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A Human-Centered Power Conservation Framework Based
on Reverse Auction Theory and Machine Learning

ENRICO CASELLA, University of Wisconsin-Madison, Madison, Wisconsin, USA
SIMONE SILVESTRI, University of Kentucky, Lexington, Kentucky, USA
D. A. BAKER and SAJAL K. DAS, Missouri University of Science & Technology, Rolla, Missouri, USA

Extreme outside temperatures resulting from heat waves, winter storms, and similar weather-related events
trigger the Heating Ventilation and Air Conditioning (HVAC) systems, resulting in challenging, and potentially
catastrophic, peak loads. As a consequence, such extreme outside temperatures put a strain on power grids and
may thus lead to blackouts. To avoid the financial and personal repercussions of peak loads, demand response
and power conservation represent promising solutions. Despite numerous efforts, it has been shown that the
current state-of-the-art fails to consider (1) the complexity of human behavior when interacting with power
conservation systems and (2) realistic home-level power dynamics. As a consequence, this leads to approaches
that are (1) ineffective due to poor long-term user engagement and (2) too abstract to be used in real-world
settings. In this article, we propose an auction theory-based power conservation framework for HVAC designed
to address such individual human component through a three-fold approach: personalized preferences of power
conservation, models of realistic user behavior, and realistic home-level power dynamics. In our framework, the
System Operator sends Load Serving Entities (LSEs) the required power saving to tackle peak loads at the
residential distribution feeder. Each LSE then prompts its users to provide bids, i.e., personalized preferences of
thermostat temperature adjustments, along with corresponding financial compensations. We employmodels of
realistic user behavior by means of online surveys to gather user bids and evaluate user interaction with such
system. Realistic home-level power dynamics are implemented by our machine learning-based Power Saving
Predictions (PSP) algorithm, calculating the individual power savings in each user’s home resulting from
such bids. A machine learning-based PSPs algorithm is executed by the users’ Smart Energy Management
System (SEMS). PSP translates temperature adjustments into the corresponding power savings. Then, the
SEMS sends bids back to the LSE, which selects the auction winners through an optimization problem called
POwer Conservation Optimization (POCO). We prove that POCO is NP-hard, and thus provide two approaches
to solve this problem. One approach is an optimal pseudo-polynomial algorithm called DYnamic programming
Power Saving (DYPS), while the second is a heuristic polynomial time algorithm called Greedy Ranking
AllocatioN (GRAN). EnergyPlus, the high-fidelity and gold-standard energy simulator funded by the U.S.
Department of Energy, was used to validate our experiments, as well as to collect data to train PSP. We further
evaluate the results of the auctions across several scenarios, showing that, as expected, DYPS finds the optimal
solution, while GRAN outperforms recent state-of-the-art approaches.
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1 Introduction
Residential power consumption has increased significantly in the last years, due to factors such as
growing urbanization [37], and it is expected to be rising further as a consequence of economic
development and limited progress toward energy efficiency [52]. Besides, more and more frequent
weather events, such as winter storms [24] and heat waves [5], lead Heating Ventilation and Air
Conditioning (HVAC) systems to cause peak loads, due to the extreme outside temperatures [2].
These loads saturate the power grid capacity and are economically costly, due to the exponential
growth of the price–demand ratio [48], and may lead to even greater financial consequences when
they cause blackouts. As a matter of fact, in 2021, Texas witnessed a historical winter peak demand
record of 69, 150 MW [24], leading to customer bills of $5, 000 and a wholesale energy increase
of 17, 900% [14]. In addition, blackouts resulting from peak loads not only bring discomfort to
users, but they also represent a threat to the users’ health [42]. In fact, Texas peak demand record
registered a wide number of users left with no electricity in freezing temperatures [30].

Efforts to tackle peak loads have been actively investigated by the research and industry commu-
nities for several years. Early attempts include Price-Based Demand Response (PBDR) [56, 58],
according to which higher tariffs are set to discourage users from consuming power during periods
of high demand. However, since users do not keep up with, and often ignore, such dynamic tariffs,
this approach has been proved to be ineffective in the long term [4, 33]. To reduce the impact of
peak loads on the power grid, several countries, such as Iran [34], South Africa [45], and the United
States [5, 21], are focusing on alternative methodologies. For instance, some utility companies
urge users, through various communication and media outlets, to reduce their power consumption
when a peak load is expected [40]. Since users often do not comply with these requests, utility
companies resort to rotating outages to prevent large-scale blackouts. However, these outages often
last much longer than originally planned and cause great discomfort to the users [5]. Rotating
outages, as well as the recent extreme weather events and consequent blackouts, recently occurred
in Texas [24] and California [5] bear witness to the reality that peak loads remain a present is-
sue without a concrete solution. Moreover, this issue is rapidly worsening, since the number of
blackouts from weather-related events has grown exponentially since 2000, while blackouts from
non-weather-related events has stayed more or less constant since 1984 [31, 38].

The diffusion of Internet-of-Things (IoT) devices in power systems, such as smart thermostats
(e.g., Nest [25]), energy management systems, and the Advanced Metering Infrastructure [9, 10],
enables a wide range of approaches tomonitor power consumption and realize previously impossible
fine-grained energy management solutions. One of such solutions is power conservation, where
power consumption is reduced on the user side by changing the settings, shutting down, or
delaying the use of certain appliances. As a matter of fact, a recent study [1] has shown that
power conservation has the potential to greatly reduce peak loads, by temporarily reducing the
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Fig. 1. A schematic overview of the proposed framework.

power consumption by more than 50% on a global scale. Several studies [15, 44] have focused on
IoT-based power conservation techniques to address peak loads. Despite these numerous efforts,
many solutions lack effectiveness due to the unsuccessful long-term user engagement. In fact, these
solutions require users to excessively interact with both their devices and the utility company, thus
leading them to experience response fatigue, disengagement, and potentially even abandonment of
such systems [33, 47]. Hence, it is important to provide a more flexible program with personalized
preferences that prioritizes user well-being and achieves long-term engagement. As a consequence,
more recent efforts have focused on developing models of realistic user behavior [12, 20, 32] that
study user interaction of users with appliances and with the power conservation program. However,
such approaches often consider abstract appliances with oversimplified (constant) power profiles,
resulting in impractical power conservation strategies. Thus, to design accurate and well-targeted
power conservation programs, it has been shown that it is important to include realistic home-level
power dynamics [50] that consider easy-to-obtain information to support large-scale deployment.
In summary, a successful power conservation technique need to explicitly address the individuality
of user needs and behaviors. Such individuality consists of three main elements, namely,

(1) providing personalized preferences of power conservation,
(2) adopting models of realistic user behavior, and
(3) performing realistic home-level power dynamics.

To the best of our knowledge, our work is the first to design a comprehensive framework for
power conservation that addresses all these challenges simultaneously, while fulfilling the utility
company’s goal to perform power conservation, and thus reduce the peak load.

In this work, we design a comprehensive framework for power conservation that, to the best of
our knowledge, is the first to address the above-mentioned challenges. Specifically, as depicted in
Figure 1, we envision a System Operator (SO), which handles power generation and transmission
and monitors the load of the power grid. When a peak load is anticipated, the SO engages with Load
Serving Entities (LSEs) to perform bus-wise power conservation exploiting reverse auction theory.
Each LSE prompts their users to provide a set of personalized preferences, consisting of a set of HVAC
temperature adjustments along with the corresponding expected financial compensations. Such
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preferences are called bids, in auction terminology, and can be submitted automatically based on a
pre-defined profile. Since the power saving corresponding to a given temperature adjustment strictly
depends on the home-specific factors, we develop a machine learning-based model, called Power
Saving Prediction (PSP) that captures such home-level power dynamics. To enable large-scale
deployment, the PSP uses a black-box approach relying on easy-to-obtain information. Furthermore,
different from previous approaches, the PSP focuses on the prediction of HVAC power savings
during a transient state of the power trend due to short-term temperature adjustments.

Our proposed approach assumes that each user is equipped with a Smart Energy Management
System (SEMS) capable of monitoring the HVAC power consumption and executing a machine
learning prediction algorithm, such as PSP. Thus, the user SEMSs communicate bids and the
corresponding power savings to the LSE, which in turn exploits the reverse auction theory to
perform power conservation. The auction mechanism is composed by an optimization problem
named POwer Conservation Optimization (POCO) and a payment rule. POCO minimizes
the financial rewards that the utility company pays the users, thus intuitively minimizing their
discomfort, while guaranteeing the required power conservation. We prove that the mechanism is
truthful and individually rational. However, we also prove that POCO is NP-hard. Therefore, we
propose two truthful and individually rational approaches, namely, a DYnamic programming
Power Saving (DYPS) and a Greedy Ranking AllocatioN (GRAN) heuristic. DYPS is a pseudo-
polynomial algorithm that optimally solves POCO, while GRAN provides a heuristic solution in
polynomial time.

We carry out realistic experiments to evaluate the performance of our framework using data
collected from the high-fidelity energy simulator EnergyPlus. EnergyPlus is funded by the U.S.
Department of Energy [55], and tested according to the American Society of Heating, Refrig-
erating and Air-Conditioning Engineers (ASHRAE) Standard 140 methodology [54], thus
representing the gold standard of energy data simulations. Furthermore, our online survey shows
that 79% of participants are willing to join such a power conservation program, but it also re-
veals that bids are non-linear and highly variable. Results show that PSP is able to predict power
savings at different time frames with over 95% of samples within only a 5% error. Additionally,
our results demonstrate that DYPS finds the optimal solution, while GRAN is within 30% of
such solution. Conversely, recent state-of-the-art approaches are within 140% and 860% of the
optimal solution.

2 Related Work
Peak loads have been investigated for quite a long time. Early studies focused on techniques known
as PBDR [53], where fixed time-of-use tariffs [58] or real-time time-of-use tariffs [16] were intended
to set higher prices during peak load periods [4, 33] to discourage users to heavily consume power.
Due to PBDR’s poor engagement of users, who would simply not keep up with such dynamic
tariffs, Incentive-Based Demand Response (IBDR) has been proposed. IBDR involves users
by providing a financial reward in exchange of a certain adjustment in their power consumption.
Efforts in IBDR include curtailable load programs [18, 56] and direct load control [22]. However,
curtailable load programs do not represent a robust solution due to the fact that during a peak load
certain appliances may already be off or idle. On the other hand, while direct load control has the
potential to curtail loads, it is perceived as too invasive, hence resulting in low engagement and
high abandonment rate.

The need for better user engagement in end-user power conservation is a core element that has
come to light in the current state of the art. One way to further engage users in the long term is to
allow users to submit their own set of personalized preferences for power conservation, in exchange
of a financial reward. This idea is at the basis of an approach known as demand side bidding. For
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instance, [15] and [44] ask users to turn off certain appliances during a peak load period in exchange
of a payment. Similarly, in [59], the authors exploit the storage of electric vehicles during times of
peak loads, in the context of an auction mechanism, where users provide their preferred options of
power conservation. A recent paper that provides power conservation for data center networks,
following an auction-based approach similar to ours, is [17]. We use this as a comparison approach
given the similarities of the considered problem and solution. Despite the above efforts at engaging
users by providing the possibility to submit personalized preferences, [47] has shown that, if the
system requires frequent interactions with users to adjust a set of appliances, they might experience
response fatigue. According to this phenomenon, users stop interacting with the system because
they become tired of engaging with it.

To further understand how users can be incentivized, while avoiding the response fatigue
phenomenon, researchers have proposed to include models of realistic user behavior in the design
of power conservation strategies. These models help understand and emulate how users interact
with a power conservation program. For instance, [20] and [32] strictly focus on models of realistic
user behavior in terms of the perceived utility of each appliance. However, the former does not
provide a way to submit personalized preferences of power consumption, while the latter only
considers abstract appliances with a power consumption represented by fixed constant values. This
significantly oversimplifies the impact of the operation of such appliances on the home power
consumption and on the overall demand response approach. As stated in [50], this represents a
considerable limitation in the design of power conservation systems.

Another important aspect to consider in the design of effective power conservation strategies
is to include realistic home-level power dynamics [49]. Additionally, HVAC has been shown to
be a promising appliance for power conservation, due to its energy consumption being highly
correlated with peak loads and the rapid adoption of smart thermostat that can perform temperature
adjustments automatically [2, 12]. An HVAC power conservation mechanism has been proposed in
[2]. This approach provides equal rewards to all users, irrespective of their preferences. Additionally,
the authors rely on a white-box approach, which requires a profound knowledge of the chemical and
structural properties of the house materials, as well as layout. Thus, it is not only unfeasible for the
large-scale deployment needed to achieve sufficient power conservation, but it is also impractical
to gather such information about a single house. Since this work shows similarities to ours, we use
it as additional comparison approach in the experimental section.

In summary, as shown in Table 1, most existing works lack at least one of the necessary elements
of successful power conservation related to the individuality of users. Conversely, this article
proposes an effective power conservation framework that aims at long-term user engagement
by providing

(1) personalized preferences for each user,
(2) models of realistic user behavior to study how users engage with such system,
(3) realistic home-level power dynamics, based on easily available information, that allow large-

scale deployment of the system.

Finally, note that other important aspects often addressed in demand response papers were
not included in our table. For instance, although we mention the concept of comfort, we do not
explicitly talk about the related topic of occupancy. Occupancy is a parameter that is often leveraged
to achieve further power savings in this context [7], while also addressing user comfort by adopting
more or less aggressive power conservation strategies [36]. Regarding comfort, in our work, we
aim at minimizing compensation, which indirectly maximizes comfort. Furthermore, our work
expects users to submit the options of power savings that they are comfortable with. Thus, if a
user is not home and is willing to set higher temperature changes, they would be able to do so.
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Table 1. Related Work Summary

Personalized
preferences

Models of realistic
user behavior

Realistic home-level
power dynamics

Baldi et al. [7] × × ×
Korkas et al. [36] × × ×
Korkas et al. [35] × × ×
Chen et al. [17] Ø × ×
Khamesi et al. [44] Ø × ×
Chapman et al. [15] Ø × ×
Zhou et al. [59] Ø × Ø
Shafie-Khah et al. [47] × Ø Ø
Ciavarella et al. [18] × Ø ×
Khamesi et al. [32] × Ø Ø
Dolce et al. [20] × Ø Ø
Kim et al. [33] × × ×
Asadinejad et al. [4] × × ×
Ali et al. [2] × × Ø
Wang et al. [56] × × Ø
Shi et al. [49] × × Ø
Ericson [22] × × Ø
Our approach Ø Ø Ø

While we believe that not relying on occupancy information is an advantage of our approach, as no
additional sensor is required, such information could be integrated to, for example, automate the
bidding process. Ultimately, within the topic of large-scale deployment, we also choose to only rely
on implementations that are based not only on widely available weather information but also on
widely available and affordable smart thermostats, such as Nest. For this same reason, we also do
not consider the adoption of additional energy storage units, as in [35], since they are not widely
available and are very expensive. However, if the utility company had storage units and renewable
energy could be stored in them, our implementation could be simply extended by including these
availabilities in the power cap set by the LSE. Similarly, if certain users have local storage units, our
framework could be extended to consider the additional power saving that the user would obtain
from such storage within the auction period.

A preliminary version of this work appeared in [12]. This article significantly extends the con-
ference version by proposing DYPS, a new truthful and individually rational solution based on
dynamic programming. Furthermore, a more comprehensive and realistic experimental valida-
tion is considered, with more realistic parameters, finer time resolution, and new performance
metrics. The experiments show the superiority of DYPS with respect to the state of the art,
including the algorithm originally proposed in [12] and an additional recent work proposed
in [49].

3 Problem Formulation
We consider a SO controlling a power grid with a set of ! buses managed by LSEs. Each bus ; ∈ !
serves a set of #; residential users equipped with an Internet-connected SEMS which monitors,
learns, analyzes, and controls the HVAC system to set temperature changes. The SEMS of user
8 at bus ; , for 1 ≤ 8 ≤ #; , also interacts with the LSE to implement the power conservation at
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the residential distribution feeder. We assume the SO is able to predict the expected aggregated
power consumption, for example a day ahead. Note that, this is a relatively easy problem to solve,
widely studied in the literature [3], since deviations from the historical average of individual user
behaviors are canceled out through aggregation [13]. When the SO predicts a peak load at bus
; with an expected total power consumption %

(; )
)

, it calculates the power cap %
(; )
�

= U (; ) × % (; )
)

,
where U (; ) ∈ [0, 1), according to the system’s characteristics, such as the generation capacity, cost
of generation, capacity of transmission/distribution lines, and so forth.1 Therefore, the required
power saving is % (; )

(
= %

(; )
)
− %

(; )
�

. Since the power saving is provided by the SO to each LSE,
which conserves the power independently through its users, in the following we formulate the
problem for a single LSE. Thus, without loss of generality, we drop the superscript ; from the
problem formulation.

The LSE alerts the user SEMSs that the power conservation auction is activated, requesting
for bids. An SEMS asks its user directly or submits the bids based on a pre-defined profile. In
the following formulation, we assume that all users participate in the auction. Such formula-
tion can be easily extended to consider only a portion of the participating users. As a result,
to provide personalized preferences, each user 8 submits to the LSE, through their SEMS, a set
Bi = {�8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ) : 1 ≤ 8 ≤ #, 1 ≤ 9 ≤ "8 } of "8 bids. Here Δ%8 9 , Δ)8 9 , �8 9 , respec-
tively, represent the power saving, temperature change, and monetary compensation2 for user
8 and bid 9 . We discuss in Section 6 how realistic home-level power dynamics are implemented
through the PSP algorithm, which predicts power saving Δ%8 9 corresponding to the temperature
change Δ)8 9 .

After receiving bids from the users, the utility company performs the auctioneer tasks, i.e.,
selects the winners and computes the payments. The winners are a subset of # users, and the
utility company only selects one bid per winner. Note that, we assume that users will keep their
thermostat setting during the power conservation period, if their bid is not selected as a win-
ning bid. This way, the PSP algorithm can predict the energy saving associated to each user bid.
Furthermore, we assume that if a user is selected as a winner, the proposed thermostat change
is enforced by the SEMS. Therefore, the user is not able to change the setting at their discre-
tion. The participating users agree on a contract to participate in the power conservation frame-
work, implying the loss of complete control of the HVAC setting during the power conservation
period.

The winner selection strategy is formulated as an Integer Linear Programming optimization
problem that aims to minimize the costs in terms of the paid compensations, while satisfying the
power cap constraint. As shown in Section 7, there is a correlation between the cost �8 9 and the
temperature change Δ)8 9 of a bid. Intuitively, a user bids higher for higher temperature changes
due to higher discomfort. As a result, minimizing the cost has also the implicit effect of minimizing
the discomfort of the user. We refer to this as the POCO problem defined as:

min
#∑
8=1

"8∑
9=1

�8 9F8 9 (1a)

subject to

1We assume the SO predicts the peak load and its duration. The proposed framework is supposed to be executed for the
predicted duration.
2In this article, we use the terms “cost” and “monetary compensation” to represent financial rewards from the LSE and user
perspective, respectively.
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F8 9 ∈ {0, 1}, 8 = 1, . . . , # , 9 = 1, . . . , "8 (1b)
"8∑
9=1

F8 9 ≤ 1, 8 = 1, . . . , # (1c)

#∑
8=1

"8∑
9=1

Δ%8 9F8 9 ≥ %( . (1d)

Expression (1a) defines the goal of minimizing the total cost. Constraint (1b) defines the decision
variableF8 9 , which is equal to 1 when user 8 is selected as a winner in the 9th bid, and 0 otherwise.
Constraint (1c) ensures that no more than one bid is selected for each user. Finally, inequality
Expression (1d) guarantees that the power cap constraint is met.

After selecting the winners by solving the above problem, we propose the payment rule as
follows. Let the objective function in Expression (1a) be denoted as 5 (·). The payment �: to the
user : , who is a winner of the reverse auction, is given by

�: = 5 (w(−k)∗) − 5 (w∗) +
":∑
9=1

�: 9F
∗
: 9
, (2)

where w∗ is the optimal solution of POCO, w(−k)∗ is the optimal solution when user : does
not participate, and

∑":

9=1�: 9F
∗
: 9

corresponds to the winning bid of user : . Each winning user :
gains a non-negative utility, i.e., a revenue, defined as *: = �: −�: . In the following, we prove
truthfulness and individual rationality of POCO to ensure an effective power conservation program
[57]. Truthfulness prevents potential unhealthy bidding behavior, by providing reduced utility
*: when users bid differently than the true valuation. Individual rationality guarantees that each
winning user is paid an amount that ensures non-negative utility (*: ≥ 0). We provide proof of
truthfulness in the following.

Theorem 3.1. The reverse auction mechanism, as defined by the POCO problem and the payment
rule in Equation (2), is truthful.

Proof. The proof is inspired by the proof of truthfulness of the well-known Vickrey–Clarke–
Groves auction presented in [6]. As stated in Equation (2), the payment rule �: to a selected winning
user : is given by 5 (w(−k)∗) − 5 (w∗) +∑":

9=1�: 9F
∗
: 9
. Therefore, the utility of this user is defined as

*: = �: −
∑":

9=1�: 9F: 9 . Specifically, the utility is intended as a revenue with respect to the truthful
compensation +: 9 . Thus, we can write*: = �: −

∑":

9=1+: 9F: 9 . To prove truthfulness, we show that
the utility *: of a user : in case that their declared compensation is equal to the true valuation
(�: = +: ) is greater than the utility * ′

:
of the same user in case the declared compensation is not

equal to the true valuation (�: ≠ +: ), i.e., *: − * ′: > 0, while all other bids are unchanged and
exactly the same. Let us define*: and* ′

:
as

*: = 5 (w(−k)∗) − 5 (w∗) (3)

* ′
:
= 5 (w(−k)∗) − 5 (w∗) +

":∑
9=1

(�: 9 −+: 9 )F: 9 , (4)

where 5 (w∗) =
∑#

8=1
∑"8

9=1�8 9F
∗
8 9 . Note that in calculating *: − * ′

:
, the terms 5 (w(−k)∗) and

5 (w(−k)∗) are equal, since the optimal solution without the user : is the same in both cases,
truthful and untruthful bidding of user :
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*: −* ′: = −
#∑
8=1

"8∑
9=1

�8 9F
∗
8 9 +

#∑
8=1

"8∑
9=1

�8 9F
∗′
8 9 −

":∑
9=1

(�: 9 −+: 9 )F∗
′

: 9

= −
#∑
8=1

"8∑
9=1

�8 9F
∗
8 9 +

#∑
8≠:

"8∑
9=1

�8 9F
∗′
8 9 +

":∑
9=1

�: 9F
∗′
: 9
−

":∑
9=1

(�: 9 −+: 9 )F∗
′

: 9

= −
#∑
8=1

"8∑
9=1

�8 9F
∗
8 9 +

#∑
8≠:

"8∑
9=1

�8 9F
∗′
8 9 +

":∑
9=1

+: 9F
∗′
: 9
.

Now we combine the last two terms into one summation by considering that +: 9 is the user
compensation in the truthful scenario (+: = �: ), therefore, we have

*: −* ′: = −
#∑
8=1

"∑
9=1

�8 9F
∗
8 9 +

#∑
8=1

"∑
9=1

�8 9F
∗′
8 9 .

Since F∗8 9 is the optimal solution (of a minimization problem), given a truthful compensation
(+: = �: ) by user : in the first nested sum, then this value is always less than or equal to the second
nested sum, and therefore,*: −* ′: ≥ 0 is always true. The equality holds whenF∗8 9 = F∗

′
8 9 . �

Next, we prove that POCO is individually rational, i.e., the revenue*: of each user is non-negative.

Theorem 3.2. POCO is individually rational.

Proof. Consider payment rule defined in Equation (2) �: = 5 (w(−k)∗) − 5 (w∗) +∑":

9=1�: 9F
∗
: 9

and utility *: = 5 (w(−k)∗) − 5 (w∗). Since we want to prove that *: ≥ 0, then we want to prove
that 5 (w(−k)∗) ≥ 5 (w∗).

By contradiction, it would be impossible to have 5 (w(−k)∗) < 5 (w∗). In fact, if w(−k)∗ is the
solution when user : does not participate in the auction, then the optimal solution w∗ can only
improve, and thus we have 5 (w∗) ≤ 5 (w(−k)∗), which proves that*: ≥ 0. �

Finally, we prove the NP-hardness of POCO, motivating the need for an efficient heuristic.

Theorem 3.3. POCO is an NP-hard problem.

Proof. The NP-hardness can be proven as a reduction from the minimum 0-1 knapsack problem
(minKP) [19]. The minKP looks for the set of items with minimum weight and a cumulative value
larger than or equal to a target value. A reduction of POCO can be solved by minKP. Thus, we
set "8 = 1, according to which each user in POCO can only bid one offer. Therefore, the decision
variable F8 9 can be written as a simple F8 which is equal to 1 when the user is a winner of the
auction, and 0 otherwise, thus obtaining the following formulation:

min
#∑
8=1

�8F8 (5a)

subject to:F8 ∈ {0, 1} (5b)
#∑
8=1

Δ%8F8 ≥ %( . (5c)

The optimal solution to this instance of our problem is a formulation of minKP where values are
represented in terms of compensations, while weights and maximum capacity are represented in
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terms of power consumption values and the required powered saving. Because this instance of
POCO, formulated in the form of a minKP, provides a solution that is also a solution to the knapsack
problem, we can say that solving POCO is at least as difficult as solving KP, and therefore, POCO is
NP-hard. �

4 The DYPS Algorithm
In this section, we present a pseudo-polynomial algorithm to solve POCO called DYPS. DYPS is
based on dynamic programming and it is composed of two phases. The first phase divides the
original problem into sub-problems, and it exploits a recursive relation that provides the solution of
bigger sub-problems by exploiting the solutions of smaller sub-problems. The output of the first
phase is the value of the optimal solution of POCO. The second phase uses a recursive algorithm to
find the set of winning bids that provide the optimal solution of POCO by back-tracking the first-
phase decisions. Note that, since DYPS solves POCO optimally, we pair it with the same payment
rule in Equation (2), and thus it inherits the property of individual rationality and truthfulness.

4.1 DYPS: Recursive Relation
The core of DYPS is a recursive relation that allows us to solve larger sub-problems from the solution
of smaller sub-problems. Given an instance of POCO with a set of bids B and a power saving %( ,
we define a sub-problem as an instance of POCO with a reduced input, i.e., considering a subset of
bids in B or a smaller value of %( . Starting from base cases that are straightforward to solve, the
size of the input is gradually increased to find the solution to the original problem, i.e., the value
of the optimal solution. This is achieved by exploiting a table T of size |B| × %( , which stores the
solutions of the sub-problems. The element ) [G,~] is the solution to a sub-problem that considers
the first G bids in B and a power saving %( = ~. To define such recursive relation, we first define
the base cases and subsequently the recursive cases.

4.1.1 Base Cases. The base cases occur when G = 0 or ~ = 0. For G = 0, there are no bids,
i.e, B = ∅. Therefore, it is impossible to satisfy the power saving. As a result, we set ) [0, ~] = ∞
for all values ~ of power saving. Conversely, when ~ = 0 no power reduction is needed (%( = 0).
Consequently, there are no auction winners and the value of the optimal solution is zero. Thus, we
set ) [G, 0] = 0 for all G . Note that, when G = 0 and ~ = 0, we set T[0, 0] = 0.

4.1.2 Recursive Cases. For G > 0 and ~ > 0, we identify two recursive cases. Let G correspond to
the bid �8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ). For G > 0, the bid �8 9 is sufficient to satisfy the required entire power
saving, i.e., Δ%8 9 ≥ ~. In this case, the optimal solution of POCO is either the cost �8 9 (i.e., �8 9 is the
only winner), or it is the optimal solution without �8 9 (i.e., using G − 1 bids). Between these two
options, we choose the solution with the minimum cost, i.e., ) [G,~] = min(�8 9 ,) [G − 1, ~]).

Now, for ~ > 0, the bid �8 9 is not sufficient to fulfill the entire power saving, i.e., Δ%8 9 < ~. Thus,
the optimal solution of POCO may not include �8 9 . If it does (i.e., �8 9 is a winning bid), no other bid
of user 8 can be a winning bid. Therefore, the optimal solution is composed of �8 9 plus the bids of
the optimal solution of the sub-problem with G − 9 bids3 and a power saving of ~ −Δ%8 9 . Conversely,
if �8 9 is not included in the solution, the optimal solution is that of the sub-problem with G − 1 bids
and power saving ~. Among these two options, we choose the solution with the minimum cost, i.e.,
) [G,~] = min(�8 9 +) [G − 9, ~ − Δ%8 9 ],) [G − 1, ~]).

3We assume that the bids in B are numbered such that the bids of the same user are adjacent. Since we are currently
considering �8 9 , thus G − 9 refers to the last bid of user 8 − 1.
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Algorithm 1: DYPS Recursive Relation Algorithm
Input :B, %(
Output :Table T
/* Base cases */

1 ) [0, ~] = ∞ ∀~
2 ) [G, 0] = 0 ∀G
/* Recursive cases */

3 for G ← 1 to |B| do
4 for ~ ← 1 to %( do
5 �8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ) = G_C>_183 (G)
6 if Δ%8 9 ≥ ~ then

// Case 1) Bid alone fulfills power cap y

7 ) [G,~] = min(�8 9 ,T[G − 9, ~])
8 else

// Case 2) Bid alone does not fulfill power cap y

9 ) [G,~] = min(�8 9 + T[G − 9, ~ − Δ%8 9 ],) [G − 1, ~])
10 end
11 end
12 end
13 return T

In summary, the recursive equation is the following:

) [G,~] =


0, if ~ = 0

∞, if G = 0

min(C8 9 ,) [G − 1, ~]), if Δ%8 9 ≥ ~

min(C8 9 +) [G − 9, ~ − Δ%8 9 ],) [G − 1, ~]) if Δ%8 9 < ~

. (6)

4.1.3 Pseudo-Code. Algorithm 1 shows the pseudo-code of DYPS algorithm that takes the set
of bids B and the power saving %( as input. The base cases are initially addressed in lines 1 and
2. Subsequently, two nested loops iterate G over the set of bids and ~ from 1 to %( . Each iteration
considers the sub-problem T[G,~]. We make use of an auxiliary function G_C>_183 () that returns
the bid �8 9 corresponding to G . Lines 6 and 7 correspond to the first recursive case, in which the
current bid provides sufficient power saving to meet the power cap (Δ% [8, 9] ≥ ~). Similarly, Lines
8 and 9 provide the recursive solution for the case of Δ% [8, 9] < ~.

The algorithm returns the table T, which contains in position T[|B|, %( ] the value of the optimal
solution of POCO. In the following algorithm, we describe how to obtain from T the actual solution,
i.e., the set of winning bids.

4.2 DYPS: Finding the Solution
Given the table T returned by the previous phase of DYPS, we now provide a recursive algorithm,
called DYPS-Sol, to find the actual solution, i.e., the set of winning bids. DYPS-Sol starts from
T[|B|, %( ], which contains the value of the optimal solution of POCO, and recursively navigates
the table T to back track the decision of the algorithm during the first phase until a base case is
reached. A set S is updated by adding the winning bids encountered during the recursive iterations.
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Algorithm 2: DYPS Solution Algorithm
1 DYPS-Sol(T, B, G , ~, S)
2 if G == 0 ∨ ~ == 0 then
3 return S
4 end
5 �8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ) = G_C>_183 (G)
6 if ) [G,~] == �8 9 + T[G − 9, ~ − Δ%8 9 ] then
7 S← S ∪ {�8 9 }
8 return DYPS-Sol (T, B, G − 9 , ~ − Δ%8 9 , S)
9 end

10 if ) [G,~] == �8 9 then
11 S← S ∪ {�8 9 }
12 return S
13 end
14 return DYPS-Sol (T, B, G − 1, ~, S)

The pseudo-code of DYPS-Sol is shown in Algorithm 2. The algorithm takes as input the table T,
the set of bids B, the current sub-problem input G and ~, and the current solution S. The algorithm
is initially called as DYPS-Sol(T, B, —B—, %( , S), where S is initially empty.

During a generic iteration, the algorithm first checks if we are in a base case (line 2), i.e., if G or ~
are zero. In that case, the current solution S is returned and the algorithm terminates. If we are not
in a base case, the algorithm extracts the current bid �8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ) in line 5. Subsequently,
in line 6, the algorithm checks if the previous phase picked the current bid and this bid was not
able to fulfill the entire power saving, i.e., if ) [G,~] == �8 9 + T[G − 9, ~ − Δ%8 9 ]. In this case, the
bid is added to the current solution and the algorithm is recursively called on G − 9 and ~ − Δ%8 9 .
Then, the algorithm checks if �8 9 was picked as a single bid able to fulfill the entire power saving ~.
This can be verified by checking if ) [G,~] == �8 9 . If this is the case, the algorithm adds �8 9 to the
current solution and terminates the recursive calls (no other winning bid can be added). Finally, if
all previous cases are not true, the current bid has not been selected by the first phase. As a result,
the algorithm calls itself recursively by excluding this bid, i.e., bid G − 1 and power saving ~.

4.3 DYPS: Complexity
The following theorem shows the pseudo-polynomial complexity of DYPS.

Theorem 4.1. The time complexity of DYPS mechanism is $ ( |B|%( ).

Proof. The time complexity is dominated by the payment rule in Equation (2), which is calculated
for each winner of the auction, that is |w∗ | times. Each calculation requires to execute DYPS twice,
to find w(−k)∗ and w∗. The complexity of DYPS is dominated by the two for loops on lines 3 and 4,
resulting in the time complexity of |B| × %( . As a result, the overall time complexity of DYPS is
$ ( |w∗ | × |B| × %( ). �

5 The GRAN Mechanism
In this section, since POCO is NP-hard, and DYPS has pseudo-polynomial time complexity, we pro-
pose a heuristic called GRAN to find an efficient solution for POCO, while guaranteeing truthfulness
and individual rationality of the auction mechanism.
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Algorithm 3: GRAN: Greedy Ranking AllocatioN
Input :%) , U , and B8 8 = 1, . . . , #
Output :List of Winners W

1 W← ∅, %�( = 0 ; // Variables initialization

2 %� = U · %) ; // Power cap

3 %( = %) − %�
4 R← {'8 9 =

Δ%8 9
�8 9

8 = 1, . . . , # , 9 = 1, . . . , "8 }
5 Sort elements of list R in a non-ascending order
6 while %�( < %( and R ≠ ∅ do
7 Let '8̂ 9̂ be the first element in R and
8 Let �8̂ 9̂ = (Δ%8̂ 9̂ ,Δ)8̂ 9̂ ,�8̂ 9̂ ) be the bid corresponding to '8̂ 9̂
9 %�( = %�( + Δ%8̂ 9̂ ; // Update cumulative power saving

10 W← �8̂ 9̂ ; // Update list of winners

11 Remove all bids of user 8̂ from R
12 end
13 return W

5.1 Winner Selection and Payment Rule
The basic idea of GRAN is to prioritize bids with a better ratio of cost over the amount of power
saved. This ratio is used to calculate a ranking criterion sorted in non-decreasing order. Winners
are selected by picking their best bid according to the ranking criterion, until the desired power
saving %� is reached. The pseudo-code of GRAN is provided in Algorithm 3.

In line 1 of Algorithm 3, we initialize the list of the auction winners W and the variable storing
the cumulative power saving %�( . We then calculate the power cap %� and the amount of power
saving %( that represents the power constraint in the inequality Expression (1d) (lines 2 and 3).
Since our goal is to minimize the objective function in Expression (1a), GRAN uses a ranking
criterion which gives precedence to the bids with low cost and large power saving. GRAN uses a
list R that stores the values of ranking criterion in non-ascending order (lines 4 and 5).

In the while loop (lines 6–12), we go through the list until the power cap constraint is satisfied,
i.e., the cumulative power saving %�( is greater than or equal to the required power saving %( .
At each iteration, we pick the bid �8̂ 9̂ with the greatest ranking criterion '8̂ 9̂ in R (lines 7 and 8).
Therefore, we increase %�( by the corresponding power saved (line 9) and we add the winning bid
�8̂ 9̂ to the list of winners W (line 10). Finally, we remove all other elements from user 8̂ in R (line
11), since only one bid per winner should be selected.

GRAN terminates as soon as the power saving is met, i.e., %�( ≥ %( . Subsequently, the new
thermostat settings of the winners are sent to the corresponding SEMSs, and the utility company
pays the winners. For this purpose, we propose a truthful payment rule for GRAN as described in
Algorithm 4. It may be possible that GRAN is unable to meet the power cap and terminates the while
loop because R = ∅. In this case, the utility company may increase the power cap, thus reducing the
required power saving, by supplementing the auction mechanism with other approaches for power
conservation. Nevertheless, in all our experiments, we use a power cap that far exceeds similar
power reductions [49], and this situation never occurred.

To define a truthful payment rule, we guarantee that each user 8 is paid the critical value �8 ,
which is defined as follows with respect to the critical bid �8̄ 9̄ . If user 8 submits a compensation
�8 9 > �8 , it loses; otherwise, it wins. In Algorithm 4, we obtain the critical bid as follows. We find
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Algorithm 4: GRAN Payment Rule
Input :List of Winners W, �'�# Algorithm
Output :Payment Vector E

1 foreach �8 9 ∈W do
2 W−8 = �'�# (B−i) ; // B−i =

⋃#
:=1 B: \ {B8 }

3 Let �8̄ 9̄ be the last element added to W−8
4 �8 =

Δ%8 9
'8̄ 9̄

5 end
6 return E

the solution W−8 of GRAN when user 8 is not participating in the auction (line 2). Then, we select
the critical bid �8̄ 9̄ as the last bid added to the solution set (line 3). Finally, in line 4, we define the
critical value �8 =

Δ%8 9
'8̄ 9̄

. In the following subsection, we will prove that this payment rule, paired
with the winner selection algorithm, guarantees truthfulness of the GRAN mechanism.

5.2 GRAN Properties
To prove that the �'�# mechanism is truthful, we follow the approach similar to [11]. More
precisely, we first prove that the winner selection algorithm (Algorithm 3) is monotonic, and then
that the payment rule (Algorithm 4) pays the critical value.

Definition 5.1. (Monotonicity). An algorithm is monotonic if, by substituting any winning bid
�8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ) with �̃8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 − X), �̃8 9 is selected as a winner.

Theorem 5.2. Algorithm 3 is monotonic.

Proof. Suppose the bid �8 9 wins in the @Cℎ iteration. If we substitute �8 9 with �̃8 9 =

(Δ%8 9 ,Δ)8 9 ,�8 9 − X), X > 0, and execute Algorithm 3 with such new input, �̃8 9 would appear
in the ranking criterion R before the position of �8 9 in the original execution. As a result, �̃8 9 would
be selected on or before the @Cℎ iteration. �

Theorem 5.3. Each winning bid is paid the critical value.

Proof. Our goal is to prove that the payment rule we defined in Algorithm 4 pays the critical
value, as defined in line 4. More specifically, paying the critical value is equivalent to proving that
if user 8 submitted a compensation �8 9 > �8 , then it will lose; otherwise (i.e., if user 8 submitted a
compensation �8 9 ≤ �8 ), then it will win.

Consider a winning bid �8 9 = (Δ%8 9 ,Δ)8 9 ,�8 9 ) selected by Algorithm 3, and consider the critical
bid �8̄ 9̄ in line 3 of Algorithm 4, i.e., the last selected winning bid when �8 9 is not participating in
the auction.

[Case 1]: if�8 9 > �8 , then �8 9 is a losing bid.The inequality�8 9 > �8 can be rewritten as�8 9 >
Δ%8 9
'8̄ 9̄

.
Multiplying both members by '8̄ 9̄ and then dividing by �8 9 yields '8̄ 9̄ > '8 9 . Because Algorithm
3 sorts values of ranking criterion non-ascendingly, '8 9 would be placed after '8̄ 9̄ in the list R.
Therefore, �8 9 will be a losing bid.

[Case 2]: if �8 9 ≤ �8 , bid �8 9 is a winning bid. Similar to Case 1, �8 9 ≤ �8 yields '8̄ 9̄ < '8 9 , which
makes �8 9 a winning bid, since '8 9 would be placed before '8̄ 9̄ in R. �

Theorem 5.4. The �'�# mechanism is truthful.
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Proof. Following [11, Theorem 9.36], the proof of this theorem follows from Theorems 5.2 and
5.3 proved above. �

Theorem 5.5. The GRAN mechanism holds the property of individual rationality.

Proof. To prove individual rationality, we need to show that the utility*: = �: −�: 9 is non-
negative, i.e., Δ%8 9

'8̄ 9̄
−�: 9 > 0. This is equivalent to �: 9 <

Δ%8 9
'8̄ 9̄

, which is easily proven because by

construction of GRAN (Algorithms 3 and 4), if we had �: 9 >
Δ%8 9
'8̄ 9̄

, then user : would not be a
winning bid. �

Let us know analyze the computational complexity of the GRAN mechanism.

Theorem 5.6. The time complexity of the GRAN mechanism is $ (# 2"max log(#"max)), where
"max = max8=1,...,# |�8 | is the maximum number of bids submitted by a user.

Proof. We analyze the time complexity of the winner selection (Algorithm 3) and the payment
rule (Algorithm 4) separately.
[Algorithm 3]: In line 4 of Algorithm 3, we generate the list R and sort it in line 5. The list size
$ (#"max), where "max = max8 |�8 |. Thus, the overall complexity is $ (#"max log(#"max)). The
“while” loop in lines 6 − 12 is executed at most # times, since each iteration selects a user and all
other bids of that user are removed from R. The cost of each iteration is dominated by the cost of
removing bids for the selected user from R in line 11. By using a hash list to store the pointers to
the bids, this operation can be done in $ ("max) time, implying the while loop requires $ (#"max)
time. Therefore, the time complexity of Algorithm 3 is $ (#"max log(#"max)).
[Algorithm 4]: The “for” loop in line 1 makes at most # iterations, since the maximum number
of winners is # . At each iteration, we execute Algorithm 3. Therefore, it requires $ (# 2"max

log(#"max)) time.
Overall, the time complexity of the GRAN mechanism is $ (# 2"max log(#"max)), dominated

by Algorithm 4. �

6 PSP
To effectively select the winners of the auction and meet the power cap constraint, it is necessary
to model realistic home-level power dynamics, i.e., know the power saving corresponding to the
HVAC thermostat adjustment contained in each bid. Predicting the power consumption for a given
thermostat setting is a complex task that depends on a plethora of parameters, such as weather,
house size, solar gain, physical and chemical characteristics of the house materials, and so forth.
[46]. In our case, this is even more challenging, since our goal is to predict the power saving
resulting from a sudden and short-time change in the thermostat setting. This implies that, we are
interested in predicting the power saving during a transient state, i.e., after a sudden and short-term
change of the thermostat setting. In most circumstances, the peak load period is not long enough
to allow the power consumption to reach the steady state [43], making the prediction problem
extremely challenging.

The proposed PSP algorithm allows us to model realistic home-level power dynamics by means of
a regression technique that predicts cumulative power saving resulting from a thermostat change.
We assume that the SEMS of each user keeps track of thermostat setting adjustments that occur
over time during non-peak load periods, and the resulting power consumption. These changes
may be due to sporadic manual adjustments or automatic event-based adjustments supported by
modern thermostats [41]. Note that the user may or may not be at home when such changes take
place. For each of these adjustments, the SEMS records the power saving at different time scales
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(e.g., multiple of 15 minutes), representing the potential duration of a peak load. A different model
is trained for each of these durations. Training is performed with a set of features easily available to
the SEMS. Therefore, potentially useful but hard to obtain information, such as the window U-factor
[46], is purposely omitted. Specifically, the PSP algorithm is based on the following features:

—Weather information: outside temperature, wind speed, humidity at the beginning of the peak
load period;

—House information: default thermostat set point, new thermostat set point, inside temperature;
—Time: hour of the day.4

The above features could be used to train several types of machine learning models. However,
since the data collected are from individual homes, and thus limited, models that require large
training sets (e.g., deep neural networks) would not be practical [8]. As a result, the PSP algorithm
exploits a regression technique that allows us to learn the correlation between the features given as
input, and the power saved during the peak load period, with limited training data and at a very
fast rate, as shown in the experimental study (Section 8). We evaluated the performance of several
regression algorithms (Artificial Neural Networks, Random Forest (RF), Elastic-Net, Support
Vector Machines, Nearest Neighbors Regression, and Naive Bayes) and tested the values of various
parameters with a grid search. We found RF regression [51] to provide the best performance. In
our experiments, we set the parameters as follows: (1) the criterion to measure split quality to
the mean squared error (MSE), (2) the maximum depth of the tree to 1,000, (3) the number of
estimators to 150, (4) the minimum number of samples needed to split a node to 2, (5) the maximum
number of features while deciding the best split equal to the total number of features (7 in this
case), and (6) the minimum number of samples required to be at a leaf node to 1.

7 Online Survey
We conduct an online survey involving 200 subjects to model realistic user behaviors. Specifically,
the objective of the survey is to assess bidding behavior and the willingness to participate in the
proposed Incentive-Based Power Conservation (IBPC) program. The study was approved by
the Institutional Review Board at the University of Missouri System (#IRB-2025242-ST). This section
discusses the survey and the results.

7.1 Overview of the Survey
The participants recruited using Amazon Mechanical Turk are pre-screened to include only Florida
residents who use an adjustable thermostat in their homes, receive an energy bill each month based
on the energy usage, and review their bill every month or most months. We focused on a specific
geographic area for a more uniform perception of the system. Eligible participants were informed
of their rights and compensation before completing the survey. In our online study, the mean time
to complete the survey was just under 10 minutes and the participants were compensated for $1.75.
This translates into the rate of $10.60/hour which was above the federal minimum hourly wage of
$7.75/hour at the time the study was conducted and above the top 4% earning rate of $7.50/hour
for M-Turk workers [28].

The survey began by asking participants to indicate their typical thermostat setting on a hot
summer day. Then, they read a brief description of peak load and power conservation to ensure that
each participant had an understanding of the context. This was followed by a description of the

4The season could be another important factor. Different models could be trained for different seasons to take into account
this aspect.
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(a) User willingness (b) Average compensation

Fig. 2. Summary of online survey results per degree change.

proposed system that would help reduce energy consumption during peak times by compensating
the customers via an automated system to temporarily adjust their thermostat setting.

The participants were asked to imagine that they were participating in such a program and setting
up their smart thermostat temperature. This was completed in two steps. First, the participants were
reminded of their response for their typical thermostat setting on a hot summer day. Then, from a
list of options, they were asked to select the highest thermostat setting to which they would be
willing to occasionally adjust for a maximum of 1 hour per day. This list of options was customized
for each participant to include 8 degrees of change above their typical setting (for example, if
their typical setting was 70◦F, their range of options was 71◦F–78◦F). Next, for each thermostat
temperature setting within the selected range, the participants were asked to use a slider to indicate
the minimum compensation they would like to be paid to allow the thermostat adjusted to that
setting. For uniformity of the results, we asked everyone to imagine the following scenario when
they provided their bids:

Imagine it is daytime on a hot summer day, you are at home, and you are doing low to moderate
effort activities (for example, sleeping, sitting, or light chores) and imagine that the maximum
duration of the change would be 1 hour, at which point the thermostat then returns to the previous
setting.

The slider range was $0.00 to $5.00 and could be moved in increments of 0.01. This dollar range
was proposed in [49]. The participants were told a compensation of $0.00 implied they would make
the adjustment for free. Finally, they were asked whether they would participate in such a system
if it existed. The outcome of the survey is reported in Figure 2.

7.2 Survey Results
A total of 200 participants took part in the survey. However, results do not include 44 users who
failed to correctly answer the attention check questions. Overall, more than 79% of users answered
that they would be willing to use this system in their homes. Figure 2(a) shows, for a given change
in the temperature value (measured in degrees Fahrenheit) along the x-axis, the number of survey
participants who agreed to change their thermostat up to that value, but not more. The results are
clearly non-linear: most users are comfortable with small temperature changes and become less
comfortable as the change increases.

Figure 2(b) shows the mean and standard deviation of user compensations. The plot shows a
monotonic trend, suggesting that higher temperature changes require higher monetary incentives.
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Nevertheless, users show significant heterogeneity in the requested amount for a given temperature
change. This, coupled with the non-linear willingness to adjust the temperature setting, results in
an interesting and non-trivial optimization scenario for our proposed approach.

Overall, the survey results support the feasibility of the proposed IBPC auction framework. We
use these results to definemodels of realistic user behavior in engaging with the power conservation
framework. Specifically, we follow the survey results to determine how many degrees a user is
willing to change and the corresponding compensation.

8 Performance Evaluation
This section presents the experimental setup followed by a thorough performance comparison of
our methods versus recent state-of-the-art solutions.

8.1 Experimental Setup
We adopt EnergyPlus and integrate it with Python scripts implementing our solutions as well as
other approaches used for comparison. EnergyPlus is a simulator funded by the U.S. Department
of energy and tested according to ASHRAE Standard 140 methodology [55] which makes it the
gold standard of power data simulation. It is a high-fidelity tool that allows for modeling of very
low-level parameters of residential buildings, with the goal of producing extremely accurate power
consumption data [55].

Since our auction framework is executed independently at each bus, given the power constraint
provided by the SO, in the experiments we focus on a set of houses at a single bus. Nevertheless,
we consider a variety of scenarios by changing parameters such as the required power constraint,
the percentage of participants, and the duration of the auction.

To consider a variety of houses with realistic home-level power dynamics, we employed the Energy-
Plus residential prototype building models provided by the U.S. Department of Energy in collaboration
with the Pacific Northwest National Laboratory [39]. The models have four foundation types (slab,
crawlspace, heated basement, and unheated basement) and two cooling system types (central air
conditioning cooling and heat pump cooling). The combination of these characteristics gives us
a total of eight considerably different houses and therefore different utility loads. Furthermore,
EnergyPlus allows low-level control of many house details. Hence, we exploit this functionality by
varying the window U-factor, a parameter that greatly impacts the thermal resistance of a residential
building. For each one of the eight models previously mentioned, we generate five additional models
by changing the U-factor within [2, 4]W/(m2 K) range [29]. As a result, we obtain a total of 40
heterogeneous models that capture a wide spectrum of thermal resistance of a house. We used
each model twice for a total of 80 houses. Note that, further increase in the number of houses by
using additional copies of these models would result in more homogeneous, and thus less realistic,
scenarios. However, since the total power consumption %) and the power cap %� scale linearly with
the number of houses, we expect the trends observed in our results to hold in larger deployments
of the system.

8.2 Performance of the PSP Algorithm
In this section, we study the performance of the PSP algorithm.

8.2.1 Comparison Approach Sha-Support Vector Regression (SVR). We compare PSP to a recent
state-of-the-art approach for power prediction proposed in [46], which we refer to as Sha-SVR. We
select this approach because, similar to our framework, it is designed to work in specific building
settings and it uses limited and easily available features to facilitate large-scale deployment of the
system.
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The authors of Sha-SVR adopt SVR as prediction model. To select the features set, the Pearson
correlation coefficients between a vast array of meteorological parameters and the HVAC power
data are analyzed.This allows to considerably reduce the size of the feature set.The authors conclude
that the dry-bulb temperature has the highest impact, with a correlation coefficient of 0.91 on a
summer day, which is the season considered in our experiments. Besides the dry-bulb temperature,
the authors also consider the balance point temperature,)2 . The dry-bulb temperature is transformed
into Cooling Degree-Day (CDD), a simple but effective method for building energy analysis [27].
CDD = max{()max −)min)/2 −)2 , 0}, where )max and )min are the maximum and minimum hourly
temperature in a day, and )2 = 59◦F(15◦C) is the standard temperature value they intuitively set
for their experiments. Finally, the authors add two features to describe the behavioral pattern of
users, by adding the month type and the day type.

Note that Sha-SVR has been designed for the prediction during a steady-state, rather than
transient-state. Hence, we adapt the algorithm as follows. We add to the feature set the current
temperature set point. Then, to calculate the power saving resulting from a transition from set point
)>;3 to a set point )=4F , we use Sha-SVR to predict the steady-state power consumption % ()>;3 ) and
% ()=4F ) separately. We then calculate the power saving Δ% = % ()>;3 ) − % ()=4F ) . For more details on
Sha-SVR, refer to [46].

8.2.2 Results. To train and compare the PSP algorithm with Sha-SVR, we use the weather
information from Miami provided with the EnergyPlus residential prototype building models [39].
Miami has been chosen since it experiences very hot summer days, and it is the area where the
online survey was conducted. Because the focus is on the hottest days and hours, we consider a
time range from July to September, between 1 PM and 6 PM. For each of the houses, we consider
eight thermostat change options, each representing a 1◦F (approx. 0.55◦C) degree difference, and
we consider three different time frames for the auction duration, namely, 15 minutes, 30 minutes,
and 1 hour. The thermostat set point is altered at the beginning of the auction and restored to the
original value at the end. As a result, our objective is to predict the energy saving for the auction
duration. We use EnergyPlus to collect the resulting power consumption data and pair it with
the features required by each algorithm. The data are then shuffled before forming training and
testing set, 75% and 25% samples, respectively. We analyze the performance of PSP in terms of
Mean Average Percentage Error (MAPE), median error, and explained variance (EV)5. EV is a
statistical measure used to evaluate the quality of a regression prediction, based on the variance of
the real value and the error [23]. �+ ∈ [0, 1] and a higher value (i.e., close to 1) represents more
accurate predictions.

Figure 3 shows the percentage of testing samples, along the y-axis, that are predicted within a
certain MAPE. PSP achieves very high accuracy for the vast majority of samples in all time frames.
In fact, the dashed red line in Figure 3(a)–(c) indicates that 95% of testing samples are predicted
within a 5% MAPE in all scenarios. On the other hand, Sha-SVR achieves poor performance. This
is due to their steady-state approach, which prevents the algorithm from capturing the dynamics
that occur after a sudden change of the thermostat set point. Quantitatively, across all time frames
shown in each subfigure, more than 75% of Sha-SVR’s predictions incur more than 60% MAPE on
average, which further proves the need for a ad hoc transient-state approach, such as PSP.

Next, in Figure 4(a)–(c), we study the learning rate of PSP. This is particularly important in our
context since, to enable large-scale deployment, and capture realistic home-level power dynamics,
the SEMS of each user has its own PSP model, trained with only limited data. We adopt the median
error as a metric, along with EV. The goal of this experiment is to analyze the value of the adopted

5These are typical metrics for regression algorithms, comparable to the accuracy, F-score, and so forth, for classification
algorithms.
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(a) 15 minute time interval (b) 30 minute time interval (c) 1 hour time interval

Fig. 3. Performance of prediction models based on error distribution.

(a) 15 minute time interval (b) 30 minute time interval (c) 1 hour time interval

Fig. 4. Performance of prediction models based on learning rate.

metrics by progressively increasing the size of the testing set along the x-axis. We performed tests
individually for each home and averaged the results. The testing samples for a home are randomly
selected. As shown in Figure 4, 20–30 samples are sufficient to obtain a very high �+ and very
low median error for all time frames. These results show that PSP can quickly learn and perform
accurate individual home PSPs. Recall that these samples do not need to be collected during peak
load periods but can instead be gathered by the SEMS during manual or automatic adjustments
that are possible with modern thermostats even more than once a day [41].

8.3 Power Conservation
In this section, we study the performance of the auction framework in dealing with peak loads. We
first introduce two recent comparison approaches and then discuss the results.

8.3.1 Comparison Approach Mechanism for Emergency Demand Response (MEDR). A recent
paper [17] proposes a truthful auction-based IBPC approach in data centers called MEDR. Similar to
our scenario, in the event of a peak load, # tenants are required to reduce their power consumption
below a power cap. Each tenant may submit one bid consisting of a power reduction and monetary
compensation.This paper defines an NP-hard problem to select winners of the auction that, similarly
to POCO, aims at minimizing the overall cost. Since the users in our settings may submit multiple
bids, for each user 8 we randomly pick a bid in the set Bi. We implement the authors’ NP-hard
optimization problem to select winners. This implementation gives an advantage to MEDR, since
the solution of the NP-hard problem guarantees the minimization of the objective function, at the
cost of a higher complexity. The authors also propose their own truthful payment rule, which we
also implement for the calculation of payments. For more details, refer to [17].
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8.3.2 Comparison Approach FLAT. The recent article [49] proposes a subscription-based power
conservation system. Users agree to participate on a monthly contract which pays all users the
same fixed amount in exchange of a fixed temperature change. Once users subscribe, the adjustment
can occur up to once a day at the utility company’s will. Due to such flat approach to payments
with fixed temperature changes, we call this approach FLAT.

Although the context of this approach is similar to ours, in the sense that users get paid to
perform a temperature change in the thermostat, its subscription-based implementation is actually
quite different. Hence, for the sake of fair comparison, we slightly adapt the FLAT by performing the
following changes. First, we divide the required power saving %( by all participating users # . Then,
we require that each house performs a thermostat adjustment to the closest integer temperature
that ensures a power saving of %(/# . Note that, the integer adjustment is due to the intrinsic
characteristics of thermostats which allow temperature changes at 1◦F steps. To process payments,
we calculate the average compensation requested by all users of our survey, for each temperature
change. We pay users the average compensation corresponding to required temperature change.

Note that, FLAT does not provide the properties of truthfulness nor individual rationality. This is
an advantage for FLAT in terms of raw performance metrics, since providing such properties leads
to payments that are always greater than or equal to the requested value.

8.3.3 Results. In the following, we compare the performance of different approaches, namely,
the optimal solution OPT obtained with the Gurobi optimizer [26], DYPS, the heuristic solution
GRAN presented in this work, our conference version6 solution GRAN_PC [12], and the comparison
approaches MEDR [17] and FLAT [49]. Note that, as highlighted in Table 1, FLAT and MEDR cover
different key properties of power conservation mechanisms, jointly providing a robust comparison
for our approaches.

Experiments are run during hot summer days in July and August 2009 with an average tem-
perature of 89.06◦F (31.7◦C). In all experiments, the total power consumption is %) = 261.95 kW,
and it is the result of the power consumption of all users. We consider power reduction values
between 3% and 9% of %) , in line with other state-of-the-art power conservation approaches [17,
49]. User bidding behavior, i.e., bids consisting of temperature change and financial compensation
are selected from the models of realistic user behavior gathered through our online survey. To
obtain and provide reliable results, we average the values of each experiment over several runs.
Furthermore, we use perfect knowledge of PSP for OPT, and the PSP predictions of power saving
(PSP) for the other algorithms. Finally, we explore three experimental scenarios, investigating the
impact of different dimensions on the algorithms’ performance.

Scenario 1: Varying the Percentage of Auction Participants. In this scenario, we consider a 1 hour
auction, and we set the power cap to 95% of %) . Thus, the required power saving is %( = 12.14 kW.
To achieve this saving, we increase the percentage of users participating in the auction from 40%
to 100%. Figure 5 shows the reverse auction performance in terms of objective value (Figure 5(a)),
payment (Figure 5(b)), average temperature change (Figure 5(c)), and number of users changing the
temperature (Figure 5(d)).

Overall, a clear downward trend of both objective value and payment is reported as the number of
participants increases for all approaches, except FLAT. This is due to the fact that all auction-based
approaches become more efficient as more bids become available, since better winning bids can be
selected. On the contrary, FLAT suffers as more participants become available. This is due to the lack
of flexibility of this approach, resulting from the equal power saving imposed to all users and the
step-wise 1◦F thermostat adjustments. Intuitively, as we increase the percentage of participants, the
total payment of FLAT increases linearly, as more and more participating users will have to apply
6The main differences between GRAN and GRAN_PC are the bids ranking criterion and the payment rule.
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(a) Objective value (b) Payment (c) Average temp. change (d) Number of winners

Fig. 5. Performance of reverse auction varying user participation.

a thermostat adjustment. The linear growth is briefly interrupted as soon as there are sufficient
participating users to decrease the adjustment to the next lower temperature. This happens, in our
experiments, at 70% of participating users, and thus leads to brief interruption of the increasing
trend. However, after the thermostat adjustment reaches 1◦F for all participating users (as further
shown in Figure 5(c)), the total payment increases linearly with the number of participants.

On the other hand, MEDR shows better performance than FLAT, proving the benefits of auction-
based approaches versus a flat subscription. However, MEDR underperforms in comparison to
DYPS, even though MEDR is solving an NP-hard problem to select the winning bids. This is due to
MEDR’s limitation of allowing a single bid per user. Conversely, DYPS is able to efficiently make
use of multiple bids per user to find a better solution. As expected, DYPS matches the performance
of OPT, and outperforms GRAN, by finding the optimal solution of POCO in pseudo-polynomial
time. Overall, results show that providing multiple personalized preferences can achieve more power
conservation with lower payments. Additionally, GRAN is within 30% of the optimal solution found
by DYPS, while MEDR and FLAT are within 140% and 860% of that solution, respectively. Finally,
it is worth highlighting that although in these results DYPS adopts PSP, it achieves performance
comparable to OPT, which instead uses perfect predictions. This is another proof of the quality of
the predictions provided by PSP.

In Figure 5(c), we show the average temperature change for winning users, and in Figure 5(d),
the number of users who change temperature settings (for FLAT, this refers to all participating
users, while for auction-based approaches, it refers to auction winners only). The figures show
that, as more participants are available, the average temperature change tends to decrease for all
approaches, while the number of users who change temperature tends to increase. FLAT shows
the least temperature change, which intuitively results from all participating users changing their
temperature, thus requiring less change on average. However, this also results in very high cost,
as previously shown. All auction-based approaches benefit from having more participating users,
since this allows more flexibility in selecting bids and thus to find more efficient solutions. These
approaches tend to select a relatively stable number of winners, as more users are available. This
is to be expected, since the power saving required is kept constant. Nevertheless, the presence of
more bids allows the selection of better bids, with lower cost. OPT and DYPS tend to select fewer
bids, thus resulting in higher temperature changes for winners. GRAN shows a relatively stable
temperature change with the participating users. This results form the bids’ ranking that gives
preference to bids that balance power savings and cost. This is a desirable secondary property, since
it makes the system actions more predictable to the participating users over different scenarios.

Scenario 2: Varying the Power Reduction. In the second scenario, we fix the percentage of partici-
pants to 60% and decrease the power reduction from 9% to 3% of %) . We consider again the objective
value, payment, temperature change, and number of users changing the temperature. Figure 6
shows the results. FLAT once again performs the worst. Although performance slightly improve
with lower power reductions, the approach lacks the flexibility of selecting a subset of the users
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(a) Objective value (b) Payment (c) Average temp. change (d) Number of winners

Fig. 6. Performance of reverse auction varying percentage of power reduction.

(a) Objective value (b) Payment

Fig. 7. Performance of reverse auction at different auction durations.

with a minimum temperature change to achieve the power reduction objective. Such inefficiency is
particularly evident when the power reductions are smaller (more realistic scenario), since FLAT
imposes all users to change their temperature, even when this is not needed. This of course results
in a lower temperature change and a constant number of users changing their temperature with
respect to the percentage of reduction.

In this scenario, we see a downward trend for all auction-based approaches with respect to all
considered metrics, as the percentage of reduction decreases. This is due to lower reductions leading
to a lower number of winners. Similar to the previous scenario, DYPS finds the optimal solution
to the problem, while GRAN outperforms both GRAN_PC and MEDR. Even in this case, MEDR
suffers from the inability of handling multiple bids. Once again, GRAN shows stability even under
different percentages of reduction, further supporting the predictability, and thus the acceptance,
of this approach. Numerically, GRAN is within 30% of the optimal solution found by DYPS, while
MEDR and FLAT are within 140% and 860% of the optimal solution, respectively.
Scenario 3: Duration of the Reverse Auction. In the third scenario, we investigate the impact of

the auction duration on the performance of the algorithms. We consider an auction duration of 15
minutes with a bus load %) = 60.66 kW, 30 minutes with a bus load %) = 121.37 kW, and 1 hour
with a bus load %) = 242.81 kW. Furthermore, we fix the percentage of participants to 60% and the
power reduction to 5%.

In Figure 7, we show the impact that the auction duration has on the objective function and
payment. FLAT clearly is penalized by requiring a temperature adjustment to all participating users.
The performance of all other algorithms is in line with the previously discussed experiments: DYPS
matches the results of OPT and outpeforms GRAN, MEDR, and FLAT for all auction durations.
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It is interesting to note that the objective value and payments increase non-linearly with the
auction duration. This is due to the fact that the transitory nature of the temperature adjustment
has non-trivial impact on the HVAC dynamics. Intuitively, during the first few minutes follow-
ing a temperature adjustment, the HVAC stop cooling the house until the new temperature is
reached. Many physical and weather factors affect the temperature dissipation that determines
this process, highlighting the importance of modeling individual home-level power dynamics. As
a result, the amount of energy to curtail for a 60 minutes auction is much higher than twice the
energy of the 30 minutes auction, requiring more bids to be selected, and thus increasing objective
value and payments.

9 Conclusion and Future Work
In this work, we present a human-centered HVAC-based power conservation framework based on
reverse auctions. Specifically, under this framework, a reverse auction-based approach lets users
submit their personalized preferences of power conservation, consisting of thermostat temperature
adjustments along with a financial compensation for such change. We formulate an optimization
problem that selects the winning users of the auction and a payment rule that guarantees truth-
fulness and individual rationality. We prove that the problem is NP-hard and thus propose an
algorithm that finds the optimal solution in pseudo-polynomial time. We employ models of realistic
user behavior by means of an online survey to gather user bids, while showing user willingness
to participate in a similar power conservation system. Further, we are able to predict realistic
home-level power dynamics through a machine learning prediction algorithm. By using power data
from EnergyPlus, the gold standard of energy simulation, we show that our solution outperforms
recent state-of-the-art approaches under multiple scenarios.
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