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Column-Footing Connection Evaluation of Hollow-Core Composite Bridge Columns 
 
 

Mohanad M. Abdulazeez, Ahmed Gheni, Omar I. Abdelkarim, and Mohamed A. ElGawady 
 
 
 

Synopsis: This paper presents the seismic behavior of two large-scale hollow-core fiber-reinforced polymer-concrete- 
steel (HC-FCS) precast columns having two different footing connections. The precast HC-FCS column consists of a 
concrete shell sandwiched between an outer fiber-reinforced polymer (FRP) tube and an inner steel tube. The steel 
tube was embedded 635 mm (25 inches) into a reinforced concrete footing, while the outer FRP tube confined the 
concrete shell only i.e. it was truncated at the top surface of the footing. One connection included embedding the steel 
tube into the footing. The other one included using a corrugated steel pipe (CSP) embedded into the concrete footing 
outside the steel tube to achieve better confinement. This study showed that the connection including the CSP is 
deemed satisfactory and was able to develop the plastic flexural capacity of the HC-FCS column providing good 
ductility and energy dissipation compared with the other connection type. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Keywords: Column-Footing Connection, Precast Columns, Composite Columns, Fiber Reinforced Polymer (FRP), 
Corrugated Steel Pipe, Seismic Loading, Hollow Core. 
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INTRODUCTION 

 
The most common type of bridge column construction in the United States is cast-in-place (CIP). However, CIP 
requires long on-site construction time, labor-intensive resources, and long-term closure, which may result in traffic 
congestion [1]. Therefore, there is currently a momentum for developing accelerated bridge construction (ABC) 
methods to address these challenges. ABC reduces traffic disruptions and life-cycle costs and improves construction 
quality and safety, resulting in more sustainable development [2]. One technique to accelerate bridge construction is 
to use precast bridge columns. Several regions around the world are susceptible to earthquakes. Hence, the developed 
precast column component needs to display good seismic performance. 

 
A good candidate for precast columns is concrete-filled tube, which consists of a hollow tube made out of steel or 
fiber-reinforced polymer filled with concrete. Another candidate for precast columns is the hollow-core steel-concrete- 
steel (HC-SCS) columns consisting of two generally concentric tubes with concrete shell between them [3-10]. The 
inner tube is empty, i.e., unfilled with concrete, to reduce the weight of the column. HC-SCS columns can also be 
cast-in-place, with the outer and inner tubes acting as stay-in-place formwork. The concrete infill is confined by both 
tubes, resulting in high concrete confinement and column ductility [10]. All of the research mentioned showed the 
superior seismic and axial capacity of HC-SCS columns. Recently, Teng et al. (2004) replaced the outer tube in the 
HC-SCS column with fiber reinforced polymer (FRP) tube creating HC-FCS column. FRP tube has higher strength- 
to-weight ratio compared to that of the steel tube. Furthermore, FRP is more corrosion resistance compared with steel. 
The performance of HC-FCS columns under axial, axial-flexural, and vehicle impact were investigated and showed 
superior performance compared to conventional reinforced concrete columns [4, 9, 11-19] 

 
Several regions around the world are susceptible to earth-quakes where large ductility demands are imposed on bridge 
columns. The design and the construction of a column-footing connection is crucial for precast columns to meet the 
ductility demands. The connection must be effective to develop the ultimate strength and displacement of the column 
without significant slip; the connection needs also to be simple and economic to be used for ABC. Different types of 
connections that were proposed in the literature for concrete filled steel tube (CFST) columns, including welded and 
bolted steel plate, embeded base and rebars, and embeded structural steel connections were used for precast column- 
footing connections [20-23]. These solutions were either insufficient or slowed the construction. 

 
Simple socket connections were also developed in the past for CFST [24]. For cast-in-place footing, a precast column 
is inserted into the steel cage footing; then, the footing is cast. In the case of a precast footing, the concrete footing is 
cast first with a socket of a larger diameter than the column’s diameter and the required embedment length; then, the 
column is inserted into the socket, followed by grouting the gap between the column and sides of the socket. 
Experimental investigations have revealed that socket connections of this type have three distinct potential failure 
modes depending on the embedment length [25-27]. Pullout failure occurs when the embedment length is not 
sufficient. Punching shear failure occurs with a shallow footing depth below the CFST column. Otherwise, the 
connection may develop the full strength and displacement capacity of the column with sufficient embedment length; 
hence, the failure occurs in the column. 
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Recently, Abdelkarim et al. [15] tested a 0.4-scale HC-FCS column, F4-24-E344, under constant axial load and lateral 
cyclic load. The column reached a drift of 11.6 %. The test was terminated due to pull out failure of the footing without 
visual damage to the column. More details about that test will be given later in this paper. 

 
RESEARCH SIGNIFICANCE 

 
The current study aims at improving the column-footing connection. In particular, the main objectives of this study 
are to investigate: (1) the performance of socket connection having an embedded corrugated steel pipe (CSP) into the 
footing for precast columns; (2) whether embedded corrugated steel pipe (CSP) into the footing will compensate for 
the insufficient embedment length of the steel tube. 

 
EXPERIMENTAL PROGRAM 

 
In this study, the column F4-24-E344 originally tested by Abdelkarim et al. [15] was inserted into a newly constructed 
footing including a CSP to form column F4-24-E344-RS (Fig. 1) and was retested under constant axial load and 
lateral cyclic load similar to those used by Abdelkarim et al. [15]. F4-24-E344-RS column had a circular cross-section 
with an outer diameter of 610 mm (24 inches) and a clear height of 2,032 mm (80 inches) [Fig. 1 (c)]. The lateral load 
was applied at a height of 2413 mm (95 inches) with a shear span-to-depth ratio of approximately 4.0. The column 
consisted of an outer filament-wound glass fiber (GFRP) tube with a thickness of 9.5 mm (0.375 inch) and an inner 
steel tube having an outer diameter of 406 mm (16 inches) and a thickness of 12.7 mm (0.50 inch). A concrete shell 
having a thickness of 102 mm (4 inches) was used between the steel and FRP tubes. F4-24-E344-RS had an 
embedment steel tube length of 635 mm (25 inches) corresponding to 1.6 Di. 

 
The columns’ label used in their experimental work consisted of three segments. The first segment is the letter F, 
referring to flexural testing followed by the column’s height-to-outer diameter ratio of 4. The second segment refers 
to the column’s outer diameter (Do). The third segment refers to the glass fiber (GFRP) matrix, the steel, and the 
concrete shell, where E has been used for resin type epoxy; this is followed by the GFRP thickness in 3.175 mm (1/8 
inch), steel thickness in 3.175 mm (1/8 inch), and concrete wall thickness in 25.4 mm (1 inch). The last letters “RS” 
refer to recess connection using CSP that was implemented in this column. 

 
To determine the diameter and depth of the embedded CSP, Abdelkarim et al. [15] carried out finite element analysis 
FEA study and following earlier work on CFST to derive equation (1) 

 
𝐷𝐷𝐷𝐷𝑖𝑖𝑖𝑖 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠𝐹𝐹𝐹𝐹𝑢𝑢𝑢𝑢 
2 ≤ 3.3�𝑓𝑓𝑓𝑓′ �𝑙𝑙𝑙𝑙 + 𝐷𝐷𝐷𝐷 𝑙𝑙𝑙𝑙  � 𝑐𝑐𝑐𝑐,𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑒𝑒𝑒𝑒 𝑜𝑜𝑜𝑜 𝑒𝑒𝑒𝑒 

(1) 

 
where Di is the steel tube outer diameter (inch), ts is the steel tube thickness (inch), Fu is the ultimate stress of steel 
tube (ksi), Do is the outer diameter of an annual ring welded with the bottom of steel tube or the outer diameter of the 
corrugated steel pipe (inch), le  is the development length (inch), and 𝑓𝑓𝑓𝑓′      is the unconfined cylindrical compressive 
strength of the concrete footing (ksi). 

 
The concrete footing that was used in this study had a length x width x depth of 1,524 mm x 1,220 mm x 864 mm (60 
inches x 48 inches x 34 inches) with bottom reinforcements of 7#8, top reinforcements of 6#8, and shear reinforcement 
of #4 bar at 63.5 mm (2.5 inches) which is similar to the footing used by Abdelkarim et al. [15]. The steel cage of the 
footing was installed into the formwork. A 914 mm (36 inches) outer diameter (Dcsp) corrugated steel pipe (CSP) 
having a height of 635 mm (25 inches) and thickness of 4 mm (0.16 inch) was placed inside the footing. The diameter 
of the CSP was determined using equation (1). The CSP was embedded with its full height of 635 mm (25 inches), 
similar to the inner steel tube embedded length, into the footing. Then, four small spots were cut atop of the CSP, 
allowing the top layer of footing reinforcement bars to sit on the top of the CSP. To this end, it would be possible to 
cast the footing, insert the column, and pour grout in-between the 914 mm (36 inches) diameter CSP and the 406 mm 
(16 inches) diameter inner steel tube of the column. However, this would require a significant amount of grout. To 
avoid this large amount of grout, a temporary 508 mm (20 inches) diameter CSP was placed into the footing inside 
the main CSP before casting the footing [Fig. 1 (b)]. 
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Once the CSPs were installed, the footing was cast including the space between the two CSP’s [Fig. 1 (d)]. After one 
day, the temporary CSP was removed, leaving a corrugated concrete surface [Fig. 1 (e)]. For field implementation, 
both CSPs would be kept in place. However, during, the current work the inner CSP was removed as it was used for 
other projects. Fourteen days after casting the footing, the column was erected with an embedment length of 635 mm 
(25 inches). The 50.8 mm (2 inches) left between the corrugated concrete surface and the column inner steel tube 
surface was filled with high-strength flowable grout. One inlet pipe and two outlet pipes were used in order to ensure 
filling all the space around the column inside the footing [Fig. 1 (e)]. 

 
Grout was placed using a 38.1 (1.5 inch) clear flex PVC pipe and funnel, located 3,048 mm (10 ft high) above the 
level of the footing top surface, using the gravity pipe method. The grout was continuously placed through the funnel 
until it came out of the outlet pipes in order to ensure complete filling of the gap between the column inner steel pipe 
and the surrounding concrete surface. The final F4-24-E344-RS column layout is shown in [Fig. 1 (b)]. 

 
The mechanical properties of the steel tube and rebar are summarized in Table 1. The rebar properties are based on 
the manufacturer’s data sheet while the steel tube properties were determined through tensile steel-coupon testing 
according to ASTM A 1067. The concrete and grout mix designs are shown in Tables 2 and 3, respectively. Pea gravel 
with maximum aggregate size of 9.5 mm (3/8 inch) was used for concrete mixtures. Table 4 summarizes the 
unconfined concrete strength for the footing, column, and the high strength grout. The material properties of the GFRP 
tube are presented in Table 5. 

 
 

Table 1 — Steel properties of the rebars and steel tubes 
 

 Elastic modulus 
[GPa (ksi)] 

Yield stress 
[MPa (ksi)] 

Ultimate stress 
[MPa (ksi)] 

Ultimate strain 
ɛu, [mm/mm (in/in)] 

Steel rebar 200 (29,000) 413 (60) 620 (90) 0.08 
Steel tube 200 (29,000) 324 (47) 483 (70) 0.19 

 
 

Table 2 — Concrete mixture proportions 
 

 
w/c Cement 

[kg/m3 (lb/yd3)] 
Fly Ash 

[kg/m3 (lb/yd3)] 
Water 

[kg/m3 (lb/yd3)] 
Fine Aggregate 
[kg/m3 (lb/yd3)] 

Coarse 
Aggregate 

[kg/m3 (lb/yd3)] 
0.5 350 (590) 101 (170) 225 (380) 848 (1,430) 848 (1,430) 

 
 

Table 3 — High strength grout mixture proportions 
 

 
w/c 

Cement Type 
III [kg/m3 

(lb/yd3)] 

Silica 
Fume 
[kg/m3 

(lb/yd3)] 

Water 
[kg/m3 

(lb/yd3)] 

Fine 
Aggregate 

[kg/m3 

(lb/yd3)] 

Masonry 
Sand [kg/m3 

(lb/yd3)] 

 
HRWR [kg/m3 

(lb/yd3)] 

0.21 1074 (1809) 72 (121) 244 (412) 727 (1225) 318 (536) 82 (139) 
 
 

Table 4 — Unconfined concrete strength of the columns and the footings 
 

 F4-24-E344 [28] F4-24-E324-RS 
Column Footing Footing HS-Grout 

f’c at 28 days [MPa (ksi)] 40 (5.8) 56 (8.1) 55 (7.9) 64 (9.3) 
f’c (day of test) [MPa (ksi)] 54 (7.8) 59 (8.6) 56 (8.1) 66.5 (9.6) 
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Table 5 — FRP tubes properties 
 

Elastic modulus [GPa 
(ksi)] 

Hoop elastic Modulus 
[GPa (ksi)] 

Axial ultimate stress 
[MPa (ksi)] 

Hoop rupture stress 
[MPa (ksi)] 

4.7 (677) 21 (3,020) 83 (12.15) 277 (40.15) 
 
 

(a) (b) 
 

(c) (d) (e) 

Figure 1— General arrangement of the column-footing connection for column F4-24-E344-RS: (a) without CSP 
[15], (b) construction sequence with CSP, (c) column cross-section, (d) after pouring of the concrete footing, (e) 

after removing the temporary CSP form 
 
 

EXPERIMENTAL SETUP AND INSTRUMENTATION 
 

Sixteen linear-variable-displacement-transducers (LVDT) and string potentiometers (SP) were used to measure 
displacement along column F4-24-E324-RS [Fig. 2 (a)]. Four LVDTs were mounted on each of the north and south 
faces for the vertical displacement measurements at the potential plastic hinge region. Two more LVDTs were used 
to measure the uplift and sliding of the footing during the test. 
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(a) (b)  (c) 

  HD Webcam  

  
 
 
 
 
 
 
 
 

(d) 

  

Figure 2 — Instrumentation layout of the tested column F4-24-E344-RS (a) LVDTs installation; (b) Strain gauges 
mounted on GFRP tube 127 mm (5 inches) apart; (c) Strain gauges mounted on Steel tube 127 mm (5 inches) apart; 

and (d) Webcam directed downward inside the steel tube before erecting the column 
 
 

Forty strain gauges were installed on the FRP tube at five levels with 127 mm (5 inches) spacing. Four horizontal and 
four vertical strain gauges were installed at each level [Fig. 3 (b)]. Fifty-six strain gauges were installed inside the 
steel tube at seven levels with spacing of 127 mm (5 inches) [Figs. 3 (c) and (d)]. Four horizontal and four vertical 
strain gauges were installed at each level. A high definition webcam was hung inside the steel tube vertically at 635 
mm (25 inches) from the top of the footing level to broadcast buckling of the steel tube and any internal damage [Fig. 
3 (d)]. 
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LOADING PROTOCOL AND TEST SETUP 
 

The axial load capacity Po of an equivalent RC-column with the same diameter 610 mm (24 inches) and 1% 
longitudinal reinforcement ratio was calculated using equation (2) [32]: 

 
 

𝑃𝑃𝑃𝑃𝑜𝑜𝑜𝑜  = 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠  𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦  +  0.85 (𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐  − 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠) 𝑓𝑓𝑓𝑓 ′𝑐𝑐𝑐𝑐 (2) 

where 𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠 = the cross-sectional area of the longitudinal steel reinforcements, 𝐴𝐴𝐴𝐴𝑐𝑐𝑐𝑐 = the cross sectional area of the 
concrete column, 𝐹𝐹𝐹𝐹𝑦𝑦𝑦𝑦   = the yield stress of the longitudinal steel reinforcement, and 𝑓𝑓𝑓𝑓′𝑐𝑐𝑐𝑐  = the cylindrical concrete’s 
unconfined compressive stress. 

 

(a)  

 
 
 
 
 
 

(b) 

 
 
 
 
 
 

(c) 
 

Figure 3 — (a) Layout of the test setup (b) Lateral displacement loading regime; and 
(c) 3D view 

 
Constant axial load, P, of 489.3 kN (110 kips) corresponding to 5% of the calculated Po was applied to the column 
using three external prestressing strands on each of the west and east sides of the column [Fig. 3 (a)]. The axial load 
represented 5% of the nominal axial capacity (Po) of a conventional solid RC column of the same outer diameter in 
compression as the investigated columns with 1% of longitudinal reinforcement. The prestressing force was applied 
using two servo-controlled jacks to keep the prestressing force constant during the test. The prestressing strands were 
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supported by a rigid steel beam atop the column and the column’s footing. After applying the axial load, static cyclic 
lateral load was applied in a displacement control using two hydraulic actuators connected to the column loading stub 
[Fig. 3 (a)]. The loading regime is based on the recommendations of FEMA 2007. Two cycles were performed for 
each displacement amplitude. Figure 3 (b) shows the loading regime of the cyclic lateral displacement. 

 
RESULTS AND DISCUSSIONS 

 
Abdelkarim et al. [15] investigated two columns, namely F4-24-E324 and F4-24-E344. Each column had a socket 
connection with an embedment length of 635 mm (25 inches) corresponding to 1.6 Di. Two distinct modes of failure 
occurred for the same steel tube diameter and embedment length, depending on the steel tube thickness. For column 
F4-24-E324 with a relatively thin steel tube of 6.35 mm (0.25 inch), the socket connection was able to develop the 
full capacity of the column and the steel tube yielded with no pinching in the hysteretic curve [Fig. 4 (a)]. The column’s 
footing did not suffer any significant visual damage. For column F4-24-E344 with a retaively thick steel tube of 12.7 
mm (0.5 inch), the socket connection was not able to develop the full capcity of the column and pullout failure occurred 
with severe pinching in the hysteretic curves. The column’s footing suffered severe damage due to the pullout as well. 

 

(a) (b) 
 

Figure 4— Moment vs. lateral drift for column: (a) F4-24-E324 [15] , and (b) F4-24-E344 [15] 
 

During this study, the column F4-24-E344 was inserted into a newly constructed footing including the CSP to form 
column F4-24-E344-RS and was retested. The moment versus lateral drift plot of column F4-24-E344-RS is shown 
in Figure 5. The lateral drift (𝛿𝛿𝛿𝛿) was calculated by dividing the lateral displacement measured from the actuators’ 
displacement transducers by the shear span of 2,413 mm (95 inches). The moment at the base of the column was 
obtained by multiplying the force measured by the actuators’ loading cells by the column’s shear span. Figure 5 and 
Table 6 show that using CSP significantly improved the performance of F4-24-E344-RS by displaying 10% higher 
flexural strength and 20% higher lateral drift compared to column F4-24-E344.The average moment capacity of the 
column was 1,310 kN.m (966 kip.ft) which occurred at a lateral drift of 10.7%. Gradual stiffness degradation occurred 
beyond that until the end of the test. Figure 6 shows steel tube buckling captured through the camera inside the steel 
tube at different lateral drifts. At a lateral drift of 14.5%, the FRP ruptured at the south direction (Fig. 7). Cycling 
continued toward the north direction untill a lateral drift of 15.1% when the test was stopped because the actuator had 
reached its displacement capacity limit. 

 
Figure 5 (b) illustrates a comparison between the cyclic response of the two columns F4-24-E344-RS and F4-24-E344. 
As shown in the figure, the prevention of the pullout failure resulted in fat hysteretic loops resulting in high energy 
dissipation, which is an essential characteristic for seismic applications.The existence of CSP controlled the splitting 
“zipping” cracking mechanism and dilation of the concrete in the footing, and hence reduced concrete cracking 
delaying the pullout of the column. Hence, the CSP plays a role of confinement in the footing. 

 
Figures [5 (c) and (d)] shows the backbone curves of the two columns. Also, shown on the figures are the idealized 
elasto-plastic curves developed following [29]. The idealized curves were used to calculate the displacement ductility 
of the columns. As shown in the figure, the columns reached displacement ductility values of 6.80 and 7.20 for 
columns F4-24-E344 [15] and F4-24-E344-RS, respectively. Both values exceed the maximum anticipated 
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displacement ductility demand of 5 imposed by AASHTO Guide Specifications for LRFD Seismic Bridge Design on 
single bridge column bent [31]. It also exceeds the minimum requirements displacement ductility of 3 imposed by 
Caltrans [30]. 

 

(a) (b) 
 

(c) (d) 
 

Figure 5 — Moment vs. lateral drift (a) for column F4-24-E344-RS; (b) for columns F4-24-E344-RS and F4-24- 
E344 [15]; (c) Idealized elasto-plastic curve for column F4-24-E344-RS; and (d) Idealized elasto-plastic curve for 

column F4-24-E344 [15] 
 

(a) (b) 
 

Figure 6 — Local buckling of the steel tube of the column F4-24-E344-RS at lateral drifts of (a) 11.3%, and (b)14% 
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Figure 7— FRP rupture of the column F4-24-E344-RS at a lateral drift of 14.5% 
 

Using CSP was able to superseeded severe damage to the footing og column F4-24-E344-RS. Figure 8 shows a 
comparison between column F4-24-E344-RS and column F4-24-E344 [15] footings. The footing of column F4-24- 
E344-RS displayed cracks having widths ranging from 0.15 to 0.20 mm (0.006 to 0.008 inch) which is within the ACI 
224R-01 limits for a structure in contact with soil. However, the footing of column F4-24-E344 [15] suffered severe 
damage due to pullout indicating that the existence of the CSP-precluded pullout failure, crack propagation, and 
footing damage. 

 
Figure 9 illustrates the cumulative energy dissipation-lateral drift relation for the columns F4-24-E344 [15] and F4- 
24-E344-RS. The energy dissipation at each lateral drift was determined as the area enclosed in the hysteretic loop of 
the first cycle at this drift level. Dissipating greater hysteretic energy increases the ability of a structure to sustain 
higher magnitude earthquakes and is an essential characteristic for seismic applications. As shown in the figure, both 
columns had almost the same energy dissipation until lateral drift of approximately 5%. Beyond this drift, column F4- 
24-E344 [15] displayed severe pinching and limited energy dissipation due to the steel tube pullout. At a drift of 11.6% 
when the column F4-24-E344 [15] failed, column F4-24-E344-RS dissipated 64% greater energy. Furthermore, 
column F4-24-E344-RS was able to sustain the applied cyclic loads until a drift of 14.5%. At failure, column F4-24- 
E344-RS dissipated 270% greater energy than column F4-24-E344 [15], indicating better seismic performance. 

 
 

(a) (b) 
Figure 8 — Footing (a) Hairline cracks in the footing of column F4-24-E344-RS at lateral drift 14.5%, and (b) 

severe damage in the footing of column F4-24-E344 [15] at lateral drift 11.6% 
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Figure 9 — Cumulative energy dissipation vs. lateral drift for columns F4-24-E344-RS and 
F4-24 E344 [15] 

 
Table 6— Summary of the results of both HC-FCS column 

 

Tested Column Moment capacity 
[kN.m (kip. ft.)] 

Lateral drift at 
failure (%) Mode of failure 

F4-24-E344 [15] 1,186 (875) 11.6% Sever pullout and Footing crushing 

F4-24-E344-RS 1,310 (966) 14.5% Steel tube local buckling, concrete shell 
crushing, and FRP rupture 

 
 

FLEXURAL STRENGTH OF HC-FCS COLUMNS 
 

The flexural strength of HC-FCS columns can be calculated used Bernoulli–Navier’s assumptions assuming elasto- 
plastic model for the steel and linear elastic model for the FRP. The confinement model developed in [29] was used 
for concrete shell in the column. The analytical model is described below in the manuscript. Using this approach, the 
strengths of the columns were calculated as 1,424 kN.m (1,050 kip.ft) for columns F4-24-E344 and F4-24-E344-RS, 
respectively. Hence, as shown in Figure (5 (b)), the model underestimated the flexural strength by 17% and 10.7% 
for columns F4-24-E344 and F4-24-E344-RS, respectively. The underestimation is much higher for column F4-24- 
E344 due to the early slippage that took place early during testing. While it was found to be less for column F4-24- 
E344 equal to 10.7% due to the existence of the CSP which reduced the slip of the steel tube out of the footing and 
thereby higher flexural capacity was achieved. 

 
The following analytical model was used to predict the strength of the tested column [15]. 

1- Compute the sectors’ polar angles (𝜃𝜃𝜃𝜃1, 𝜃𝜃𝜃𝜃2& 𝜃𝜃𝜃𝜃3) 
𝛼𝛼𝛼𝛼1 𝛼𝛼𝛼𝛼2 𝛼𝛼𝛼𝛼3 

𝜃𝜃𝜃𝜃1  = (𝑛𝑛𝑛𝑛)  , 𝜃𝜃𝜃𝜃2  = (𝑛𝑛𝑛𝑛) & 𝜃𝜃𝜃𝜃3  = (𝑛𝑛𝑛𝑛) 
(3) 

where n is the number of strip segments = 100 in this study 
2- Compute the strain in each strip segment 

3- Compute the force of the whole concrete compression segment as if there is no void 

4-    Compute the concrete stress 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐1𝑛𝑛𝑛𝑛  using Yu et al. (2006) model (Fig. 10) 
5- Compute the strain in each virtual strip segment inside the void as if there is a concrete infill 

𝜃𝜃𝜃𝜃1 𝑐𝑐𝑐𝑐−𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜 (1−𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼1𝑛𝑛𝑛𝑛+     �) 𝜀𝜀𝜀𝜀𝑐𝑐𝑐𝑐1𝑛𝑛𝑛𝑛  =   2        𝜀𝜀𝜀𝜀𝑐𝑐𝑐𝑐 
𝑐𝑐𝑐𝑐 

(4) 

 
𝐶𝐶𝐶𝐶 = 4 𝑅𝑅𝑅𝑅2 ∫𝛼𝛼𝛼𝛼1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛2 �𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃1�  sin �𝜃𝜃𝜃𝜃1� ∗ 𝜎𝜎𝜎𝜎 

𝐶𝐶𝐶𝐶1 𝑂𝑂𝑂𝑂    0 1𝑛𝑛𝑛𝑛 2 2 𝑐𝑐𝑐𝑐1𝑛𝑛𝑛𝑛 
(5) 

 



39.12  

ElGawady et al. 
 
 

𝜃𝜃𝜃𝜃2 

𝜀𝜀𝜀𝜀 = 
𝑐𝑐𝑐𝑐  −(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜−𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼2𝑛𝑛𝑛𝑛+     �) 

𝜀𝜀𝜀𝜀
 2  

𝑐𝑐𝑐𝑐2𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 (6) 

6- Compute the force of the virtual strip segment inside the void 
𝐶𝐶𝐶𝐶 = 4 𝑅𝑅𝑅𝑅2 ∫𝛼𝛼𝛼𝛼2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛2 �𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃2�  sin �𝜃𝜃𝜃𝜃2� ∗ 𝜎𝜎𝜎𝜎 

𝐶𝐶𝐶𝐶2 𝑖𝑖𝑖𝑖     0 2𝑛𝑛𝑛𝑛 2 2 𝑐𝑐𝑐𝑐2𝑛𝑛𝑛𝑛 (7) 
7- Compute the concrete stress 𝜎𝜎𝜎𝜎𝑐𝑐𝑐𝑐2𝑛𝑛𝑛𝑛  using Yu et al. (2006) model (Fig. 10) 
8- Subtract 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶2  from 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶1  to get the actual compression force in the concrete shell (𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ) 
𝐶𝐶𝐶𝐶   = 4 (𝑅𝑅𝑅𝑅2 ∫𝛼𝛼𝛼𝛼1 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛2 �𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃1�  sin �𝜃𝜃𝜃𝜃1� ∗ 𝜎𝜎𝜎𝜎 − 𝑅𝑅𝑅𝑅2 ∫𝛼𝛼𝛼𝛼2 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛2 �𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃2�  sin �𝜃𝜃𝜃𝜃2� ∗ 𝜎𝜎𝜎𝜎 ) 
𝐶𝐶𝐶𝐶 𝑂𝑂𝑂𝑂   0 1𝑛𝑛𝑛𝑛 2 2 𝑐𝑐𝑐𝑐1𝑛𝑛𝑛𝑛 𝑖𝑖𝑖𝑖     0 2𝑛𝑛𝑛𝑛 2 2 𝑐𝑐𝑐𝑐2𝑛𝑛𝑛𝑛 (8) 

9- Compute the compressive force of each segment of steel tube 
𝜃𝜃𝜃𝜃2 

𝐶𝐶𝐶𝐶 = 2 ∫𝛼𝛼𝛼𝛼2 𝑡𝑡𝑡𝑡   ∗ 𝑅𝑅𝑅𝑅  ∗  𝜃𝜃𝜃𝜃   2  ∗ 
𝑐𝑐𝑐𝑐  −(𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜−𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑜𝑜𝑜𝑜𝑠𝑠𝑠𝑠�𝛼𝛼𝛼𝛼2𝑛𝑛𝑛𝑛+     �) 

𝜀𝜀𝜀𝜀   ∗ 𝐸𝐸𝐸𝐸
 2  

𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛 0 𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠 
(9) 

where 𝑡𝑡𝑡𝑡𝑠𝑠𝑠𝑠 and 𝐸𝐸𝐸𝐸𝑠𝑠𝑠𝑠 are the thickness and the Young’s modulus of the steel tube 
10- Compute the tensile force of each segment of steel tube 

𝛼𝛼𝛼𝛼3 𝜃𝜃𝜃𝜃 (𝑅𝑅𝑅𝑅   − 𝑐𝑐𝑐𝑐) + 𝑅𝑅𝑅𝑅  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �𝛼𝛼𝛼𝛼 + 𝜃𝜃𝜃𝜃3�) 
𝑇𝑇𝑇𝑇 = 2 � 𝑡𝑡𝑡𝑡   ∗ 𝑅𝑅𝑅𝑅   ∗  3 ∗ 

𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 3𝑛𝑛𝑛𝑛 2 𝜀𝜀𝜀𝜀 ∗ 𝐸𝐸𝐸𝐸 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛 𝑠𝑠𝑠𝑠 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐 𝑠𝑠𝑠𝑠 

0 

 
(10) 

11- After attending the force equilibrium (𝛴𝛴𝛴𝛴𝐹𝐹𝐹𝐹𝑥𝑥𝑥𝑥 = 0), compute the bending moment 
𝛼𝛼𝛼𝛼1 𝜃𝜃𝜃𝜃1 

𝛼𝛼𝛼𝛼2 𝜃𝜃𝜃𝜃2 
𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑥𝑥𝑥𝑥𝑠𝑠𝑠𝑠.  = � 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐1𝑛𝑛𝑛𝑛  ∗ 𝑅𝑅𝑅𝑅𝑜𝑜𝑜𝑜  ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �𝛼𝛼𝛼𝛼1𝑛𝑛𝑛𝑛  +  2 � − � 𝐶𝐶𝐶𝐶𝑐𝑐𝑐𝑐2𝑛𝑛𝑛𝑛  ∗ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  ∗  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �𝛼𝛼𝛼𝛼2𝑛𝑛𝑛𝑛  +  2 � 

0 0 
𝛼𝛼𝛼𝛼2 𝜃𝜃𝜃𝜃2 

𝛼𝛼𝛼𝛼3 𝜃𝜃𝜃𝜃3 

+ � 𝐶𝐶𝐶𝐶𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛  ∗ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  ∗  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �𝛼𝛼𝛼𝛼2𝑛𝑛𝑛𝑛  +  2 � +  � 𝑇𝑇𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑛𝑛𝑛𝑛  ∗ 𝑅𝑅𝑅𝑅𝑖𝑖𝑖𝑖  ∗ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑠𝑠 �𝛼𝛼𝛼𝛼3𝑛𝑛𝑛𝑛  +  2 � 
0 0 

 
(11) 

 
 
 
 
 
 
 
 
 
 
 

Figure 10 — Cross-sectional analysis 
 
 

CONCLUSION 
 

This paper presents the experimental results of hollow-core fiber-reinforced polymer concrete steel (HC-FCS) precast 
column. The precast HC-FCS column consists of a concrete shell sandwiched between an outer fiber-reinforced 
polymer (FRP) tube and an inner steel tube. The column had an outer diameter of 610 mm (24 inches) while the steel 
tube had a diameter of 406 mm (16 inches). The shear span-to-depth ratio of the column was 4.0. The steel tube of the 
column was embedded into a reinforced concrete footing with an embedded length of 1.6 times the steel tube diameter, 
while the FRP tube was truncated at the top surface of the footing face, i.e., the FRP tube confined the concrete shell 
only. The column had a steel tube embedment length of 635 mm (25 inches) into the footing. The column was 
originally tested under constant axial load and lateral cyclic load. Due to the insuffecient embeddment length, pullout 
failure and footing damage was observed. In the current study, the column was inserted into a newly constructed 
footing using the same embbedment length but with a corrugated steel pipe (CSP) that was inserted into the footing 
to improve the pullout performance of the column. 

 
The column with CSP did not suffer severe visual damage into the footing. Furthermore, the column displayed lateral 
drift of 14.5% in the pushing direction and the test was terminated due to FRP rupture while it was terminated at the 
pulling direction due to the actuator reached its ultimate displacement without any visual damage to the column. The 
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original column without CSP displayed a lateral drift of 11.6% and the test was terminated due to the steel tube pullout 
failure. 
Using the CSP into the footing was able to trigger the plastic capacity of the column with yielding of the steel tube. 
The flexural beam theory underpredicted the flexural strengths of the test specimens by 17% and 10.7% for columns 
without and with the CSP , respectively. 
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