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APPLICATION OF GENERAL REGRESSION NEURAL NETWORKS (GRNNS) IN 
ASSESSING LIQUEFACTION SUSCEPTIBILITY 

 
Suzan S.Salem      Khalid El-Zahaby  
Soil Mechanics and Foundation Engineering Department Soil Mechanics and Foundation Engineering Department 
Housing & Building Research Center, Giza, Egypt  Housing & Building Research Center, Giza, Egypt 
 
 
 
ABSTRACT 
 
Liquefaction is considered among the most important hazards associated with earthquakes. The damage resulting from seismic liquefaction 
may be huge; thus, there always exists needs to mitigate the damage associated with such risks.  
 
One of the main problems challenging geotechnical engineers is how to assess the seismic liquefaction hazard. Statistical and probabilistic 
approaches for seismic liquefaction are currently available.  
 
In this paper, a general regression neural networks approach (GRNNs) has been used to assess the liquefaction hazard in Egypt. Thus, data 
from new locations can be analyzed using GRNNs to obtain the liquefaction risk associated with this new site. The computer package 
“Neuroshell 2®” has been extensively used to build up the GRNNs models. Highly encouraging results have been obtained in the field of 
seismic liquefaction mitigation.             

 
 

INTRODUCTION 
 
The evaluation of seismic liquefaction hazard involves 
considering a large number of variables. Though a broad range 
of conventional methods tackling the problem of assessing 
seismic liquefaction exists, most of these means tend to be 
sophisticated. It has to be noted that liquefaction does not occur 
randomly but is induced by certain combinations of geologic 
settings and ground shaking level ([1], [2], [3], [4] and [5]).  

 
The importance of the problem of seismic liquefaction arises 
from its catastrophic consequences. Fortunately, practical  
solutions do exist to mitigate such effects. The only dilemma is 
to precisely predict the site location subjected to liquefaction so 
as to take active steps towards minimizing the damaging effects 
of this criterion. Several methods are available for the problem 
of seismic liquefaction assessment; some are statistical, while  
others are probabilistic [6] to [15]. In both methods, some 
important data may be missing, though essential to be  
incorporated in the analysis. It is extremely difficult to use the 
conventional techniques to account for such data type. To the 
contrary, upon the invention of high speed, as well as great 
capacity personal computers, soft computing techniques started 
to gain popularity among researchers. These techniques, simply 
provide a suitable tool for considering as much information as 
required to precisely assess the problem under study; 
liquefaction in this case. Recently, Geographic Information 
Systems (GIS) have also been used to analyse spatial 

liquefaction data. Luna and Frost [16] have succeeded in 
developing a GIS that uses both spatial and temporal attributes. 
Though, practically speaking, access to the digital database of a 
specific problem in geotechnical engineering applications is still 
the exception rather than the rule, the ability to work with digital 
information from a database to analyze, display, and vice versa 
represents a significant advance for engineering analyses. In all 
cases, the variables influencing seismic liquefaction can be 
subdivided into three categories, seismic, geotechnical and site 
related aspects.  

 
Usually, liquefaction takes place in saturated sandy soils; yet, 
several cases have been recorded from past earthquakes where 
saturated sands containing various percentages of silt, have also 
suffered liquefaction. Amini and Qi [17] experimentally proved 
that the increase in silt content causes the liquefaction resistance 
of silty sands to increase for both uniform and layered soil 
conditions. Although it is possible to identify areas that have the 
potential for liquefaction, its occurrence cannot be predicted any 
better than a particular earthquake can be (with a time, place, 
and degree of reliability assigned to it). Once these areas have 
been defined in general terms, it is possible to conduct site 
investigations that provide very detailed information regarding a 
site's potential for liquefaction. 

 
In many situations in geotechnical engineering, it is possible to 
encounter some types of problems that are very complex and not 
well understood. For most mathematical models that attempt to 
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solve such problems, the lack of physical understanding is 
usually supplemented by either simplifying the problem or 
incorporating several assumptions into the models. Mathematical 
models also rely on assuming the structure of the model in 
advance, which may be sub-optimal. Consequently, many 
mathematical models fail to simulate the complex behaviour of 
most geotechnical engineering problems. In contrast, ANNs are 
based on the data alone in which the model can be trained on 
input-output data pairs to determine the structure and parameters 
of the model. In this case, there is no need to neither simplify the 
problem nor incorporate any assumptions. Moreover, ANNs can 
always be updated to obtain better results by presenting new 
training examples as new data become available. 

 
Based on the results of the studies reviewed in this paper, it is 
evident that one of the widely available soft computing 
techniques, namely, artificial neural networks, perform better 
than, or as well as, the conventional methods used as a basis for 
comparison in many situations, whereas, they fail to perform 
well in a few. Thus, in this paper, ANNs is used to assess the 
problem of seismic liquefaction.  
 
PROBLEM  STATEMENT 
  
Seismic liquefaction constitutes a major challenge to engineers 
due to the hazards and possible dramatic casualties associated 
with it. To mitigate such consequences, it is initially vital to 
predict the sites, regions or locations susceptible to seismic 
liquefaction. The better judgement for such predictions requires 
the collection of precise and high quality data. In addition, the 
quantity of the collected data is directly proportional to the 
precision of the output results. One of the most appropriate tools 
to be used in the current application exists within soft computing 
methods, namely, artificial neural networks. Section 4 of this 
paper depicts briefly an overview for artificial neural networks, 
the terminology and mechanism they work with. The type used 
in this study, general regression neural networks (GRNNs), is 
also highlighted. 
 
 
DATA  COLLECTION 
 
The quality of the collected data comprises the spinal chord of 
the analysis of any project. In other words, once a high quality of 
data exists, rational output is expected. The database used in this 
study has been collected from a chain of geotechnical reports 
performed at a group of scattered islands within the middle third 
of the river Nile of Egypt. To be more specific, data collected 
from 10 islands existing within the governorates of Assuit, 
Menia and Beni-Sueif present the main source of data used in 
the analysis. A single site in Beni-Sueif, 3 sites in Menia and 6 
sites in Assuit have been considered. The analysis extends up to 
15 m deep, per site. The studied islands have been chosen by the 
authors as they represent relatively recent geological formations 
that constitute a fertile field for liquefaction to occur. Detailed 
geotechnical field and laboratory investigations have been 
performed at these sites. To be more realistic, geotechnical data 
has been collected from highly qualified consulting offices in 
Egypt, ensuring quality data from supervised in-situ works as 
well as accurate laboratory tests. 

The criterion used by [18] in assessing seismic liquefaction 
occurrence has been adopted in this study. The used method can 
be summarized as follows: 
1. A critical value for the N value obtained from SPT, Ncri is 

computed based on an initial value depending on the 
earthquake intensity; depth of penetration within the 
saturated soil; water table depth; and percentage of fines.  

2. The N value obtained from SPT is compared with the 
obtained Ncri.  

3. If (N > Ncri), no liquefaction is expected. 
4. If (N < Ncri), a liquefaction index, specifying the severity of 

liquefaction, is computed. The index is based, among other 
factors, on the number of tests exerted within the top 15m 
of the soil profile; SPT N value; Ncri; and a weight factor 
depending on the position of the considered depth. 

5. According to the value of the liquefaction index, the 
severity of liquefaction is determined; low, medium or high 
susceptibility to liquefaction.   

 
The database fields consist of the following geotechnical 
parameters: the depth under study; soil density; overburden 
pressure; pore water pressure; effective overburden pressure; a 
weight, Wi depending on the considered depth; SPT, N value; 
corrected N value (corrected according to the Egyptian Code of 
Practice, 2001); relative density; angle of shearing resistance; 
percentage of fines; and soil classification. In addition, the 
intensity of the earthquake is accounted for (intensities of 7, 8 or 
9 are considered). In addition, the closeness of the site to the 
source of the earthquake has been included in the analysis. Each 
of the intensities as well as the closeness to the earthquake 
source has been considered as a separate output. In other words, 
five different nets have been built for each case, e.g., the 
intensity equals 7 and the location is close to the source of the 
earthquake constitutes an independent net, while similar 
intensity but for far location has been considered as a different 
net. Details of the used nets will be described subsequently.       

 
 

ARTIFICIAL NEURAL NETWORKS (ANNs) 
 

The human beings' brain anatomy, considering the thinking 
process, has always been one of the extreme mysteries to 
scientists. Researchers have exerted efforts aiming at 
mechanically and electronically imitating the reactions of human 
beings. The invention of computers and the affordability of 
personal computers with significant processing speeds and huge 
capacities have encouraged researchers worldwide to tackle 
problems that have previously been out of the scope of their 
imagination. ANNs are one of these tools that can be considered 
as problem-solving programs modelled on the structure of the 
human brain where the neural network technology mimics the 
brain’s own problem-solving process. Neural networks can suit 
pattern recognition problems, while other problems are best 
solved with conventional methods. Tracing humans’ behaviour, 
a neural network takes previously solved examples to build a 
system of neurons that makes new decisions, classifications, and 
forecasts [19]. ANNs look for patterns in training sets of data, 
learn these patterns, and develop an ability to correctly classify 
new patterns, or to make forecasts and predictions. ANNs excel 
at problem diagnosis, decision making, prediction, and other 
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classifying problems where pattern recognition is important 
while precise computational answers are not required.  

 
In a supervised network, the network is shown how to make 
predictions, classifications, or decisions by giving it a large 
number of correct classifications or predictions from which it 
can learn. Back propagation networks (BPNs), general 
regression neural networks (GRNNs), and probabilistic neural 
networks (PNNs) are examples of supervised network types. On 
the other hand, unsupervised networks can classify a set of 
training patterns into a specified number of categories through 
clustering patterns rather than being shown in advance how to 
categorize. Kohonen networks are unsupervised ones ([20] as 
sited in [4]). 

 
Three basic entities specify ANNs’ models: namely, models of 
the neurons themselves; models of the synaptic interconnections 
and structures; and the training or learning rules for updating the 
connecting weights. A group of neurons is called a slab. Neurons 
are also grouped into layers according to their connection to the 
outside world. Thus, a neuron receiving data from outside the 
network is in the input layer while that containing the network’s 
prediction is in the output layer. Neurons in between the input 
and output layers are in the hidden layer(s). A layer may contain 
one or more slabs of neurons. 

 
Neural network “learns” by adjusting the interconnection 
weights between layers. Iterations take place until reaching an 
acceptable tolerance between the output results obtained by the 
network and the actual, correct output initially fed to the system. 
Eventually, if the problem can be learned, a stable set of weights 
adaptively evolves that will produce good answers for all sample 
decisions or predictions. The real power of ANNs is evident 
when the trained network is able to produce good results for data 
that the network has never seen before. Unlike statistical 
methods, ANNs “discover” relationships in the input data sets 
through the iterative presentation of the data and the intrinsic 
mapping characteristics of neural topologies “learning” [19]. 

 
Two main phases operate ANNs. First, the training or learning 
phase which is very time consuming since the data is repeatedly 
presented to the network, while weights are updated to obtain a 
desired response. The second phase is the recall or the retrieval 
phase, where the trained network with frozen weights is applied 
to data that it has never seen before. To the contrary of the 
training phase, the retrieval phase can be very fast. 

 
It is worth mentioning that a professional experience is the time 
to stop training. In other words, training may be insufficient and 
consequently the network will not learn the patterns, while the 
training may also be excessive which results in the network 
learning the noise or memorizing the training patterns rather than 
generalizing well with new patterns. A practical guide to 
overcome such problems is to randomly extract about 20% of 
the patterns in the training set to be used for cross validation. 
The error should then be monitored in the training and validation 
sets. When the error in the validation set increases, this is a 
signal to stop training where the point of best generalization has 
then been reached. Cross validation is amongst the most 
powerful methods to stop the training.   

Generally, neural networks offer viable solutions when there are 
large volumes of data available for training. Moreover, ANNs 
are considered appropriate solutions when field or experimental 
data is available and a problem is difficult, or impossible, to 
formulate analytically.  

 
In this paper, General Regression Neural Network (GRNN) has 
been used as a tool for the analysis. Specht [21] gave a 
comprehensive introduction to the GRNNs. The following 
subsections give brief explanations for the terminology used 
hereinafter. 
 
GRNN Architecture 
 
General Regression Neural Networks (GRNN) are types of 
supervised networks known for their ability to train quickly on 
sparse data sets. In general, GRNN responds much better than 
back -propagation to many types of problems (but not all). 
GRNN can have multidimensional input, and it will fit 
multidimensional surfaces through data [22]. 
 
GRNN is a three-layer network where there must be one hidden 
neuron for each training pattern. There exists a smoothing factor, 
described subsequently, that is applied after the network is 
trained. A GRNN network requires a comparison between the 
new pattern and each of the training patterns. 

 
Slabs: The number of neurons in the hidden layer is usually 
chosen identical, greater than or equal to, the number of patterns 
in the training set. The number of neurons in the input layer 
(Slab 1) is the number of inputs in the problem, while the 
number of neurons in the output layer (Slab 3) corresponds to 
the number of outputs. Upon the completion of the slabs, a 
scaling function for the input layer is selected. 

 
Links: A smoothing factor for each link should be determined. 
The same smoothing factor applies to all links. Adequate 
smoothing factor results after several experimental runs to 
discover which works best for the considered problem. The 
trained network is then applied to the pre-prepared training set, 
and perhaps a test set, using different smoothing factors to find 
out which one gives the best answers. 

 
GRNN Learning: GRNN is essentially trained after one pass of 
the training patterns, and it is capable of functioning after only a 
few training patterns have been entered. Obviously, GRNNs 
training improves as more patterns are added.  

 
Smoothing Factor: Higher smoothing factors cause more 
relaxed surface fits through the data. For GRNNs, the smoothing 
factor must be greater than 0 and can usually range from 0.01 to 
1 with good results. Trials are required to determine which 
smoothing factor is most appropriate for the available data. 
Fortunately, no retraining is required to change smoothing 
factors, because the value is specified when the network is 
applied.  
      
Training Patterns: GRNN training patterns are only presented 
to the network once.  
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Test Patterns: The number of test patterns propagated through 
the network.  
 
Background for the used Statistical Indicator: This 
subsection is concerned with introducing the main statistical 
indicator used in this paper; namely, R2, coefficient of multiple 
determinations. R2 is a statistical indicator usually applied to 
multiple regression analysis. It compares the accuracy of the 
model to the accuracy of a trivial benchmark model wherein the 
prediction is just the mean of all of the samples. A perfect fit 
would result in an R2 of 1, a very good fit near 1, and a very poor 
fit near 0. If the neural model predictions are worse than could 
be predicted by just using the mean of the sample case outputs, 
the R2 value will be 0.   
 
Use of ANNs in Liquefaction Assessment 
 
ANNs have been used by many researchers in the field of civil 
engineering (e.g., [4], [23] to [34]) yet, the applications in the 
field of geotechnical engineering are still scarce. Nevertheless, 
the Artificial Neural Networks technique has been utilized 
earlier in assessing liquefaction potential. Back propagation 
neural network (BPN) was used in the previously performed 
applications. Tung et al., [1] used BPN method to assess 
liquefaction by making use of 4 parameters applied to a Chinese 
data set. The 4 parameters used were: ground shaking intensity 
(MMI), ground water level, depth of liquefiable soil deposit, and 
SPT blow counts. Afterwards, another attempt took place where 
Goh [30] utilized 7 parameters to assess liquefaction 
susceptibility, based on CPT seismic liquefaction data, through a 
back propagation neural network algorithm. The 7 parameters 
used were: magnitude of the earthquake, effective overburden 
pressure (σ’0), total overburden pressure (σ0), qc from the cone 
penetration test, normalized peak horizontal ground acceleration 
at the grounds surface, cyclic stress ratio (τ/σ’0) and D50 of the 
soil. The latter study indicated that neural networks could 
successfully model the complex relationship between seismic 
parameters, soil parameters, and liquefaction potential. The 
model is simpler, yet as reliable as the conventional methods of 
evaluating liquefaction potential.   

 
In the current study, several neural networks have been 
developed using the neural network development program 
Neuroshell 2®. This program implements different neural 
network algorithms, including BPN, PNN, and GRNN. To use 
the program, a set of inputs and outputs must be defined, and a 
suitable training set has to be developed. The developed network 
in this paper consists of 12 input parameters and 5 different 
output parameters, each one depending on the earthquake 
intensity and the distance, whether close of far, from the source 
of the earthquake. 
 
 
ANALYSIS 
  
Thirteen GRNN models have been built for each of the five 
expected outputs. In other words, the output, including the result 
of whether, or not, the considered site is susceptible to 
liquefaction, according to the intensity of the earthquake and the 
closeness of this site to the source of the earthquake, presents a 

single output for each of the 13 built models.  Thus, a total of 65 
GRNNs has been developed. Each net is composed of three 
slabs; an input slab, a single hidden layer and an output layer. 
Table 1 presents the topology of the built network. 
 

Wi = 10   ds<5m 
Wi = 15 – ds  ds>5m 
Where ds is in meters                        (1) 

        
In the subsequent analyses, the production set has been included 
within all runs. Each of the runs has been repeated five times, 
twice for the earthquake intensity 7, close and far, denoted by 
NET7C, NET7F, respectively, twice for the intensity 8, close 
and far, NET8C, NET8F, respectively, and once for the 
earthquake intensity 9, NET9C, close to the earthquake 
epicenter.  

 
The original net, in each of the above five cases, has been 
designed using all the 12 input variables. The collected data 
records, consists of 98 tested sites, 19 of which were set aside to 
be used as a test set, 9 for the production set, whereas the 70 
remaining records have been used for the training of the net. The 
net has been trained to acquire the minimum possible error. 
Twenty generations has been set as an auto termination criterion, 
i.e., the program terminates automatically and the attained net is 
saved to be subsequently used if no significant improvement 
takes place after 20 generations. In addition, the genetic breeding 
pool size has been chosen to be 200. This number has been 
detected after several initial trials to attain the optimum net 
results in accordance to the number of the available data, to 
which the genetic breeding pool size is proportional. 
 

The R2 value for the whole pattern file, including all data, 
detected from the Table 1: Topology of the used GRNN 
original nets, have been 0.6254, 0.7527, 0.805, 1.000, 1.000 for 
NET7C, NET7F, NET8C, NET8F and NET9C, respectively.   
 
  
 
Table 1: Topology of the used GRNN 

   
Input Hidden Layer Output 

1. The depth under 
study; 

2. Soil density; 
3. Overburden 

pressure; 
4. Pore water 

pressure; 
5. Effective 

overburden 
pressure; 

6. Weight,Wi, 
according to 
Equation (1); 

7. SPT, N value ; 
8. Corrected N value; 
9. Relative density; 
10. Angle of shearing 

resistance; 
11. Percentageof fines; 
12. Soil classification 

Includes 98 
neurons 
representing the 
collected data 

A single output  among 
the following: 

1.No liquefaction; 
2. Low susceptibility; 
3.Medium 

susceptibility; and 
4.High susceptibility to 

liquefaction  
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Proposed Procedure 
 

A sensitivity study has been carried out. The aim of this study is 
to find out the relative importance of each of the 12 input 
parameters. The first step is to set a reference case in which all 
variables are considered, termed original net. Other steps follow 
in order to attain the required goal, namely, the influence of each 
of the considered variables. To do so, each of the variables is 
removed once and the influence factors of the remaining 
variables are studied. This step is repeated according to the 
number of the studied variables. The influence factors are sorted 
in a descending order, i.e., the most important variable is listed 
first, followed by the less important one, and so on. A global 
table is developed in which the frequency of repetition of the 
considered variable in a specific position is traced. Weights are 
given to each position so that a weighted average can then be 
computed.  

 
In this paper, an inverse weight criterion has been used in such 
computation. In other words, only eleven positions have been 
available upon the deletion of the variable under study. Thus, 11 
ratings are expected. The weight is considered to be “12-n”, in 
which n is the rank considered. After this preliminary step, the 
weighted average is computed as the product of the frequency of 
repetition by the assigned weight. The highest resulting number 
presents the most important variable influencing the problem 
under study. This is followed in a descending order by another 
slightly less important factor, and so forth. 

 
The weighted average procedure, adopted to sort the variables 
according to their importance can be summarized in the 
following steps. 

 Find out the frequency of occurrence of each of the 
variables in a specific rank, i.e., the first, or the most 
important position …etc. 

 Repeat the above step for all subsequent ranks up to 
the 11th position. 

 Assign weights for each of the obtained ranks.  In this 
paper, the weight is chosen to be (12-n), where n is the 
rank, e.g., the weight of the 3rd rank is 9. 

 Compute the weighted average for each of the 
variables.  

 Sort the resulting numbers in a descending order; thus, 
the highest obtained number presents the most 
important variable, and vice versa.   

 
Following this procedure, the 12 used variables have been sorted 
according to their influence in the considered problem. The 
variables may be further divided into three categories, most 
important, intermediately important, and least important.  

 
The utilized criterion accounts for all possible variations 
resulting in a better representation of the selected variable rather 
than that given by the Neuroshell 2® package. The latter takes 
the influence of the variable within the considered run only 
whereas the proposed criterion takes an integral measure to the 
variable’s importance among other ones. 
 

 

Table 2 shows the ranks of the used variables, where the most 
important variable ranks the first, and so forth 

 
Examining Table 2, the following can be noted: 
 
♦ All nets, except NET8C, are almost identical in the ranks of 

the variables. 
♦ The expected reason for the different trend encountered by 

NET8C is that it is located half ways between NET7C, 
NET7F from one side and NET8F, NET9C from the other 
side. To be clearer, for the same data at a specific site, no 
liquefaction may be encountered within the first two nets, 
while liquefaction may be detected within the last two nets. 
The intermediate net, NET8C may be either way. Thus, the 
net is trained differently with some hesitation, at most of 
the sites.    

♦ The percentage of fines usually comes first implying that it 
is the most important variable in the study. This is directly 
followed by the soil classification. Both variables can be 
considered from the same origin, i.e., the percentage of 
fines plays an important role in classifying soils. 

♦ The following most important group of variables is the 
relative density and the corrected N value from the SPT 
test. This finding is logical since the relative density, 
directly correlated to the corrected N value, constitute one 
of the crucial variables in the problem of seismic 
liquefaction to the extent that in some cases, e.g., [9], the 
liquefaction susceptibility can be detected via the relative 
density and the peak horizontal ground acceleration, 
compensated for in the current analysis by the intensity of 
the earthquake. 

♦ The next important two variables are the pore water 
pressure and the effective overburden pressure. In the 
authors’ opinion, these ranks are reasonable among others 
and again interchangeable. In other words, the pore water 
pressure is a direct need in computing the effective 
overburden pressure. 

♦ The studied depth appears in the seventh position and is 
adequately located among other variables. 

♦ The N value form the SPT follows in the rank. It should be 
noted that the original, uncorrected value lags the corrected 
one by 5 ranks, since the corrected value is that which is 
utilized in the analysis. 

♦ The weight, Wi, which is a direct computation from the 
considered depth, follows. This lags the depth by 2 ranks.  

Variable Rank 
NET7C NET7F NET8C NET8F NET9C 

1. The depth under study; 
2. Soil density; 
3. Overburden pressure; 
4. Pore water pressure; 
5. Effective overburden 

pressure; 
6. Weight, Wi; 
7. SPT, N value; 
8. Corrected N value; 
9. Relative density; 
10. Angle of shearing 

resistance; 
11. Percentage of fines; 
12. Soil classification 

7 
11 
12 
5 
6 
 

9 
8 
3 
4 

10 
 

1 
2 

7 
11 
12 
5 
6 
 

9 
8 
4 
3 

10 
 

1 
2 

4 
6 
1 
9 
8 
 

11 
5 

10 
7 
3 
 

12 
2 

7 
11 
12 
6 
5 
 

9 
8 
4 
3 

10 
 

1 
2 

7 
11 
12 
6 
5 
 

9 
8 
4 
3 

10 
 

1 
2 
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♦ The angle of shearing resistance and the soil density rank 
tenth and eleventh. These are actually hindered ranks in the 
authors’ opinion. They should have been in higher ranks, 
yet, both variables correlates well with other variables of 
better ranks, e.g., N value from SPT. 

♦ Finally, the overburden pressure ranks last. The expected 
reason is that this value is not directly used in the 
liquefaction susceptibility problem, but its successor, e.g., 
the effective overburden pressure is used implicitly in the 
analysis. 

 
Sensitivity Analysis 
 

An approach has been adopted to test the efficiency of the 
formed nets. In this approach, a production set has been adopted 
in addition to the pattern, training and test sets. This gives more 
realistic results since a considerable portion of the data is 
"veiled" from the net, which sees this group for the first time, 
once in operation.       
The R2 errors in the original nets, including all variables are 
shown in Table 3. 
 
    Table 3: R2 values for the original nets 
 

R2 Error PAT PRO TRN TST 

NET7C 0.6254 0.3092 1.0000 0.7361 

NET7F 0.7527 0.3418 1.0000 1.0000 

NET8C 0.8050 0.4864 1.0000 1.0000 

NET8F 1.0000 1.0000 1.0000 1.0000 

NET9C 1.0000 1.0000 1.0000 1.0000 

 
 
It has to be clarified that the low values encountered within the 
pattern and production sets for NET7C, NET7F & NET8C in 
addition to that of the test set, only at NET7C, do not mean that 
the net has not been well trained. Actually, this only means that 
there is a scarce in one or more of the outputs presented to the 
net; e.g., there might be only a single record that suffered 
medium susceptibility to liquefaction, whereas all other data 
fluctuates between no liquefaction and low susceptibility. Thus, 
the net is not amply trained to precisely determine such data. 
Upon the computation of the value of R2 error, the single odd 
value diverts the result to be apparently very poor. The solution 
for such limitation in the future is to add several data points 
having the same trend, which would result in better assessment. 
Another valuable outcome is that shown in both NET8F and 
NET9C, where all types of sets result in a value of R2 equals 
unity. This is attributed to the fact that both nets are exposed to 
almost the very same results, which, in turn, have a variety of 
output results. Thus, each of the nets is exposed to a larger 
domain, and can consequently be better trained.        

 
Table 4 depicts the values of the smoothing factors in the 
original nets, including all variables. 
 
 
 
 

    Table 4: Smoothing factors for the original nets 
 

moothing 
Factor 

PAT PRO TRN TST 

NET7C 0.035 0.490 0.030 0.035 
NET7F 0.033 0.510 0.031 0.033 
NET8C 0.029 0.460 0.029 0.029 
NET8F 0.099 0.099 0.099 0.099 
NET9C 0.041 0.041 0.041 0.041 

 
 
DISCUSSION AND CONCLUSIONS 
 

According to the previous studies, it is evident that ANNs 
perform better than, or as well as, conventional methods used as a 
basis for comparison in many situations, whereas, they fail to 
perform well in a few. 
 
• The main objective of this paper has been to develop reliable 

GRNNs that can be used to assess liquefaction susceptibility. 
The developed nets can be used as a standalone, simple, yet 
reliable, technique for statistical liquefaction risk assessment.  

• Due to its excel in classification problems, such as that of 
liquefaction, GRNN has been selected rather than other 
supervised networks as an application to the current study. 
Several GRNNs have been developed that make use of a 
variety of input data for their training and testing.  

• According to the earthquake intensity and the site’s location 
apart from the earthquake’s source distance, five main 
GRNNs including production set and similar number 
excluding the production set have been developed. In each 
of the formed nets, 12 input parameters covering a variety 
of factors with different relative importance have been used. 
On the other hand, a single output exists specifying the 
occurrence, or non occurrence of liquefaction. In case of 
liquefaction, its severity has also been specified, whether 
low, medium or highly susceptible to liquefaction. The 
output is dependent on the earthquake intensity and the site 
location with respect to the source of the earthquake.    

• The proposed study proved that using GRNNs in the 
problem of assessing liquefaction susceptibility produces 
excellent results via a cheap, accurate, yet simple tool. 

• More rational networks results when using production sets. 
• As further field case records become available, the 

performance of the neural networks can be improved. With 
larger number of data, a more precise analysis can be 
attained for soil and seismic parameters. Moreover, data 
filtering, i.e., removal of odd results, would enhance the 
results to a great extent. 

• Further development for the ANNs is required so as to 
account for uncertainties associated with geotechnical 
engineering problems so as to result in more realistic 
solutions. Fuzzy reasoning plays an important role in such 
development.   
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