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a b s t r a c t

As the drilling environment became more challenging nowadays, managing equivalent circulating den-
sity (ECD) is a key factor to minimize non-productive time (NPT) due to many drilling obstacles such
as stuck pipe, formation fracturing, and lost circulation. The goal of this work was to predict ECD prior
to drilling by using artificial neural network (ANN). Once ECD is recognized, the crucial drilling variables
impact ECD can be modified to control ECD within the acceptable ranges. Data from over 2000 wells col-
lected worldwide were used in this study to create an ANN to predict ECD prior to drilling. Into training,
validation, and testing sets, the data were splitted. 70% of the data utilized for training, the other part
used for validation and testing to avoid overfitting and create a generalized network that can perform
well on new data. Based on the mean square of error (MSE), a decision was made to have one hidden layer
with twelve neurons, this scenario was selected since it gave the lowest MSE among other scenarios.
Multiple training functions were tested to train the network, Bayesian regularization (BR) algorithm
was chosen from the other algorithms since it had the lowest MSE and the highest R-squared. After opti-
mizing the weights and biases, the results revealed that the created network has the ability to estimate
ECD with an overall R-squared of 0.982, which is very high. This result gives an indication that the created
network can predict ECD prior to drilling globally within a very small margin of error. Due to the avail-
ability of large historical data sets in the petroleum industry, the ANN can be used to make better future
decisions to minimize NPT and the cost of drilling.
� 2019 Egyptian Petroleum Research Institute. Production and hosting by Elsevier B.V. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

ECD management is one of the most important parameters for
having successful drilling, especially for drilling ultra-deep wells
which have a very narrow safe mud weight between the resevoir
pressure and the leak-off pressure. The pressure exerted by the
hydrostatic column resulting from the mud density, drilling fluid
rheological properties, and pump flow rates which will contribute
to the frictional pressure losses are the factors that affect ECD. It is
essential to comprehend the effect of each parameter affecting ECD
which will result in better management of ECD. Inadequate man-
agement of ECD can cause to many undisered issues like mud
losses, formation influx, sticking pipe, etc. which in turn will rasie
the total cost of the drilling processes.

A major challenge in the petroluem industry is the trouble of
losing the drilling mud in the thief zones, billions of dollars are
spent every year to stop and reduce this problem [1–7]. As the dril-
ling environment became more challenging nowadays, managing
equivalent circulation density (ECD) is a key factor to reduce
non-productive time (NPT) due to many drilling problems such
as pipe sticking, formation fracturing, and lost circulation. ECD
can be estimated while drilling using hydraulics; however, there
is no direct method to find ECD prior to drilling besides using
correlations.

As managing ECD is important, different methods on how to
manage ECD by means of predicting it based on different parame-
ters on simulation and with the experimental approaches. Differ-
ent scholars have been trying to navigate controllable parameters
on ECD. Using computational fluid dynamics (CFD), Vajargah
et al. [8] evaluated the effect of tool joints on ECD. Ahmed et al.
[9] did a study on mud type, mud density and pump flow with
the relationship with ECD. They created a semi-empirical model
to predict ECD that is applicable in narrow mud weight windows.
Vajargah et al. [10] developed an automated real-time ECD
management system. In addition, an advanced ECD management
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system was introduced by Rommetveit et al. [11] that utilized real-
time data. More recently, Elzenary et al. [12] created a model to
predict ECD while drilling by utilizing artificial neural network.
Their findings illustrated a decent matching among the predicted
and the actual data.

An artificial neural network (ANN) is a simulation of the biolog-
ical neural system. The biological neuron has a cell body, an axon,
and dendrites. The information enters into the cell body through
dendrites, then an output provides by the cell body goes through
the axon and then to another neuron in a way that the first neuron
becomes an input for the second neuron and so forth. Any ANN
consists of one input layer, one or many hidden layers, and one
output layer. The input and output layers are obviously for inputs
and outputs. The hidden layer is responsible for the extraction of
the features from the data [13].

Machine learning and data-driven solutions such as regression,
support vector machine, fuzzy logic, and neural networks have
been taking bigger footprints in the industry as they have the abil-
ity to solve complex problems. The application of ANNs have been
used in the oil and gas industry for drill bits’ selection and drill bit
diagnoses [14–17]. Dashevskiy et al. [18] used ANNs to model the
dynamic behavior of the non-linear, multi-inputs/outputs drilling
system. ANNs have been used to predict bed heights and formation
tops while drilling [19,20]. ANNs utilized to predict troubles during
the drilling process using a database on drilling parameters by Lind
& Kabirova [21]. Okpo et al. [22] used ANNs to predict wellbore
instability with a case history from the Niger Delta oil field in Nige-
ria. Lost circulation prediction prior to drilling is another applica-
tion of ANNs [23]. Also, ANNs used to estimate the rate of
penetration based on some input data [24]. Real-time drilling fluid
rheological properties have been estimated using ANNs based on
historical data as well as drilling hydraulics [25–29]. The applica-
tions of ANNs in the oil and gas industry were summarized by Alk-
inani et al. [30].

The objective of this work is to create an ANN to estimate ECD
prior to drilling using data of more than 2000 wells (over 100,000
data points) drilled worldwide. In addition, this paper will elimi-
nate the shortcoming in the literature by using huge data sets
and the model will be applicable globally since the data were col-
lected globally.

2. Creating the network

2.1. Data Collection, data Preprocessing, and input data selection

Data collection is the most time-consuming step of this work.
Key drilling parameters were collected from various sources
including daily drilling reports, technical reports, mud logging
reports, final drilling reports, case histories, and from the petro-
leum literature. Red dots in Fig. 1 show the location where data

gathered. Table 1 shows the range and standard deviation of the
data used in this study. Then, the data of each key drilling param-
eter were tested for outliers using box plots.

After finishing the data preprocessing step (identifying the out-
liers), the key drilling parameters that will be used as inputs for the
model should be chosen. Inputs can be chosen based on experi-
mental tests, modeling, simulation, sensitivity analysis, expert
opinion, statistical analysis and etc. The following inputs were cho-
sen based on two criteria which are statistical and sensitivity anal-
yses done by Al-Hameedi et al. [4,5], and experts’ opinions:

1. Mud weight (MW) in gm/cc
2. Yield point (Yp) in Ib/100ft2

3. Plastic viscosity (PV) in cp
4. Revolutions per minute (RPM)
5. Flow rate (Q) in L/min
6. Weight on bit (WOB) in Tons
7. Nozzles total flow area (TFA) in inch2

2.2. Data normalization

For neural networks, if the input or the output data are too
small, too large or non-normally distributed; thus, data scaling
should be conducted [31,32]. One method of normalizing data to
have values between �1 and 1 is shown in Eq. (1) [33]:

X
0
i ¼ 2

Xi � Xmin

Xmax � Xmin

� �
� 1 ð1Þ

where Xi is the original value of the parameter, X
0
i is the normalized

value of Xi, Xmax and Xmin are the maximum and the minimum val-
ues of Xi, respectively.

2.3. Dividing the data and feedforward backpropagation algorithm

Typically, data are divided into three sections; training, verifica-
tion, testing sets. The training data used to develop the ANNmodel,
the desired output is utilized to help the network adjust the
weights of each input. The error will backpropagate in the network
and adjust the weights until calibration is reached, this method is
called feedforward backpropagation algorithm. It should be noted
that the network should not be overtrained since the network will
lose its ability to generalize. Verification set (data not used to cre-
ate the network) is used to access the network generalization, and
to stop the training when generalization stops improving. Testing
set (also data not used to create the network) used to test the accu-
racy of the network after the training and the verification steps.
70% of the data were used for training, 15% used for verification,
and 15% for testing.

2.4. Choosing the transfer function

For any neural network, there are three layers; input layer that
is responsible for inputs, one or multiple hidden layers to extract

Fig. 1. Locations where Data Collected.

Table 1
Range and standard deviation of the data.

Parameter Minimum Maximum Standard Deviation

MW (gm/cc) 1.04 2.3 0.06
PV (cp) 6 23.0 3.39
Yp (Ib/100ft2) 11 30.0 4.33
Q (L/Min) 1232 3168.0 393.07
RPM 50 120.0 16.12
WOB (Ton) 4 21.0 3.35
Nozzles, TFA (inch2) 0.312 10.6 2.05
ECD (gm/cc) 1.06 2.5 0.06
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the information from the data, and output layer for outputs. Each
input will be assigned to weight (w), and each neuron will be
assigned to biases (b). The sum of the biases and input weights will
be an input for transfer function (f) [33].

The tan-sigmoid transfer function was chosen for the hidden
layer, and a linear transfer function was used for the outputs layer.
Using this combination will allow the network to capture the non-
linear relationship between the inputs and the outputs. The linear
transfer function was selected for the output layer since it is suit-
able for fitting problems (regression) [33].

2.5. Choosing the optimum number of hidden layers and number of
neurons

The optimum number of hidden layers, as well as the number of
neurons in the hidden layer, were chosen based on an iterative pro-
cess. A various number of hidden layers and number of neurons
were tested, the goal was to build a network that has the lowest
mean squared error (MSE) which is the average squared error
between the network estimate outputs (a) and the real output
(t). MSE can be calculated using Eq. (2) [33]:

MSE ¼ 1
N

XN
i¼1

ti � aið Þ2 ð2Þ

where N is the number of data points. Fig. 2 shows MSE with the
number of hidden layers in the network. The MSEs for all scenarios
are very small and not significantly different. Thus, for simplicity,
the decision was made to have one hidden layer in the network.
Fig. 3 shows MSE with the number of neurons in the hidden layer.
Once again, the MSEs for all scenarios are very small and not signif-
icantly different. Therefore, the decision was made to have 12 neu-
rons in the hidden layer. It is important to mention that the number
of hidden layers and the number of neurons in the hidden layer
should be chosen carefully since having multiple numbers of hidden
layers and many neurons may cause overfitting which makes the
network lose its generalization.

2.6. Examination of the training function

This is a very pivotal step in creating the network. There are
many algorithms available to choose from. Table 2 summarizes
the algorithms examined in this study (more information about
each algorithm can be found in Demuth et al. [33]). After testing
all algorithms, the lowest MSE with the highest R-squared
algorithm was chosen to train the network. R-squared can be
calculated using the following Equation:

R2 ¼ SSR
SST

¼
Pn

i¼1 byi � y
� �2Pn

i¼1 yi � yð Þ2
ð3Þ

where SSR is the regression sum of squares, SST is the total sum of
squares, byi is the predicted data point, y is the average mean of the
real data, and yi is the real data point.

3. Results and discussion

Figs. 4 and 5 show MSE and R-squared with the training algo-
rithms, respectively. The algorithm with the lowest MSE and the
highest R-squared should be chosen since it will give the best pre-
diction results. The LM and BR training algorithms are very close to
each other; however, the BR algorithm has a higher R-squared and
a lower MSE. Thus, the Bayesian regularization backpropagation
(BR) algorithm was chosen to train the network. The BR algorithm
is a modification of the LM algorithm that creates a good general-
ized network. The BR algorithm updates the weights and the biases
according to the LM algorithm optimization. The BR algorithm
minimizes the combination of weights and squared errors until
producing a network that generalizes well [33]. More details about
Bayesian regularization can be found at MacKay [34] and Foresee
and Hagan [35].

Fig. 6 shows the predicted and the real ECD for training (Fig. 6a),
testing (Fig. 6b), and for all data (Fig. 6c). The model has an R-
squared of 0.985 for training, 0.98 for testing, and 0.982 for the
overall data. This is a very high R-squared for real field data. How-
ever, the very high-quality data used in this study, good data pre-
processing and preparation, and carefully choosing the key drilling
parameters as inputs for the network contributed to this high R-
squared. Another argument can be made about having this high
R-squared is the network has been overfitted and it lost the gener-
alization ability. This argument is not valid since overfitting can
occur if multiple numbers of hidden layers and a large number of
neurons in the hidden layer were used and/or the network was
overtrained. Nevertheless, this network has a minimum number
of hidden layers which is one, twelve neurons in the hidden layerFig. 2. MSE vs. Number of Hidden Layers.

Fig. 3. MSE vs. Number of Neurons in the Hidden Layer.

Table 2
The algorithms examined in this study.

Algorithm Abbreviations

Resilient Backpropagation RP
Scaled Conjugate Gradient SCG
Fletcher-Powell Conjugate Gradient CGF
One Step Secant OSS
Levenberg-Marquardt LM
Polak-Ribiére Conjugate Gradient CGP
Quasi-Newton BFG
Conjugate Gradient with Powell/Beale Restarts CGB
Bayesian Regularization BR
Variable Learning Rate Backpropagation GDX
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which is typical, and the BR algorithm was used to create the
network which is the most powerful algorithm used for generaliza-
tion and avoiding overfitting.

In order to use the network to predict ECD prior to drilling,
normalized MW, PV, Yp, Q, RPM, WOB, and Nozzles TFA
can be imported to Eq. (4). Table 3 shows the coefficients used
for Eq. (4).

ECD ¼
XN

i¼1
w2i

2

1þ e
�2

PJ

j¼1
w1i;jxjþb1i

� � � 1

0
B@

1
CAþ b2

2
64

3
75 ð4Þ

where N is the number of neurons in the hidden layer which was
optimized to be twelve, w1 is the weight of the hidden layer, w2

is the weight of the output layer, b1 is the bias of the hidden layer,
b2 is the bias of the output layer, and x is the input variables. The j’s
are associated with the input variables such that j = 1 is MW, j = 2 is
PV, j = 3 is Yp, j = 4 is Q, j = 5 is RPM, j = 6 is WOB, and j = 7 is Nozzles
TFA.

The normalized values for MW, PV, Yp, Q, RPM, WOB, and Noz-
zles TFA can be calculated using the following Equations:

NormalizedMW ¼ 1:587302�MW � 2:650794 ð5Þ

NormalizedPV ¼ 0:11764706� PV � 1:70588235 ð6Þ

NormalizedYP ¼ 0:10526316� YP � 2:15789474 ð7Þ

NormalizedQ ¼ 0:00103306� Q � 2:27272727 ð8Þ

NormalizedRPM ¼ 0:02857143� RPM � 2:42857143 ð9Þ

NormalizedWOB ¼ 0:11764706�WOB� 1:47058824 ð10Þ

NormalizedNozzlesTFA ¼ 0:194401� NozzlesTFA� 1:060653 ð11Þ
Eq. (4) will give the normalized ECD, Eq. (12) can be used to get

the denormalized ECD:

DenormalizedECD ¼ 0:72� 1þ NormalizedECDð Þ þ 1:06 ð12Þ

Fig. 5. Training Algorithms vs. R-Squared.

Fig. 4. Training Algorithms vs. MSE.
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4. Conclusion

The following insights have been deduced from this research:

� This study eliminated the shortcoming in the previous studies
regarding ECD prediction prior to drilling. This study provided
a generalized network, which can be invested to assess ECD
before drilling anywhere in the world.

� The network developed in this study showed the ability to pre-
dict ECD with a very low error and a very high R-squared.

� The BR algorithm was chosen to train the network in this study
since it had the lowest MSE and the highest R-squared.

� The network generated in this work can be utilized to predict
ECD before drilling. In the same vein, the model can be used
in reverse to obtain a target ECD by setting the key drilling
parameters affecting ECD.

� Intelligent systems and machine learning have proven their
potential so solve complicated problems that cannot be solved
analytically. With the large data sets available in the petroluem
industry, machine learning can be used to optimize the drilling
operations and save time and money.
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