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ABSTRACT 

 

Arias Intensity (Ia) has been identified as an efficient intensity measure for the purpose of estimating the likelihood and extent of 

landslides. This efficiency implies that Arias intensity may logically be used within earthquake loss estimation applications in order to 

ultimately estimate the damage to spatially-distributed systems or portfolios. In order to estimate the effects of ground motions on 

such spatially-distributed systems it is important to take into account the spatial correlation of the intensity measure. However, 

existing landslide loss-estimation models, which use Ia as an input, do not take this aspect of the ground motion into account. Due to 

the areal nature of landslides, accounting for the spatial distribution of Ia is important if one wishes to accurately predict the probability 

of landslides occurring, and their subsequent displacements. In this paper, a model for the spatial correlation of Arias intensity is 

proposed. In order to obtain this model, a new empirical prediction equation for Arias intensity is first developed. The empirical 

predictive model is developed using recordings from the PEER NGA database while the model for spatial correlation makes use of the 

well-recorded events from this database, i.e. the Northridge and Chi-Chi earthquakes. 

 

 

INTRODUCTION 

 

Earthquake-induced ground-motion cannot be adequately 

characterized by a single scalar measure for all conceivable 

applications. In order to comprehensively characterize a 

ground motion, and its associated damage potential, one must 

be able to quantify features of the ground motion that are 

associated with its energy and frequency content as well as the 

variation of these characteristics in time. However, for certain 

applications, it has been found that some of these 

characteristics are not as influential as others and in these 

cases a scalar representation of some characteristic of the 

ground shaking can be efficiently used to infer the likelihood 

of the motion to cause damage. Of the scalar intensity 

measures that have been proposed in the literature, Arias 

Intensity (Arias, 1970) is a measure that has been found to be 

well-suited to application in a number of problems in 

earthquake engineering. This utility results from the ability of 

Arias intensity to reflect multiple characteristics of the ground 

motion, despite being a scalar measure. 

 

Travasarou et al. (2003) discuss the effectiveness of 

employing Arias intensity for the assessment of the seismic 

performance of structures whose response is dominated by the 

high-frequency content of a ground motion. Arias Intensity is 

also useful for predicting ground failure resulting from 

earthquakes as discussed in Kramer (1996). Egan and Rosidi 

(1991), Kayen and Mitchell (1997) and Travasarou et al. 

(2003), among others, have all discussed the utility of Arias 

intensity for estimating the propensity of a soil deposit to 

liquefy. However, of greatest relevance to the present article 

are the works, such as those of Harp et al. (1995), Keefer 

(2002) and Jibson (2007), that discuss the strong correlation 

that has been observed between Arias intensity and the 

distribution of earthquake-induced landslides. 

 

In order to conduct earthquake loss analyses in terms of Arias 

intensity, a stable empirical ground-motion model must be 

available for use. However, very few models for this purpose 

have been derived (Stafford et al., 2009a). The most robust, 

and generally applicable, model that has been developed to 

date is that of Travasarou et al. (2003). This model was 

developed using recordings from the strong-motion database 

of the Pacific Earthquake Engineering Research (PEER) 

Center which are associated with a large number of shallow 

crustal earthquakes that have occurred throughout the globe. 

However, despite being the most robust of those currently 

available, the model of Travasarou et al. (2003) also has some 
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shortcomings, primarily associated with the modeling of near-

surface site response. For this reason, and to facilitate the 

development of new model for the spatial correlation of Arias 

intensity among sites, a new empirical model is developed and 

presented herein for the prediction of Arias intensity. 

 

This paper firstly describes the development of the new 

empirical relationship for the prediction of Arias Intensity just 

mentioned. The final functional form gives an expression for 

Arias intensity in terms of the common predictor variables of 

magnitude, distance, style-of-faulting and the average shear-

wave velocity over the upper 30 m. The most significant 

enhancement of the new model over existing models is the 

inclusion of the continuous variable, average shear-wave 

velocity, as a predictor variable representing local site 

conditions and the inclusion of terms to account for nonlinear 

site response. 

 

In many situations, such as when estimating the impacts of 

landslides upon spatially distributed networks, it is not 

appropriate to only predict independent values of Arias 

intensity at a series of locations. Instead, knowledge of the 

joint probability of occurrence of Arias intensity values at 

multiple locations is required. In order to estimate losses to 

spatially distributed systems for a particular earthquake event, 

a model for the spatial correlation of an intensity measure is 

required. Recent focus has been placed upon the development 

of such models for a range of common intensity measures, 

e.g., Wang and Takeda (2005), Goda and Hong (2008) and 

Jayaram and Baker (2009). However, no efforts have been 

directed towards the development of a spatial correlation 

model for Arias intensity. 

 

In light of the above, the second part of the article is 

concerned with the development of a model to represent the 

correlation of Arias intensity values at spatially separated 

locations. The model is derived using recordings from well-

recorded events within the PEER Next Generation of 

Attenuation (NGA) database (Chiou et al., 2008), the Chi-Chi 

and Northridge events. The new empirical model for the 

prediction of Arias intensity presented in this paper is used to 

obtain the intra-event residuals which are then used in the 

development of the spatial correlation model. 

 

STRONG-MOTION DATASET 

 

The dataset used for the derivation of the predictive equation 

for Arias intensity, as well as for the development of the 

spatial correlation model, is a subset of the PEER NGA 

database. The complete NGA database consists of 3551 

accelerograms from 173 earthquakes (Chiou et al., 2008). 

However, not all of these records have associated metadata 

and for this reason the total dataset was restricted using certain 

criteria. The actual subset that was used is the same as that 

which has recently been used for the development of other 

empirical models for numbers of cycles (Stafford and 

Bommer, 2009), duration measures (Bommer et al., 2009), 

and envelope parameters (Stafford et al., 2009b). 

 

 
Fig. 1. Distribution of independent variables used for the 

development of the predictive model for Arias intensity. 

Modified from Stafford and Bommer (2009). 
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The article of Stafford and Bommer (2009) should be 

consulted for specific details regarding the actual dataset. 

However, for now it suffices to say that the general philosophy 

adopted by Abrahamson and Silva (2008) was applied, but 

with the main difference being that the distance range was 

limited to 100 km. The final dataset used in this study contains 

2406 recordings from 114 earthquakes, each of which have 

two orthogonal horizontal components. The distributions of 

these records with respect to the primary predictor variables 

that were used in the development of the empirical model for 

Arias intensity are shown in Fig. 1. It should also be noted 

that, of these 114 earthquakes, 23 events have normal or 

normal-oblique mechanisms, 35 have reverse or reverse-

oblique mechanisms and the remaining 56 earthquakes are 

strike-slip events. The records have been used in their 

processed form and are freely available from the following 

website: http://peer.berkeley.edu/products/nga_project.html. 

 

MOTIVATION FOR DEVELOPING A NEW MODEL FOR 

ARIAS INTENSITY 

 

Before commencing development of a new model for Arias 

intensity it is instructive to investigate the performance of the 

existing model of Travasarou et al. (2003) – hereafter referred 

to as TBA. The datasets used in the present study and that 

used by TBA share many similarities, with the main difference 

being the availability of shear-wave velocity in the latter case. 

However, despite these similarities, it is found that the 

performance of the TBA model when applied to the dataset of 

this study is not particularly good. An example of the 

performance can be illustrated in two ways. Table 1 shows the 

coefficients of the TBA model that are obtained when the 

functional form used by these authors is used with the dataset 

of the present study. As can be seen, the values of many of the 

coefficients differ markedly. Importantly, the new calibration 

of these parameters indicates that only 4 out of the 11 

coefficients are significant at the 95% confidence level. In 

particular, the terms that are used to account for the site 

response and style-of-faulting are far from being significant. 

 

The practical impact of these differences is demonstrated in 

Fig. 2 in which median predictions from these two models are 

compared. In this particular case one can observe differences 

that are of the order of a factor of 2 or more. No effort has 

been made to replicate the variance structure used by TBA, 

but inspection of Fig. 3 indicates that the homoskedastic 

variance model differs quite significantly from that employed 

by Travasarou et al. (2003) (this will account for some of the 

difference in the determined coefficients, but will not be a 

strong contributor). 

 

A plot of the residuals from the model derived using the 

functional form of TBA and the dataset of this study against 

the shear-wave velocity (Fig. 4) indicates that the model for 

site response employed by TBA does a very poor job of 

representing the scaling of ground motions with respect to the 

shear-wave velocity. 

 

Table 1. Comparison of coefficients using the functional form 

of Travasarou et al. (2003) and the dataset of this study 

(NGA). Variance components of the TBA model are intensity, 

magnitude, and site class dependent (hence the ranges). 

 

Coef. TBA (2003) NGA p-value Sig. 

c1 2.8 3.9626 0.0000 Y 

c2 -1.981 -1.7523 0.2329 N 

c3 20.72 20.7610 0.0195 Y 

c4 -1.703 -1.9344 0.0000 Y 

h 8.78 9.0455 0.0000 Y 

s11 0.454 -0.1299 0.0544 N 

s12 0.101 -0.1476 0.0759 N 

s21 0.479 0.0185 0.7435 N 

s22 0.334 -0.0289 0.6721 N 

f1 -0.166 -0.0945 0.6544 N 

f2 0.512 0.1756 0.2863 N 

E 0.475-0.611 0.6126   

A 0.730-1.180 0.9984   

T 0.871-1.329 1.1714   

 

 
Fig. 2. Comparison of the median predictions of the TBA 

model and that derived in this study using the TBA functional 

form. Predictions are for a strike-slip event on rock. The 

bottom panel shows the ratio of the predictions. 

http://peer.berkeley.edu/products/nga_project.html
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Fig. 3. Comparison between the heteroskedastic variability 

model TBA with the homoskedastic model using their 

functional form and the NGA database. 

 

 
Fig. 4. Intra-event residuals plotted against Vs30 for the 

model derived using the NGA dataset and the TBA functional 

form. 

 

The combination of these findings strongly suggests that the 

development of a new model is warranted prior to the 

derivation of a correlation model for Arias intensity. 

 

PREDICTIVE MODEL FOR ARIAS INTENSITY 

 

The studies of Travasarou et al. (2003) and Stafford et al. 

(2009) have both provided theoretical arguments to support 

the use of particular functional forms. Through the application 

of numerical strategies, Travasarou et al. (2003) demonstrated 

that the influence of stress drop on the Arias intensity led to a 

nonlinear scaling with respect to magnitude. The analytical 

approach adopted by Stafford et al. (2009) does not suggest 

such scaling and results in only linear terms. Following the 

theoretical considerations both groups of authors just 

mentioned then deviate from their base models in order to 

incorporate known features of earthquake ground-motion 

scaling such as near-source saturation, site response and style-

of-faulting. Therefore, for the purposes of developing a new 

model for Arias intensity we take note of the theoretically 

constrained functional forms previously exposed but also 

adopt functional expressions that have recently been used for 

the derivation of predictive models for other ground-motion 

measures. 

 

It is clear from the previous section that the most significant 

short-coming of existing models is their inability to adequately 

capture the modification of Arias intensity values that occurs 

as waves pass through near-surface deposits. The 

incorporation of the effects of near-surface geology in 

previous models for the prediction of Arias Intensity all make 

use of dummy variables for site classes. However, the model 

of Travasarou et al. (2003) attempts to incorporate some 

nonlinearity into these site class terms through the use of 

magnitude dependence. Similarly, Stafford et al. (2009) 

incorporate this effect more directly by developing a model 

that has site class terms that are dependent upon the strength 

of the predicted Arias intensity for rock site conditions. This 

latter approach is based upon the work of Abrahamson and 

Silva (1997) who were the first to incorporate nonlinear site 

response characteristics into empirical ground-motion models. 

 

In the present study, recourse is again taken to the 

developments in empirical ground-motion modeling that have 

arisen through consideration of other intensity measures. The 

NGA project that has recently been completed has resulted in 

a suite of predictive models for spectral ordinates that all 

feature functional terms to account for nonlinear site response. 

Given that values of Arias intensity are heavily governed by 

the amplitudes of an accelerogram and that strong correlations 

have been found to exist between Arias intensity and peak 

ground motions (Baker, 2007; Stafford et al. 2009b) it is 

reasonable to initially adopt functional forms that are similar 

to those used by the NGA model developers. 

 

The first step in modeling nonlinear site response is to obtain 

the functional form for soil amplification effects as a function 

of the median Arias Intensity on some reference site condition, 
ref

aI . This reference site condition is typically chosen to 

correspond to rock sites upon which nonlinear effects should 

be minimal. During the process of predicting the Arias 

intensity, this reference ground motion is first predicted and 

then treated as an independent variable for the purposes of 

obtaining the final value of Arias intensity associated with the 

soil surface motion. Abrahamson and Silva (1997) first 

implemented a model that had a functional form of the type 

shown in Equation (1). 

 

    
soil

rock

rock
ln Am p ln ln

a

a

a

I
a b I c

I

 
    

 
 

          (1) 

 

The coefficients a, b and c can be interpreted in the following 

way: a represents a linear soil amplification factor that applies 

when the input rock motion is weak (actually the linear 
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response is equivalent to the expression  lna b c  when the 

rock motion is very small); the coefficient c represents the 

reference ground-motion level, or „corner‟ at which the 

transition from linear to nonlinear soil behavior occurs; and, 

finally, the coefficient b is the gradient of the amplification 

factor against reference ground-motion above the „corner‟ in 

log-log space. Coefficient b therefore represents nonlinear soil 

behaviour with site amplification decreasing with increasing 

amplitude of the reference Arias intensity (e.g., Walling et al., 

2008). 

 

Chiou and Youngs (2008) have implemented a modified form 

of the expression shown in Equation (1) and the investigations 

made as part of the current study indicate that this form 

performs well when used to model the nonlinear site response 

of Arias intensity values. Before this functional form was 

blindly adopted, an external check was performed to see if the 

general scaling of Arias intensity followed the form of peak 

ground-motion parameters, including spectral ordinates. 

Recently, Papaspiliou (unpublished PhD thesis; Imperial 

College London) has conducted extensive parametric site 

response analyses in order to assess the nonlinear scaling of 

spectral amplitudes. One step of this process is to pass 

accelerograms through some reference soil profiles in order to 

obtain surface motions given some input motion at an assumed 

bedrock. A subset of the motions that have been used for these 

parametric analyses were taken and Arias intensity values 

were computed for both the bedrock and surface motions. 

From these calculations it was determined that the general 

scaling of Arias intensity resulting from nonlinear site 

response follows essentially the same form as models previous 

proposed for peak ground-motions (see Fig. 5). This exercise 

gave us confidence that the functional form of adopted by 

Chiou and Youngs (2008) could, at least, be tried and also 

provided very good staring estimates for the ensuing nonlinear 

random effects regression analyses. 
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Fig. 5. Generic nonlinear scaling of Arias intensity for a soil 

site with an average shear-wave velocity of 280 m/s. 

 

The regression analysis consisted of initially trying various 

functional forms that were basic variations of the theoretically 

governed forms presented in Stafford et al. (2009) and 

Travasarou et al. (2003). Given that analytical, theoretical, 

considerations suggest that the logarithm of Arias intensity 

should scale linearly with magnitude this functional form was 

adopted. However, it is also clear that some nonlinearity in 

magnitude scaling can be observed. This nonlinearity can be 

captured through the use of both nonlinear site response terms 

as well as through the use of magnitude-dependent geometric 

spreading terms. As there is no pervasive physical reason why 

one should employ nonlinear magnitude scaling we opt for the 

use of a basic functional form that employs magnitude-

dependent geometric spreading and then also accommodate 

nonlinearity in the site response. 

 

All functional forms were evaluated using standard statistical 

metrics that are automatically provided through the use of the 

nlme package (Pinheiro et al., 2008) of the free software R 

(http://www.r-project.org/). In all cases the presented 

coefficients were found to be statistically significant with the 

exception of two of the terms within the nonlinear site 

response component of the model. However, as these 

parameters have a clear physical interpretation, and their p-

values were still less than 0.1, i.e., these coefficients were 

significant at the 90% confidence level, they were retained in 

the model. 

 

The final functional form is presented in Equations (2) to (4). 

Equation (2) represents the generic expression that is used to 

obtain the logarithm of the Arias intensity for any given 

scenario. 

 

      ref ref

site 30ln ln ,a a s aI I f V I   (2) 

 

   

   

1 2 w

2 2

3 4 w

ref

R U P 5 6 R V

6ln

ln

a c c M

c c M c

I

R c F

 

  





 (3) 

 

 

   3 30 1 3 ref 1

ref 30

site 30 1

ref

ref

4

2

4

, ln

e e lns

s

s a

v V V v V V a

V
f V I v

V

I v
v

v

 

 
  

 

 
    
 

  

 (4) 

 

In Equation (4), the two parameters 
refV  and 

1V  are equal to 

1100 and 280 m/s respectively. All other parameters are found 

through the regression analysis and are presented in Table 2. 

In Table 2, the actual parameter values are provided along 

with the standard errors in the estimates which are used to 

construct confidence intervals on the parameter values. As 

previously mentioned, two parameters 
3v  and 

4v  are not 

statistically significant at the 95% confidence level. However, 

as can be seen in Table 2, these coefficients are significant at 

the 90% level and are retained in the model. 

http://www.r-project.org/
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Table 2. Coefficients for the new model for Arias intensity 

outlined in Equations (2) to (4). The variance components E, 

A, and T represent the inter-event, intra-event and total 

standard deviations respectively. 

 

Coefficient Value 
Standard 

Error 

Significant 

@ 95% 

Significant 

@ 90% 

c1 3.5987 0.2979 Y Y 

c2 1.3015 0.2293 Y Y 

c3 -3.3901 0.3559 Y Y 

c4 0.1852 0.0565 Y Y 

c5 5.3239 0.9945 Y Y 

c6 0.3688 0.1711 Y Y 

v1 -1.1331 0.056 Y Y 

v2 -1.033 0.408 Y Y 

v3 -0.001 0.0006 N Y 

v4 0.1425 0.0886 N Y 

E 0.7042 0.0755 Y Y 

A 0.8983 0.0133 Y Y 

T 1.1414 0.0391 Y Y 

 

Note that the model that has been presented herein in 

homoskedastic. Further work is required to assess whether a 

more robust model may be obtained by incorporating 

heteroskedasticity into the variance components. In theory, 

there should at least be some nonlinear soil dependence in the 

aleatory variability, as demonstrated by Chiou and Youngs 

(2008). 

 

Figure 6 shows the residual plots that have been obtained from 

the nonlinear random effects regression analysis. Visual 

inspection of these residuals suggests that the functional form 

is performing well and that there are no significant trends with 

respect to the predictor variables. These residual plots, and in 

particular the lower panel of Fig. 6, can be contrasted against 

the residuals shown earlier in Fig. 4. It is clear that the use of 

the continuous predictor variable of shear-wave velocity has 

enabled the site response to be adequately captured. 

 

It is not possible, simply from looking at Fig. 6, to identify 

obvious signs that the use of a heteroskedastic variance 

structure would improve the quality of the fit that has been 

obtained. However, formal statistical analyses remain to be 

conducted in this regard and it may well be that such tests 

indicate that the use of a heteroskedastic variance structure 

would lead to an improved model. For the present study, and 

keeping in mind that the primary objective of deriving this 

new model for Arias intensity is actually to enable a spatial 

correlation model for this intensity measure to be developed, 

the model performance appears perfectly adequate. 

 

Figure 7 shows a comparison between the generic scaling of 

the new model with respect to both magnitude and distance 

and compares this to the scaling of the TBA model. It is very 

clear from this figure that very significant differences exist 

between these two models. 

 
Fig. 6. Residual plots. The top panel shows inter-event 

residuals while the three remaining panels are for intra-event. 

 

 
Fig. 7. Comparison of the median predictions of the new 

model with those of Travasarou et al. (2003). The predictions 

for the new model are provided for Vs30=760 m/s. 
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Fig. 8. Influence of site conditions on the median prediction of 

Arias intensity. Note the evidence of nonlinear site response 

that is apparent for the largest considered earthquakes. 

 

The obvious differences that are observed in Fig. 8 act as very 

strong evidence in support of the adaptation of the new model. 

In particular, Jayaram and Baker (2009) have recently pointed 

out that biased estimates of spatial correlation can be obtained 

if the spatial correlation among soil deposits is not adequately 

accounted for. Spatial correlation among soil deposits can 

exist in reality for a number of geological reasons. However, 

such correlations can also arise artificially through the use of 

an inappropriate predictive model that does not capture the 

scaling of Arias intensity with respect to soil conditions. In 

this latter case one may observe clusters of motions higher or 

lower than expected as a result of a general biased in the 

model itself. The newly developed model is therefore far more 

likely to lead to a robust model for spatial correlation than the 

existing model of Travasarou et al. (2003). 

 

Figure 8 demonstrates the influence that the shear-wave 

velocity has upon the median predictions of the new model. It 

is clear from inspection of this figure that site effects are very 

significant for Arias intensity as both linear and nonlinear 

scaling is very evident for the cases shown here. In particular, 

it can be noted that the general decay of amplitudes with 

respect to distance for the case of the small Mw5.5 earthquakes 

is constant. This implies that the site response is linear. In 

contrast, the rate of decay with respect to distance for the 

larger Mw7.5 events varies significantly. At short source-site 

distances in this latter case the amplitudes of the Arias 

intensity predictions tend to saturate and some de-

amplification can also be observed. 

 

Although the impact of nonlinear site response can be 

observed from Fig. 8, it is more clearly seen in Fig. 9 in which 

the amplification of Arias intensity is plotted with respect to 

the Arias intensity predicted for the reference site conditions 

of Vs30 = 1100 m/s. In this figure the transition from linear to 

nonlinear site response is clearly seen. Furthermore, for all 

considered site classes de-amplification occurs once the 

reference Arias intensity exceeds 1 m/s. 

 
Fig. 9. Demonstration of the nonlinear scaling of 

amplification with reference Arias intensity. The three shear-

wave velocities that are presented correspond to the NEHRP 

boundaries. 

 

SPATIAL CORRELATION MODEL 

 

Now that the new model for Arias intensity has been presented 

we may turn our attention to the derivation of a model for the 

spatial correlation of Arias intensity values. In order to derive 

such a model we more or less follow the procedure outlined 

comprehensively in Jayaram and Baker (2009). In cases where 

insufficient detail is presented herein the article of Jayaram 

and Baker (2009) should be consulted. The key steps in the 

process, the derivation of key equations and the assumptions 

made for this study are outlined in the following sections. The 

focus of the following section is to develop and present the 

model for spatial correlation as well as to note points of 

departure from the process adopted by Jayaram and Baker 

(2009). 

 

The Arias intensity at an individual site may be written as the 

sum of a median model prediction and two error components 

that together represent the total difference between the 

observed motion and the model prediction. This representation 

is shown mathematically in Equation (5). 

 

 , ,
ˆln lna ij a ij i ijI I      (5) 

 

where the observed Arias intensity is represented by ,a ijI , the 

median Arias intensity is represented by ,
ˆ
a ijI , 

i  and ij  are 

the inter- and intra-event residuals and the subscripts i  and j  

are indicies defining the event and recording respectively. For 

a single event the inter-event residual is common to all sites. 

Therefore, in order to assess the degree to which spatially 

separated sites are similarly above or below the median 

predicted value the only component of Equation (5) that can 

be interrogated is the intra-event residual ij . 
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As shown by Jayaram and Baker (2009), a model for spatial 

correlation may be developed through construction of 

empirical semivariograms for the intra-event residuals of well-

recorded earthquakes. Cressie (1985) has presented two 

different formulations that may be used to define the empirical 

semivariogram for a set of data; the classical and robust 

estimators. The classical estimator was used by Jayaram and 

Baker (2009) and takes the following form, in which 
iuz  

would represent an intra-event residual at position 
iu , h  is the 

separation distance between sites and 
hN  is the number of 

pairs of sites having this separation distance. The 

semivariogram itself is given by  ˆ h . 

 

    
2

1

1
ˆ

2

h

i i

N

u h u

h i

h z z
N

 



   (6) 

 

Similarly, the robust estimator is defined as follows: 

 

  

4

1 2

1

1

ˆ
0.914 0.988

h

i i

N

u h u

h i

h

z z
N

h
N







 
 
 
 





 (7) 

 

Both estimators lead to similar empirical semivariograms, but 

the robust estimator is less sensitive to outliers. An example of 

the results obtained following application of both estimators to 

normalized intra-event residuals from the Chi-Chi mainshock 

are shown in Fig. 10. In this study we prefer to adopt the 

robust estimator over the classical estimator on the basis that it 

should perform better for events that are not particularly well-

recorded and for which outliers are likely to be observed. 

 

 
Fig. 10. Example empirical semivariograms computed using 

the classical and robust estimators of Cressie (1985). The 

example shown is for the Chi-Chi mainshock. 

 

The application of the robust estimator results in a set of 

empirical values for the semivariogram at particular separation 

distances. The actual separation distances that are considered 

in practice are defined for discrete bins. In this study a bin size 

of 2 km was adopted after some cursory sensitivity checks. 

In order to develop a predictive model for the spatial 

correlation of Arias Intensity at any two sites separated by h, a 

continuous function must first be fitted to the empirical 

semivariograms that are obtained for each considered event. 

Jayaram and Baker (2009) considered a series of common 

models for semivariograms that can generally be defined as a 

function of just two parameters: the sill of the semivariogram, 

a , and the range of the semivariogram, b . It is this possible 

to write a generic expression for common spatial correlation 

models as in Equation (8): 

 

    ; ,h f h a b   (8) 

 

As noted by Jayaram and Baker (2009), once a model for the 

semivariogram has been obtained, the model for the spatial 

correlation follows directly from the expression in Equation 

(9) in which  h  represents the correlation model that we 

eventually desire. 

 

    1h a h      (9) 

 

It should be noted that the sill of a semivariogram is 

equivalent to the variance of the intra-event residuals when no 

spatial correlation is taken into account. Therefore, if one were 

to work directly with normalized intra-event residuals the 

expected variance of these residuals would be equal to unity 

and the expression in Equation (9) would simplify even further 

to become simply a function of a single parameter; the range 

of the semivariogram. 

 

EXPERIMENTAL SEMIVARIOGRAMS FROM THE 

NORTHRIDGE AND CHI-CHI EARTHQUAKES 

 

In this paper, the well recorded earthquakes of Northridge and 

Chi-Chi were used to investigate the feasibility of developing 

a model for the spatial correlation of Arias Intensity. For each 

earthquake, the coordinates of the recording stations were used 

to compute the separation distances of all sites and distance 

bins hi were defined to have width δh = 2 km. Pairs of sites 

separated by distance hi were then grouped into bins and the 

empirical semivariograms subsequently derived. 

 

As previously mentioned, it is advantageous to work with the 

normalized intra-event residuals for the two earthquakes. 

Furthermore, it would be most desirable if the variance 

estimates for all earthquakes were identical (as is assumed in 

regression analyses). However, it is possible for the residuals 

from an individual earthquake to have a variance that 

differences from the intra-event variance of a predictive model 

and it is also possible for the predictions for a subset of 

observations from an individual event to also be biased. The 

use of inter-event residuals should act to ensure that the mean 

logarithmic motions for a particular event are equal to zero. 

However, in some cases one does not make use of all available 

records from a particular earthquake (it is possible for isolated 

sites to have large separation distances from all other sites and 
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there is no point in including this observation among those 

used to develop the correlation model. For these reasons, the 

first step that was taken was to check that the mean and 

standard deviations of the residuals from each of the two 

considered events were very close to the values dictated from 

the regression analysis. While the mean residuals were found 

to be very close to zero (as expected) it was found that the 

standard deviations of the residuals from these two events 

were significantly lower than the intra-event standard 

deviation found from the regression analysis. The standard 

deviation of the residuals for the Chi-Chi and Northridge 

events were 0.768 and 0.732 respectively while the intra-event 

standard deviation of the model is 0.898. This discrepancy is 

most likely associated with the influence that some of the 

recordings from the Chi-Chi aftershocks are having in terms of 

inflating the variance and may also be due to the fact that 

these earthquakes are very-well studied and as such the 

metadata is very good for these events. Both of these aspects 

are the subject on ongoing investigation and it is likely that 

some modification to the variance structure of the proposed 

Arias intensity model will be required. 

 

In order to overcome the problems associated with different 

standard deviations we normalized the intra-event residuals by 

their group-specific standard deviation. This normalization 

should act to ensure that the variance implied by the 

semivariogram tends to unity at large separation distances and 

also results in correlation values that tend to zero as the 

separation increases (as we would expect). 

 

In addition to checking that the mean and variance of the 

residuals for the individual events were consistent with what 

we expected, it was also necessary to check that there were no 

trends in Chi-Chi and Northridge residuals when plotted 

against distance. When undertaking the regression analyses it 

is implicitly assumed that the distance scaling for all 

earthquakes is the same. It should not be surprising to learn 

that this is not generally the case. Earlier it was mentioned that 

it is important to appropriately model the nonlinear site 

response in order to ensure that artificial correlations are not 

implied through biased model predictions that systematically 

lead to groups of events with higher-than or lower-than 

average motions. For the same reason it is important to check 

that the distance scaling is appropriate for the individual 

events. This check was performed for both events and no 

statistically significant trends in the residuals with respect to 

distance were found. 

 

After inspection of the empirical semivariograms, it appears 

appropriate to truncate the dataset at h = 100 km for the Chi-

Chi event and to truncate at h = 50 km for the Northridge 

event. The reasons for this are threefold. Firstly, when fitting 

the model to the empirical data it is important to model the 

structure of the semivariogram well at small separation 

distances. Secondly, large separation distances (h >100km) 

are associated with low correlations which will have little 

effect on the joint distributions of Arias Intensity (Jayaram and 

Baker, 2009). Finally, it was found that spurious values were 

obtained when large separation distances were considered. 

Given that these values are of almost zero relevance to all 

practical cases it was decided to limit the range considered for 

the development of the models. 

 

Jayaram and Baker (2009) outlined some of the most common 

models that have been fitted to spatial data in various fields. 

Of the models that they considered, they decided that the 

exponential model was the most appropriate for general 

application but found that common fitting procedures were not 

optimal for obtaining the model parameters. The reason for 

this is that while an optimal fit may be obtained in a statistical 

sense, such a fit will be governed by the performance of the 

fitted model over the full range of data that is considered. 

When the primary interest is upon the correlations at short 

separation distances it is desirable to ensure that a good fit is 

obtained in this region as a priority. To this end, Jayaram and 

Baker (2009) employed a manual fitting approach in which the 

model parameters were simply selected using visual 

judgement. 

 

In the present study we prefer not to use the manual fitting 

procedure and instead employ a weighted least squares 

approach that has been proposed by Cressie (1985). This 

approach systematically gives higher weight to the 

observations at small separation distances and also takes into 

account the differing numbers of observations (pairs) that are 

contained in a bin at a given separation distance. The formal 

derivation is provided in Cressie (1985), but the method 

comes down to minimizing the loss function give in Equation 

(10). 

 

 
 

 

2

1

ˆ

1
;

j

k
j

h

jj

h
N

h






 

 
 
 


λ

 (10) 

 

In Equation (10), λ  represents the vector of parameters that 

define the spatial correlation model and that are modified in 

order to minimise the loss function given in this expression. 

The term  ;h λ  represents the correlation model and in the 

present article two alternative models are considered. The first 

model is that preferred by Jayaram and Baker (2009) and is 

referred to as the exponential model. This model is given here 

in Equation (11). 

 

   1 exp 3
h

h a
b


  

    
  

 (11) 

 

In the case that normalized residuals are used we should 

normally expect the sill, a, to be very close to unity. 

Therefore, in practice the expression in Equation (11) really 

only has one free parameter. In order to consider another 

model that has more freedom to adapt itself to the empirical 

data a sigmoid function was employed. The sigmoid function 

is particularly flexible and can also be configured to have the 

desirable characteristics of tending to zero as the separation 
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distance decreases and tending to unity as the separation 

distance increases. The sigmoid function for this application 

has just two parameters, just as the expression in Equation 

(11) does, but both parameters are able to make a significant 

contribution to the general form of the function. The 

expression for the sigmoid model is given below in Equation 

(12). 

 

  
  1

2

1

ln
1 exp

h
h







 

  
 

 (12) 

 

Examples of the models that have been obtained through the 

use of these two functional forms are given in Fig. 11. In this 

figure the data from the Chi-Chi and Northridge events are 

shown and the empirical semivariogram is determined using 

the robust estimator. 

 

 
Fig. 11. Example fits of the spatial correlation models of 

Equations (11) and (12) to the Chi-Chi (upper panel) and 

Northridge (lower panel) earthquakes. 

 

Very different model fits are obtained for both of these 

earthquake events. In both cases the fitted models do an 

adequate job of capturing the general features of the scaling of 

the correlation with separation distance. However, it is also 

clear that the exponential model significantly over-estimates 

the semi-variance of the Chi-Chi event over a considerable 

range of values that can be of potential importance to an 

earthquake loss analysis. The sigmoid model performs 

marginally better, but is still not able to capture the specific 

features of the empirical semivariograms. 

 

In order to present a clearer picture of how these models are 

performing in the regions of greatest relevance to most 

engineering applications, i.e., at very short separation 

distances, Fig. 11 is replotted using a logarithmic abscissa and 

is presented here as Fig. 12. 

 

 
Fig. 12. The same fits shown in Fig. 11, but plotted using a 

logarithmic abscissa in order to accentuate the differences in 

the models for small separation distances. 

 

The parameters of the models that have been obtained for 

these two events are presented in Table 3. As expected, the sill 

parameter is reasonably close to unity in both cases. However, 

the other parameters show considerable variability and it is 

clear that no generic trends can be inferred from just these two 

earthquake events. 

 

Table 3. Model coefficients for the functional forms of 

Equations (11) and (12) and obtained from consideration of 

the Chi-Chi and Northridge earthquakes. 

 

Model Parameter Chi-Chi Northridge 

a 0.9675 0.9113 

b 31.7127 3.4304 

1 -1.9046 0.8896 

2 0.9987 1.7603 
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DISCUSSION 

 

This article has introduced a new empirical prediction 

equation for Arias intensity. The model has been shown to be 

robust and is also significantly different to the model of 

Travasarou et al. (2003) that is currently regarded as being the 

most robust model for Arias intensity that is generally 

applicable worldwide. The article has also investigated models 

for spatial correlation among Arias intensity values at multiple 

site locations. Thus far, just two earthquake events have been 

considered and the model parameters that have been obtained 

are markedly different for each of these events. It is clear from 

this work that further efforts must be directed at understanding 

the cause of these discrepancies so that we may know whether 

or not it will be feasible to develop a generic model for 

describing the spatial correlation among Arias intensity 

values. The new empirical prediction equation for Arias 

intensity may certainly be implemented for practical 

application in its current form. However, some minor 

modifications to this model are likely to arise from ongoing 

work that is investigating the nature of the variance structure 

that has been adopted so far. At this point in time, general 

recommendations for modeling spatial correlations cannot be 

made. It may well be that the most appropriate course of 

action that can be taken when the need arises to estimate the 

effects of ground motions on spatially-distributed systems is to 

implement spatial correlation models for spectral ordinates 

and to the obtain consistent models for Arias intensity through 

correlation relationships between these two intensity 

measures. 

 

The ultimate aim of the work that is ongoing is to enable 

improved estimates of damage to spatially distributed systems 

to be made. In particular, initial efforts are being directed at 

incorporating spatial characteristics of ground motions and 

topography into models for landslide susceptibility and slope 

displacements. In any loss estimation analysis that includes the 

effects of ground failure, the probability of landslides 

occurring and their subsequent displacements are required. 

Modeling the spatial distribution of Arias intensity, obtained 

from equations such as those presented in this paper, is 

essential in order to accurately predict the probability of a 

landslide occurring as well as predicting the extent of the 

displacement related to this slide. 

 

 
Fig. 13. Flowchart indicating the process via which spatially 

correlated ground motion fields may be incorporated within a 

loss estimation framework. 

 

A schematic representation of the method via which these 

spatial features of ground motio may be implemented within a 

loss estimation framework that includes the effects of 

landslides is shown in the flowchart presented in Fig. 13. 

 

For a given earthquake event, a landslide susceptibility map 

could be produced based on known local soil properties. The 

landslide susceptibility map, in conjunction with a map 

describing the spatial distribution of Arias intensity obtained 

using the new empirical relation presented in this paper and a 

model for the spatial correlation would be used to predict 

slope failures. Predicted slope displacements are then 

calculated and used to estimate landslide-induced losses to a 

spatially distributed system of interest, for example a lifeline 

network. 

 

This article has taken a significant step towards enabling the 

framework shown in Fig. 13 to be implemented in practice. 

However, it is clear that more work is required before generic 

recommendations can be made regarding the nature of a 

spatial correlation model for Arias intensity. 
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