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GENERATING REALISTIC GROUND MOTIONS FOR NONLINEAR 
SEISMIC HAZARD ANALYSIS- AN APPLICATION TO HARD ROCK 

SITES IN EASTERN NORTH AMERICA 
 
Jale Tezcan 
Southern Illinois University-Carbondale  
Carbondale, IL-USA 62901 
 
 
 
ABSTRACT  
 
This paper aims to determine the dependence of seismic response on the shape of the time-domain filter used in the stochastic method 
of ground motion prediction. Brune’s single-corner point source model was used in conjunction with the current attenuation 
relationships developed for hard rock sites in the Eastern North America (ENA) to obtain the target ground motion spectrum. A total 
of three hundred synthetic accelerograms were generated by filtering the Gaussian white noise with exponential, triangular and 
trapezoidal windows. For each accelerogram, displacement response of the Duffing’s oscillator was calculated, and its average 
amplitude spectrum was constructed in the joint time-frequency domain using Mexican hat wavelets. This procedure was repeated for 
three levels of nonlinearity. Among the three shapes examined, the trapezoidal window was associated with longer durations of 
sustained energy, thereby increasing the level of the expected damage. The dependence of the seismic response to the particular filter 
shape became more pronounced with increased levels of nonlinearity. This study concludes that ground motions with the same Fourier 
Amplitude Spectrum could cause substantially different levels of seismic damage on the same structure, depending on the time-
frequency localization of the energy imparted to the structure. 
 
 
INTRODUCTION 
 
The stochastic method is a practical tool to predict ground 
motions for regions like Eastern North America (ENA), where 
the amount of recorded ground motion data are not sufficient 
to perform seismic hazard analysis using statistical procedures 
The stochastic approach generates sample records that are 
statistically similar to those expected at a given site, due to an 
earthquake of specified magnitude.  The most critical step in 
the stochastic method is the formulation of the ground motion 
spectrum, which takes into account the source, path and local 
site effects.  Ground motions compatible with the target 
spectrum are generated by filtering a zero mean and unit 
variance Gaussian white noise and windowing the filtered 
noise in the time domain to control the shape of the resulting 
ground motion.   
 

At the core of the stochastic method described above, lies the 
assumption that the ground motion is a stationary random 
process. This assumption is not realistic, since earthquakes 
with the same spectra can exhibit a considerable difference in 
destructiveness depending on the rate of energy input in the 
time domain (Shinozuka 1970; Drenick 1977).  Figure 1 
shows two signals with the same frequency content, that 
exhibit apparent dissimilarity in the time domain. Their 

Fourier Amplitude Spectra are indistinguishable, since time 
domain localization is lost.   
 

 
 

Fig. 1.  Common Fourier Spectra of two signals 
 
Although time domain windowing procedure used in the 
stochastic method introduces some time dependence into the 
spectrum, the potential implications of the resulting change on 
seismic hazard analysis are commonly ignored. Since the 
selection of the window shape is somewhat arbitrary, the 
resulting linear response spectra do not seem to be highly 
sensitive to the shape of the windowing function.  Considering 
that it is not economical to design structures to remain in the 
linear elastic range during moderate to large earthquakes, it 



becomes crucial to investigate the effect of the selected 
window shape, thus the time dependence of the spectrum, on 
the response of nonlinear structures.   
 
In this study, a total of three hundred sample accelerograms 
representing the expected ground motions for hard rock sites 
in the ENA were generated using using exponential, triangular 
and trapezoidal windows.  The Duffing’s oscillator, a classical 
example in nonlinear vibrations, was  used in this study for  
the response simulations. Duffing’s oscillator is a 
mathematical model representing a  Single Degree of  
Freedom (SDOF) system with cubic nonlinearity in stiffness 
(Caughey 1963; Iwan 1969).  Since the Duffing’s oscillator 
describes the response of several physical systems under 
harmonic loads, its response has been studied by many 
researchers  (Caughey 1971; Nayfeh and Mook 1979; Roberts 
and Spanos 1986).  Although several method have been 
developed for  special loading conditions, its explicit solutions 
under general loading conditions do not exist; numerical 
methods are necessary for time history  simulations. This 
study uses a 4th order Runge-Kutta algorithm for 
displacement response calculations.  
 
Since the accumulation of seismic damage depends on the 
time-frequency localization of the energy imparted to the 
system, the displacement response was transformed to the 
wavelet domain using the Mexican hat wavelets.  The time-
frequency patterns observed in the system response for the 
three windowing functions were investigated, and the effect of 
system nonlinearity was discussed.    
 
 
THE GROUND MOTION MODEL 
 
The ground motion spectrum at a given site is often expressed 
as a product of source, path and local site effects.  The Fourier 
Amplitude Spectrum of the horizontal component of the 
ground acceleration ( )F f  is related to the source spectrum, 

, path effects, , and  site effects, , as 
follows (Boore 2003): 

0( ,E M f ) ( , )P R f ( )G f

 
( )2

0( ) 2 ( , ) ( , ) ( )F f f E M f P R f Gπ= ⋅ ⋅ ⋅ f  (1) 
 
where  is the seismic moment,  is the  
hypocentral distance, 

0 (dyne-cm)M (km)R

( )Hzf  is the cyclic frequency. The 
moment magnitude and  the seismic moment are related to the 
moment magnitude through the equation (Aki 1966; Hanks 
and Kanamori 1979) : 
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The source spectrum   is given by:  0( ,E M f )

)
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where  ( )0 ,S M f  is the displacement source spectrum and  
is the scaling factor defined as (Boore 1983) : 
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In Eq.(4), is the average shear wave  radiation 
pattern  (Boore and Boatwright 1984), is the 
partition of the total energy carried by the two horizontal shear 
wave components, 

=0.55 Rθφ

=0.707 V

=2 F is the free surface amplification 
factor, ( )3/s g cmρ and are the crustal density and 
the shear wave velocity in the vicinity of the point source, 
respectively, and  

( /s km sβ )

0 1 kmR =  is a reference distance.  
 
Proper selection of the source model plays a critical role in 
ground motion modeling as the displacement source spectrum 

 models the frequency distribution of the seismic 
energy released during an earthquake.  When the seismic 
energy can be assumed to originate from a point source, 
Brune’s point source model can be used to define  
as (Brune 1970):  
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Brune’s model requires a corner frequency, ( )0f Hz , which 
can be calculated from the seismic moment 0M , stress drop 
σ∆  and the shear wave velocity sβ ,  using:   

 
1/ 3
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0 4.9 10 s

o

f
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⎝ ⎠
. (6) 

 
The path term, , in Eq.(1) models the anelastic 
attenuation and geometric spreading, and is given by:   

( , )P R f

 

0( , ) ( ) exp
( ) s

f RP M f Z R
Q f
π

β
⎛ ⎞−

= ⋅ ⎜
⎝ ⎠

⎟ . (7) 

 
where ( )Z R  is a trilinear function representing  the  geometric 
spreading as a function of the closest distance to the rupture 
surface, . The term accounts for the path 
dependent attenuation not included in 

(km)R ( )Q f
( )Z R  term.  This paper 

adopts  (Atkinson 2004).   For the Eastern 
North America (ENA),  the geometric spreading function is 
(Atkinson and Boore 1995; Frankel, Mueller et al. 1996): 

0.32( ) 893Q f f=
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The site term  in Eq.(1) accounts for the local 
amplification

( )G f
( )A f and diminution  effects, and  is 

given by:  
( )D f

 
( ) ( ) ( )G f A f D f=  (9) 

 
When shear waves move from the bedrock to softer soil, their 
propagation velocity decreases as a response to the decreased 
elastic modulus, amplifying the ground motion.  This increase 
is modeled by frequency dependent amplification factors, 
which can be calculated by the quarter wavelength method  
(Joyner and Boore 1981; Campbell 2003). Table 1 shows the 
amplification factors adopted in the study, which are derived 
for hard rock sites in the ENA (Atkinson and Boore 2006).  
 
 
Table 1 Site Amplification factors for NEHRP A (Atkinson 
and Boore 2006)  
 

Frequency 
( )f Hz  

Amplification Factor 
( )A f  

  
0.5 1.00 
1 1.13 
2 1.22 
5 1.36 

10 1.41 
50 1.41 

 
 
The diminution function  in Eq. (9)  is a low-pass filter 
representing the spectral amplitude reduction observed at high 
frequencies.  This reduction is commonly modeled either 
using the kappa parameter,  which relates the damping with 
the shear wave velocity over the soil column, or defining a 
cutoff frequency  (Hanks 1982).  The parameter 

( )D f

,κ

maxf κ is the 
slope of the log spectra versus frequency curve (Anderson and 
Hough 1984): 
 

 ( ) fD f e πκ−=  (10) 
 
For hard rock sites in ENA, the kappa parameter has little 
influence on the simulation results for high frequencies 
(Atkinson and Boore 2006).  To induce a sharp decrease in the 
spectral amplitudes after  a cutoff frequency , the 
diminution function can be defined as (Boore 1986): 

maxf

 

8

max

1( )

1

D f
f

f

=
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

. (11) 

 
The cutoff frequency used in this study, is given in Table 2, 
where the ground motion parameters are listed. 
 
 

Table 2  Ground motion parameters used in this study 

Parameter Value 
  
Magnitude, M 7 
Stress drop, σ∆  150 bars 
Hypocentral distance,  R 10 km 
Crustal density, sρ  2.8 g/cm3

Shear wave velocity, sβ  3.7 km/s 
Cut-off frequency,   maxf 50 Hz. 

 
 
GENERATION OF SPECTRUM-COMPATIBLE 
ACCELEROGRAMS 
 
Three sets of one-hundred time series were generated  by 
filtering  zero- mean and unit-variance Gaussian white noise.  
The series were multiplied by one of the three windowing 
functions: exponential ( )1g , triangular ( )2g and trapezoidal 

( )3g . Figure 2  shows the windowing functions used.   
 
 

 
Fig. 2.  Time domain windowing functions 

 
The functions 1( ),g t 2 ( ),g t and  3 ( )g t  are defined as:  
 

1( ) b ctg t at e−=  (12) 
 

2

4                    
4

( )
41   

3 4

t Tt
T
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T Tt t

T
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 (13) 
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The parameters  in Eq. (12) are related to the 
duration and the peak amplitude of the window. The duration, 

 is taken as twice the sum of source duration 

,  and a b c

T sT and path 
duration pT   (Boore 1983): 
 

2( )s pT T T= +  (15) 

1 sample 

 
The source duration is the inverse of the corner frequency :  0f
 

0

1
sT

f
=  (16) 

 
and the path  duration  is (Atkinson and Boore 1995):   
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All accelerograms in this study have the same duration, since 
the magnitude and distance were kept constant.  
 
Next, each time series was transformed to the frequency 
domain, and its Fourier spectrum was scaled to fit the target 
spectrum.  Finally, the scaled Fourier amplitude spectrum was 
transformed back to the time domain by inverse Fourier 
Transform to produce the sample ground motion record.  
 
Figure 3 shows the convergence of the simulation results to 
the target spectrum, as the sample size is increased.   The 
simulation results show that the Fourier amplitude spectrum 
averaged over one hundred samples, successfully matches the 
target spectrum. Only the results from the exponential 
windowing are shown, the other two cases produced similar 
results.   
 
 
 

 

 

 

10 samples 

100 samples 

 

Fig. 3.   Target and simulated spectra using 1, 10 and 100 
samples with an exponential window 
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CALCULATION OF THE SYSTEM RESPONSE 
  
This paper considers the Duffing’s oscillator with the 
following equation of motion:  
 

2 32 (n n )x x x x fζω ω λ+ + + =&& & t  (18) 
 
where λ  is the nonlinearity parameter and ζ  and nω  are the 
damping ratio and the natural frequency of the corresponding 
linear system, i.e. when 0λ = . 
 
The damping ratio and the natural frequency were kept 
constant at  5%ζ =  and  2n radiansω π= ,  while the 
nonlinearity parameter  took the values 0,1 and 5λ = .  Figure 
4 shows the target ground motion spectrum, and the unscaled 
frequency response function.  
 
 

 
Fig. 4.   Target Spectrum and the Frequency Response 

Function (FRF) of the linear SDOF system  

 
For each of the three windowing functions, one hundred 
sample records were generated, and the solution of  Eq (18)  
was  found for the cases of  0λ = , 1λ =  and 5λ =  using  a 
4th order Runge-Kutta algorithm.   
 
Figure 5, Fig. 6 and Fig. 7 show typical displacement time 
histories for samples filtered with the exponential, triangular 
and trapezoidal windows, respectively.  
 
 

 
Fig. 5.   Ground acceleration and displacement response for 

the exponential window  

 

 
Fig. 6.   Ground acceleration and displacement response for 

the triangular window  
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Fig. 7.   Ground acceleration and displacement response for 

the trapezoidal window  

 
Comparison of the maximum displacement amplitudes 
indicates that the nonlinear system response exceeds the linear 
system response, sometimes by a factor of 1.3. Since the 
system has cubic hardening effect when 1λ =  or 5λ = , this 
result may seem  counterintuitive. However, nonlinear 
phenomena, such as bifurcation and jump phenomenon 
explain the observed behavior of the Duffing’s oscillator. It 
has been shown that the maximum amplitude of the Duffing’s 
oscillator can be several times larger than that predicted by 
linear theory. (Yang, Nayfeh et al. 1998).  
 
The deviation from the linear response for all the three cases, 
becomes more pronounced with increased displacement 
response. Among the three filter shapes, the exponential 
window, as Fig. 5 shows, presents the case where the effect of 
nonlinearity is the smallest.   For the triangular case, as shown 
in Fig. 6, the high deviation from the linear case is mostly 
limited to the mid one-third region of the displacement 
history. In the case of the trapezoidal window, Fig. 7, the 
deviation is still remarkable in the last one-third region of the 
time history.    
 
 
WAVELET ANALYSIS OF THE RESPONSE 
 
The wavelet transform decomposes a signal ( )x t  into basis 
functions that are dilations and translations of the mother 
wavelet ( )tψ  through the convolution (Daubhechies 1992; 
Meyer 1992):  

 

*1( , ) ( ) ( )t bW x a b x t dt
aaψ ψ

∞

−∞

−
= ∫  (19) 

 
where *ψ  is the complex conjugate of the wavelet,  and b  
are  the scale and  the time  parameters of the wavelet, 
respectively. The coefficients  measure the 
similarity between the signal and the scaled and translated 

wavelet, 

a

( , )W x a bψ

( t b
a

ψ )− .  The square of the wavelet coefficient 

2
( , )W x a bψ   is proportional to energy of ( )x t  contained in 

the time-frequency grid represented by the scaled and 
translated wavelet (Spanos, Tezcan et al. 2005).  
 
This study uses the Mexican hat wavelet, a frequently used 
wavelet in modeling seismic data., The Mexican hat wavelet is 
very efficient for time-frequency decomposition of the ground 
motion from a single source rupture (Zhou and Adeli 2003).  
Figure 8 shows the Mexican hat wavelet function, which is the 
second derivative of the Gaussian  probability density function 
(Daubhechies 1992): 
 

 

( ) 21 4 2 22( ) 1
3

ttψ π −⎛ ⎞
= −⎜ ⎟
⎝ ⎠

t e− . (20) 

 

 
Fig. 8.   Mexican hat wavelet function  

 
Wavelet coefficients of the displacement response, discussed 
in the previous section, were computed using the Mexican hat 
wavelet., Wavelet amplitude spectra of the displacement 
response, averaged over one hundred realizations, 
corresponding to accelerograms filtered with exponential, 
triangular and trapezoidal windows are shown in Fig. 9, Fig. 
10 and Fig. 11, respectively.  
 
Examination of the time domain behavior of the amplitude 
spectra, supports the discussions presented in the previous 
section. In the frequency domain, for all cases, the earthquake 
energy is concentrated around , which is the chosen 
undamped natural frequency of vibration of the system.  A 
closer examination reveals an upward shift in the frequency 
level where the energy is concentrated, for the two nonlinear 
cases, 

1f H= .z

1λ =  and 5λ = . As expected, this shift is more 
apparent for the higher nonlinearity case, 5λ = .  
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Fig. 9.  Wavelet amplitude spectra of the displacement 
response for 0λ = , 1λ =  and 5λ = using exponential 

window. 
 

 
Fig. 10.  Wavelet amplitude spectra of the displacement 

response for 0λ = , 1λ =  and 5λ = using triangular window. 
 

 
 

Fig. 11.  Wavelet amplitude spectra of the displacement 
response for 0λ = , 1λ =  and 5λ = using the trapezoidal 

window. 
 
 
CONCLUSION  
 
This study investigates the dependence of the system response 
on particular shape of the windowing function used in the 
stochastic method of ground motion generation. Three sets of 
one-hundred synthetic time series, that are compatible with a 
target spectrum representing the hard rock sites in the Eastern 
North America (ENA), were generated by  filtering white 
noise using one of the three windowing functions: exponential, 
triangular and trapezoidal. For each accelerogram, the 
displacement history of the Duffing’s oscillator, a classical 
example in nonlinear vibrations, was calculated using a 4th 
order Runge-Kutta algorithm. To observe the time-frequency 
localization of the earthquake energy, the system response is 
mapped to the wavelet domain using Mexican hat wavelets. 
The effect of the window shape on structural response for 
different levels of nonlinearity was discussed.   
 
Analysis results indicate that responses to accelerograms 
matching a certain target spectrum can have different energy 
localization patterns. Among the three windows used in this 
study, the trapezoidal window was associated with longer 
durations of sustained energy, potentially causing increased 
numbers of strain reversals, ultimately increasing the level of 
the expected damage. The Duffing’s system with stronger 
nonlinearity was more sensitive to particular  shape of the 
windowing function, presenting additional challenges to their 
seismic performance assessment.  
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