr: Ry(lfn)/n(1_y)(1+y)(5n72)/n, (4)

—y(1-y»)H"+2(2—y?)H' -4 H—ch_—yF’
y(l-y y y Tty
2+3
4 po, 5)
(1+y)?
1-n+(3n—1)y 4c%y
—vF"+ _ ) ZGr
Y n(l+y) (1+y)? Y
+2cy(1—y)H'=0, (6)

plus two first-order constraints that reduce the moduli spac
of the initial conditions. Below we briefly discuss the solu-
tions of Eqs.(4)—(6). More details will be given in Ref8].
The solution of Eq(4) regular at the center=1 (u=v) is

F(y)= flyyf’f(y)dy+ a(1-y"), 7

where

A (Y
f(y)=- RL ya N1 —y)(1+y) O Didy. ()

The constantx can be set to zero by the gauge transforma-
tion
Aa 4 Aa .
u—u 1_Tu "I, v—v 1—Tv n. (9

H can be obtained from E@5). The two independent solu-
tions of the homogeneous equation are

H,=3+2y%+3y*,

H,=(3+2y?+3y%)In

=
1-y
—6y(1+y?). (10
The regular solution of the inhomogeneous equation is

H=CH;+C5H,, (11

where

y y
Cl:f XH2+CB, sz_f XHl, (12)
1 1

[(1-y?)F'+2(2+3y)F].
(13

X: -
64y°(1+y)?

PHYSICAL REVIEW D 70, 044010 (2004

Finally, G(y) is obtained by integration of E@6) with the
boundary conditiorG(1)=—F'(1)=0. This condition fol-
lows from one of the constraints and implies the absence of
conical singularities:

g, ly—o=4e72r yr ly—o=—1. (14

Thel/functionsF, G and H are shown to be analytic im
=y,

This first-order extension of the Garfinkle solutions is not
uniguely defined, as we have found a one-paramefr (
family of regular, analytic irg, solutions:

(F,G,H)=(F,G,H)+cB(0,Ggz,Hp), (15
where G and H are the 3=0 solutions, andG;=—c(1
e—y)2(3+ 2y+3y?), Hg=Hj. It can be shown that a new
Integration constant will appear at each successive order in
the A-expansion. Thus, there is a manifold of exact solutions
of Egs.(4)—(6) asymptotic to the Garfinkle solutions near the
singularityu=0.

Let us determine the effect of the first-ordefcorrections
on the location of the apparent horizon. From the definition
of the apparent horizorMr)?=0, we obtain, to first-order in

o

2—1/n

(1= Au*y(y))=0,

(16)

(1+y)?
where

1 2
wy)=26-6F+ 2 g,

17)

For A =0, the apparent horizon is the past light cgre0 of
the singularityu=v =0. ForA <0, the behavior of the func-
tionsF andG neary=0 is

1/n

F(y)~F(0)+ my ,

ABN-1)
Gn-1)(6n-1)7

G(Y)~G(0)+ 5
(18

where F(0) andG(0) are determined numerically. On the
apparent horizon, Eq$18) imply

1h—2

A=A ___AA (19
WA= anen-1)Y
Therefore, the apparent horizon recedes into the region
=y<0 and becomes spacelike. This feature is essentially
due to the tern’/y in Eq. (17) and does not depend ¢gh
The linear perturbation analysis in this background can be
performed by expanding o and ¢ as

r=ro+ AubTF(y)+eu?" 2 fo(y) + Au*"fy(y)],

o=00+ AUG(y)+ eu 2 go(y)+Au*g,(y)],

044010-2
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d= ot AU*H(y) + eu Thy(y)+ Au*"hy(y)], In the gaugec;=0, g, andh{, diverge fory—0 asy ™",
(200  Therefore,pq diverges. However, the zeroth-order Ricci sca-

lar R, goes to zero ag*~ " and the perturbation
wheree is a small parameter that controls the strength of the

perturbation, and we have truncated the expansion to first- SRxRypo~u~ 4N~ Mmyl-(m+1)in (26)

order in Au*". The growing modes are given bge(k)

>0. The critical solutions have a single growing mq&¢ remains finite aty=0 for m<n, including m=1. If the
The analysis of the zeroth-order perturbatidgs go and  modem=1 (k=1/2n) were allowed, none of the Garfinkle

ho was carried out in Ref4]. Here, we only recall the main solutions would be critical: fom=1 there would be no

points of this analysis. The regular solution of the differentialgrowing mode, fon=2 there would be two growing modes,

equation forfy (fo(1)=0), m=1 andm=3, etc. However, as we now show, the extra
modes withm=1 do not survive the first-order extension in
—yfg+(1—2k)f5=0, 21) A,
The first-order perturbatiof; solves the inhomogeneous
is differential equation
fo=cy(1-y>~%). (22)

A
_yf/i_,’_ (5_2k)fi:_2y(1—n)/n(l+y)2(2n—1)/n
This solution is pure gauge, i.e., it can be generated from the 2n
unperturbed solutiomg(u,v)=(u?"—v2")/2 by the coordi-

_ 2
nate transformation X[fo+(1=y9)dol. (27)

In the gaugef,=0, go~y ™" implies
u—u

eC eC
1+T1”2kn)' v—v 1+?1v2k”). (23

fi~y@=mn  (m>1) or Iny (m=1) (28

In the gaugef,=0, the scalar field perturbatian *"ho(y)  fory—0. If m>1, the divergence of, can be gauged away
solves the massless Klein-Gordon equation for the 0 by the zeroth-order gauge transformati@3). The logarith-
background spacetime. The solution, in terms of hypergeomic divergence of the first-order contribution to the=1
metric functions, depends on two integration constants. Thenode cannot be gauged away; this mode is never analytic at
first one is fixed by the regularity condition, i.e., the absencg,=. A detailed analysis of the first-order perturbations will
of logarithmic divergence foy=1. The second integration he presented elsewhef8]. Here, let us just note that the
constant is fixed by the condition of smoothness on the nulhnalytic and numerical integrations of the first-order pertur-
liney=0, i.e., the analyticityin at least one gaug®f ho as  pations indicate that all the modes found in the analysis of
a function ofy"=v/u. A necessary condition iskh=m,  the zeroth-order perturbations satisfy the boundary condi-
wheremis a positive integer. Fan<n this condition is also  tions of regularity and analyticity at first-order for any value
sufficient. Forn<m<2n one can find a gauge, i.e., a value of 8. This shows that the analysis of Garfinkle and Gundlach
of ¢4, such thathg is analytic. By contrast, fom=n and  [4] is robust, i.e., it survives extension to first-orderAn
m=2n there is no gauge in whiclh, is analytic. The Now let us discuss the effect of the extension on the be-
second-order equation fay, shows thatg, is generically havior of the apparent horizon for the perturbed critical so-
divergent on the null ling=0. However, for kkm<nthere |ution (n=2, k=3/4). The apparent horizon satisfies the
is a gauge in whichg, is analytic, and for the valuen  equation
=2n—1>n (n>1) g and hy are analytic in the same
gauge. Therefore, regularity at the origin and analyticity in y32
y*" requirek=m/2n and either(i) 1<m<n or (i) m=2n 3
—1 (n>1). It can be easily seen that only the solution with (1+y%)
n=2 has a single unstable mode, namely 3 (k=3/4).

The only debatable question in this analysis is whether th
requirement that the non-scalar quantify is analytic aty 1 142
=0 might not be too strong. In principle, it should be enough x=20o— = fo+ _yfé_ (30)
to demand that the perturbation of a scalar quantity, such as 2 y
the Ricci scalar, is analytical gt=0. At zeroth-order inA,

(1-Audy—eu 3y—eAu®n)=0, (29

Wherey is defined in Eq(17) and

the Ricci scalar is (The exact form ofy is inessential for the following discus-
sion and will be given in Ref8].) Fory—0, y is dominated
R=Ry(U,y)(1—2eu"%py(y)), (24) by the last term in Eq(30):
where[8] - %y—slz' 31
1+y ,
po=0o+ 7 [(1=Y)ho=2Kkho]. @9 The zeroth-order approximation of E(9) with A=0 is
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-0.15 FIG. 1. The scalar fields as a function oR
for the n=2 CSS solution(solid), then=2 ex-
e 02 tended CSS solutiofdashed, and then=4 CSS
solution (dotted. The n=2 extended CSS solu-
0.95 tion is computed foB=1 andT,=1.9. The sca-
' lar field has been rescaled by a factot/\/4 to
03 facilitate comparison with the results of RE8B].
-0.35} .
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5 €C, where ¢ has been shifted by a constant to make it vanish at
vi=— (32 y=1. In Ref.[3] Garfinkle shows that the nonextended so-
lution with n=4 agrees with the numerical critical solution
of Ref.[1] at an intermediate tim&,~9. For such a large

The apparent horizon is null, and exists for both signg.of <
bp g To, the extendedb, (35) reduces to that of the CSS solution.

(The singularityu=v =0 is hidden by the apparent horizon nAee L
only for ec;<0.) The situation changes dramatically when Howgvgr, the cahbraﬂoq of thg numericg} involves some
we take into account the first-order contributions. Neglectingamb'gu'ty' In Ref[1], T is deflngd byT.= _lntc.’ whert_atc

the term#, we see from Eq(19) and Eq.(31) that neary =0 (T=.+°o) at _the aCC“m“"’?‘“OF‘ pom(tthe singularity.

—0 the shape of the apparent horizon is determined by Even a tiny error in the determination of this zero from near-

balance between th& and e contributions. The leading be- critical simulations will translate into a large error on the
havior is ' corresponding value of,. Therefore, the latter has to be

considered as an unknown parameter. A second unknown
y 22ec,| V11 parameter in Eq(35) is ,8 Ty and ,8 can be s_et by compar-

Uzuo(l—g)y UOE( < ) . (33 ing ¢,(0,Ty) for the critical solutionn=2 with d>4((loo).

From the numerical solution of Eq&4)—(6), we find H(0)
~0.016<cBH4(0)=3cp, provided thais is not too small.
S0 ¢,(0,T,) depends only on the produge 2. By com-
paring the latter with the numerical value @f(0,), we
obtain Be~2T0~0.022. For thearbitrary) choice =1 this
gives Tg~1.9. In Fig. 1 we plot in terms oR the CSS
solution withn=2, the extended solution for=2 and the
CSS solution with=4. TheO(A) corrections seem to im-
prove the agreement of the=2 critical solution with the

notF(_jep”end on the p?ramet&r id that @ numerical results. This conclusion is strengthened by Fig. 2,
__rinally, we present some evidence tha _éA) COIeC-  \where we plot the mass aspect in termdRof
tions improve the agreement with the numerical simulations

of near-critical collapse. Following R€f3], we introduce the

The apparent horizon, which exists only fec,<0, is
spacelike for small positivg and becomes nullu=u) for
y=0. The numerical solution of Eq29) shows that on the
apparent horizomw is everywhere bounded hy,. This con-
firms a posteriorithat the» contribution to Eq(29) can be
neglected for smalk. The existence and the shape of the
apparent horizon, which hides the singulanity-v =0, do

. (2n—=1)/n
coordinates T,R 4
R Moy, To)=—Ar?+4e 27 ;5 ,=— Y 5
—y? (1+y)
T=-2nlnu, R=u2r= +Ae 2TF(y). (1-y?)2 4 (2n—1)/n
—aut [ (y)
(34 4\ ayp |
The expression of the extended Garfinkle scalar field at some (36)

fixed Ty is
for the same values @ andT,. However, it is clear that the
first-order extendeth=2 solution agrees with the numerics
only over a small range of,, as opposed to the=4 CSS
(35 solutions, which agree over a large range of intermediate

Dy, To)= —2cln(1;y) +Ae 2To(H(y)—H(1)),

044010-4
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0 T T T T
0.2
0.4F
FIG. 2. The mass aspebt as a function oR
= 061 for the n=2 CSS solution(solid), then=2 ex-
tended CSS solutiofdashed, and then=4 CSS
solution (dotted.
0.8f
-1 4
12 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5

times[3]. This suggests that the question of the agreemeranalysis is that, at this order, there seems to be a one-
between the analytical and numerical critical solutions is stillparameter family of critical solutions, rather than a single
an open problem. critical solution. This parameter is not connected with gauge
To conclude, our analysis shows that in the near-criticatransformationgthe gauge parameter is, which has been
regime the shape of the apparent horizon is determined by set to zerp. Rather, as will be discussed in more detail in
balance between th& ande contributions. This is evidence Ref. [8], the first-order terms linear i@ in Eq. (15), which
that the cosmological constant plays a role in black holesolve the homogeneous equatio@s—(6), can be reinter-
formation. We have also shown that the apparent contradigreted as zeroth-ordée= —2 perturbations. It follows that
tion between the results of R¢fL] and Ref[3] can partly be the extendedh=2 critical solution is unique modulo the ad-
solved by includingO(A) terms. Another result of our dition of a decaying perturbation.
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