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INVESTIGATION OF SHEAR STRAIN AMPLITUDE  
INDUCED BY RAILROAD TRAFFIC IN SOILS 

  
Dirk Wegener  Ivo Herle  
Engineering office GEPRO Ingenieurgesellschaft GmbH  Technische Universität Dresden, Institute of Geotechnical Engineering 
Caspar-David-Friedrich-Straße 8, 01219 Dresden, Germany George-Bähr-Straße 1, 01062 Dresden, Germany 
 
 
  
ABSTRACT  
 
Shear strain amplitude γ is an important quantity in dynamic soil analysis. Usually, a reduction of soil stiffness with increasing shear 
strain amplitude is observed in laboratory tests. An appropriate invariant of shear strain can be defined which is comparable with shear 
strains measured in laboratory tests. 
Usually, shear wave velocity cs is determined from field or laboratory tests and the particle velocity v is obtained from vibration  
measurements. Afterwards, the shear strain amplitude γ is often estimated from the equation γ = v / cs, which can be derived for the 
case of one dimensional wave propagation.  
Based on numerical analyses with FEM, the validity of the above equation for γ is checked. It can be shown that there is a clear differ-
ence between the zone close to the loading area and the zone at a larger distance from the loading area. 
Experimental results of vibration measurements in the field and the evaluation of dynamic soil properties due to rail traffic are pre-
sented and the impact on permanent soil deformations is discussed.  
Based on the results of the field measurements and the numerical calculations recommendations on the determination of γ for dynamic 
analysis are presented.  
 
 
INTRODUCTION  
 
Shear strain amplitude γ is an important quantity in dynamic 
soil analysis. An increasing shear strain amplitude results in 
decreasing shear modulus, increasing damping and higher 
accumulation of plastic soil deformation due to repeated load-
ing, e.g. by traffic forces. 
 
Therefore, e.g. in the rules of the German Railways for earth-
works RIL 836 [2008] for the proof of the so-called dynamic 
stability or serviceability, respectively, a comparison of actual 
shear strains with allowable shear strains is required. Also in 
case of dynamically loaded foundations it is necessary to iden-
tify the shear strain amplitude, see e.g. Savidis et. al. [2002].  
 
In practise, the shear wave velocity cs is usually determined 
from field tests and the particle velocity v is obtained from 
vibration measurements. Afterwards, the shear strain ampli-
tude γ is often estimated from the equation γ = v / cs, which 
can be derived for the case of one dimensional wave propaga-
tion, see e.g. Achenbach [1984].  

In this paper, the validity of the equation γ = v / cs is investi-
gated, using the results of field measurements and numerical 
calculations. 
 
 
DEPENDENCE OF SHEAR MODULUS G ON SHEAR 
STRAIN γ 
 
It can be observed in cyclic and dynamic laboratory tests that 
the stiffness of soil (shear modulus) decreases with increasing 
shear strain amplitude, with a maximum value of the shear 
modulus G0 at very small strains.  
 
In Vucetic [1994] and further in Hsu and Vucetic [2004] the 
magnitude of shear strain is classified on the basis of 16  
laboratory test series on sands and clays. One can distinguish 
the following ranges:  
 

• very low shear strain with linear elastic soil behaviour,  
• low shear strain with nonlinear soil behaviour and  
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• medium to large shear strain with strongly nonlinear 
material behaviour.  

 
The threshold between very low shear strain and low shear 
strain is called the linear cyclic threshold shear strain. The 
threshold between low shear strain and medium to large shear 
strain is called the volumetric cyclic threshold shear strain. 
 
The test results show, in spite of a significant scatter, that in 
non-cohesive soils the nonlinear behaviour begins at a much 
lower shear strain γ than in soils with high plasticity.  
 
For the evaluation of test results (Vucetic [1994], Hsu and 
Vucetic [2004]) it is important that 15 of 16 laboratory  
experiments were performed in a cyclic Direct Simple Shear 
(DSS). For the determination of the shear modulus G(γ) as a 
function of shear strain γ, one should consider the shear strain 
component γxy defined in a Direct Simple Shear (see Figure 2).  
 
 
DEFINITION OF SHEAR STRAIN γ 
 
In three-dimensional coordinate system X1, X2 and X3 the 
strain tensor εij with 6 independent strain components can be 
defined: ε11, ε22, ε33, γ12, γ23 and γ31.  
 
The strain components εii are εii = ∂ui / ∂Xi, and the shear 
strain components γij are γij = 2 εij = ∂ui / ∂Xj + ∂uj / ∂Xi with 
indices i and j for the directions 1, 2 and 3.  
The strain tensor εij can be decomposed in isotropic strain 
tensor εv/3 δij and in a deviatoric strain tensor eij:  
 

 εij = εv/3 δij + eij  (1) 
 

with the Kronecker symbol δij (δij = 1 for i = j and δij = 0 for  
i ≠ j) and the volumetric strain εv (εv = ε11 + ε22 + ε33).  
 
Figure 1 shows a total displacement and its decomposition in 
isotropic and deviatoric part. The isotropic part results in 
volumetric strains and the deviatoric part results in shear 
strains.  
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Total displacement and decomposition in isotropic  
and deviatoric part in a plane with u2 = 0. 

Since the strain components depend on rotation of the coordi-
nate system, it is necessary to define an invariant of the devia-
toric strain tensor eij which characterises shear strain. For this 
purpose the second invariant IIe of the deviatoric strain tensor 
eij will be used. Considering the principal strain components 
ε1, ε2 and ε3 one gets:  
 

     IIe = 1/2 eij eij = 1/6 [(ε1 - ε2)² + (ε2 - ε3)² + (ε3 - ε1)²]  (2)  
 

In triaxial compression ε1 > ε2 = ε3,  εv = ε1 + 2 · ε3 and  
IIe = 1/3 (ε1 - ε3)² hold.  
 
In a direct simple shear test, a relative horizontal displacement 
ux between the top and the bottom cap is produced. The ratio 
ux / Y corresponds to the shear strain γxy with plane strain con-
ditions (γyz = γzx = εzz = 0), see Figure 2. 
 
  
 
 
 
 
 
 
 
 

Fig. 2. Direct Simple Shear test with a constant volume. 
 

With the assumption of vanishing vertical displacements dur-
ing shearing (εyy = uy / Y ≈ 0), which can be assumed for small 
strains, three principal strain components read as follows:  
 

ε1 = 1/2 γxy, ε2 = 0 and ε3 = -1/2 γxy. 
 

In this case, the second invariant of the deviatoric strain tensor 
eij in simple shear corresponds to: IIe = 1/4 γxy².  
 
The shear strain invariant γ corresponding to the shear strain 
component γxy in simple shear can be obtained from equation 
(2) as:  
 

γ = γxy = 2 IIe
0.5 = (2/3)0.5 [(ε1 - ε2)² + (ε2 - ε3)² + (ε3 - ε1)²]0.5 (3)  

 

By rotating the coordinate system it is possible to achieve 
strain conditions like in a simple shear test.  
 
 
 
 
 
 
 

total displacements  =  isotropic part     +    deviatoric part 

u1 / X1 = ε1 
u3 / X3 = ε3  

ui,1 / X1 = εv / 3 
ui,3 / X3 = εv / 3 

ud,1 / X1 = ε1 - εv / 3  
ud,3 / X3 = ε3 - εv / 3 

σ1  σ3  

X3 

X1 

u1  

u3  ui,3  

ui,1  ud,1 

ud,3  shear strain 

ux 

γxy = ux / Y 
X 

Y 
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NUMERICAL ANALYSIS OF WAVE PROPAGATION IN 
ELASTIC HALFSPACE AND IN LAYERED SOIL 
 
Using numerical methods one can calculate the shear strain 
invariant γ at any point in subsoil.  
In practice, the particle velocity v is measured using geo-
phones or obtained by time integration from accelerometers. 
Then the shear strain is usually calculated from the equation  
γ = v / cs, see e.g. Savidis et. al. [2002] for dynamically loaded 
foundations or Hu et al. [2003] for evaluating the dynamic 
stability of railway earthworks.  
 
Based on numerical analyses with FEM, the validity of  
the equation for γ is checked for case of wave propagation in 
elastic halfspace and in layered soil.  
 
 

 
Numerical model  

An axisymmetric FE model with elastic material (constant 
Young's modulus) and with the boundary conditions shown in 
Figure 3 is assumed. 
 
The FE program Tochnog (Roddemann [2008]) with the fol-
lowing material properties is applied:  
 

• Young's modulus E = 50 or 100 MPa,  
• Poisson’s ratio ν = 0.30 and  
• density ρ = 2.0 t/m3. 

Material damping is not considered.  
 
The size of the FE model in the horizontal direction is chosen 
so that reflections of shear and Rayleigh waves at the horizon-
tal boundary do not affect the results at the regarded points 
near the loading area. 
 
The loading is located on the surface having the loading  
sequence of a sine wave of 5, 10 and 20 Hz with an amplitude 
of 10 kPa and subsequently stress-free surface (see Figure 4 
top left). 
This is not a period harmonic excitation, thus no single line is 
obtained in the frequency spectrum but a curve with a maxi-
mum at about 4.5, 9.0 and 18 Hz, see the diagram in the upper 
right corner of Figure 3.  
The time step ∆t = 0.0025 s was used in order to capture well 
the sine wave with 20 Hz. With the chosen element size and 
the node distance lc = 0.25 m ≤ cs · ∆t = 138.7 m/s · 0.0025 s  
= 0.35 m, the wave propagation within the mesh can be suffi-
ciently reproduced.  
 
 

 

 
Fig. 3. FE model with loading, material properties and regarded points. * 

 
 
* The coordinates of the regarded points are in meters. In the subsequent text and in Figures the units are omitted for the sake of brevity. 
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Displacements  

In Figure 4, vertical displacements are shown in time domain 
for the regarded points (x = 1, y = -1) and (x = 5, y = -3). The 
amplitudes of vertical displacement at the point (x = 1, y = -1) 
near to the loading area are approximately the same for all 
load frequencies. However, for the point (x = 5, y = -3) in a 
larger distance from the loading area, the amplitudes of verti-
cal displacement are slightly greater for 5 Hz than for 10 Hz 
and significantly larger than for 20 Hz.  
 
In frequency domain the differences in displacements between 
the zone close to the loading area and the zone at a larger 
distance from the loading area are also remarkable.  
 
 

For a soil layer with a thickness H and the compression wave 
velocity cp its natural frequency fE can be obtained from equa-
tion (4) (see Neidhart [1994]). 
 

                     fE = cp / (4 H)    (4) 
 

A peak of the vertical displacement can be noticed in Figure 5 
at the natural frequency fE for the point (x = 5, y = -3) at the 
largest distance from the loading area (green curve).  
However, for the point (x = 0, y = 0) on the surface below the 
loading area (blue curve) such a peak at the natural frequency 
fE is missing. The curve reaches its maximum at about 9.0 Hz 
and is qualitatively analogous to the shape of the loading curve 
for a sine wave of 10 Hz shown in Figure 3, top right. 
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Fig. 4. Vertical displacements in time domain at loading of 5, 10 and 20 Hz for the points (x = 1, y = -1) and (x = 5, y = -3). 
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For the point (x = 1, y = -1) near to the loading area (red 
curve) a peak at the natural frequency fE of the soil layer is 
slightly indicated, but less significantly than at the point  
(x = 5, y = -3), see the green curve. The shape of the red curve 
is again similar to the loading curve for a sine wave of 10 Hz 
shown in Figure 3, top right. 
The influence of different thickness and of Young's modulus 
was also investigated. Three different cases were considered: 
 
 

• H = 10 m; E = 100 MPa; ν = 0.30; Es = 134.6 MPa; 
cp = 259.4 m/s (blue curve): fE ≈ 6.5 Hz,  

• H = 10 m; E = 50 MPa; ν = 0.30; Es = 67.3 MPa; 
cp = 183.4 m/s (green curve): fE ≈ 4.6 Hz and  

• H = 20 m; E = 100 MPa; ν = 0.30; Es = 134.6 MPa; 
cp = 259.4 m/s (red curve): fE ≈ 3.25 Hz.  

 
The calculated vertical displacement in frequency domain at 
the point (x = 5, y = -3) at a large distance from the loading 
area is depicted in Figure 6. Peaks of the vertical displacement 
at the natural frequencies fE are clearly visible.  
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Fig. 6. Vertical displacements in frequency domain at loading of 10 Hz for the point (x = 5, y = -3). 
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Fig. 7. Comparison of shear strain γ and the ratio v / cs at loading 10 Hz for the points (x = 1, y = -1); (x = 5, y = -3). 
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Shear strain 

Similar to the displacements, shear strains in a near and in a 
distant zone to the loading area can be calculated. They can be 
compared with the ratio of vibration velocity v and shear wave 
velocity cs (see Figure 7).  
 
There is a big difference between γ and v / cs in the area close 
to the loading (in this example for the point (x = 1, y = -1), red 
curve). There, the shear strain γ is much larger than the ratio  
v / cs.  
In a larger distance from the loading area (in this example at 
the point (x = 5, y = -3), green curve) the shear strain γ is 
approximately the same as the ratio v / cs.  
 
These differences between the zone close to the loading area 
and the zone at a larger distance from the loading area are 
significant also at loading of 5 Hz and 20 Hz. However, with 
increasing excitation frequency the zone area decreases, where 
γ and the ratio v / cs are significantly different. 
 
 
 
 
 
 
 
 

EXPERIMENTAL RESULTS OF VIBRATION  
MESUREMENTS 
 

 
Railway line in North Germany 

On a railway line section in North Germany a single-track 
superstructure and substructure required rehabilitation. An 
increase of speed to 160 km/h was planed. The original track 
construction from the 19th century was founded on a marshy 
ground overbuild with an embankment. 
In some sections of the railway line the improvement was 
achieved by including a geotextile reinforced base layer in-
stead of the originally planed extensive improvement [12]. 
During the rehabilitation construction works a cross section 
(Figure 8) was instrumented with geophones and with a hori-
zontal inclinometer in the subsoil. 
 
The results of the geophysical measurements of shear wave 
velocity can be summarized as follows: 

• sandy embankment: cs ≈ 160 m/s, 
• peat beside the embankment (free field): cs ≈ 50 m/s, 
• peaty clay beside the embankment (free field):  

cs ≈ 70 m/s, 
• peat below the embankment cs ≈ 100 m/s and  
• peaty clay below the embankment cs ≈ 120 m/s. 

 
An example for the measured particle velocity in the subsoil is 
shown in Figure 8. The displacements were obtained by time-
integration of the measured particle velocity in Figure 9. 

 

 
 

uniaxial geophone (vertical direction) 
three-dimensional geophone 

 
Fig. 8. Cross section with instrumentation of geophones and horizontal inclinometer. 
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Fig. 9. Measured particle velocity during the train passage. 
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Fig. 10. Calculated particle displacements during the train passage. 
 
 
From the displacements below the rail one can estimate an 
average shear strain in this subsoil zone (see Figure 11). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11. Estimation of the average shear strain at the depth 
between 1.6 m and 2.6 m below the top of the rail. 

 

The average strain components in x- and y-direction εxx and εyy 
and the shear strain γxy within the area ∂X and ∂Y can be calcu-
lated as: 
 
εxx = ∂ux / ∂X  ≈  [ux2 - ux3] / ∂X , 
εyy = ∂uy / ∂Y  ≈  [(uy1 - uy2) / 2 + uy3] / ∂Y and 
γxy = ∂ux / ∂Y + ∂uy / ∂X  ≈  0 + [uy3 - (uy1 + uy2) / 2] / ∂X . 

This calculation is a crude estimation only, since strains are 
infinitesimal quantities. Using the strain components εxx, εyy 
and γxy, one can calculate the principal strains ε1 and ε3 and the 
shear strain invariant γ for the whole time period of the train 
passage. 
 
In Figure 12 a comparison of the shear strain invariant γ with 
the ratio of the particle velocity vres = (vx

2 + vy
2 + vz

2)1/2 and 
the shear wave velocity cs is presented. 
 
One can notice that the shear strain magnitude γ is much 
higher than the ratio vres / cs. The highest shear strain magni-
tude γ is about 9.5E-5 under the 3-axle bogie locomotive and 
is nearly proportional to the vertical displacements (Figure 
10). The highest ratio vres / cs is about 3.0E-5 and it is propor-
tional to the measured particle velocity (see Figure 9).  
 
After the rehabilitation of this railway line section, permanent 
displacements in the instrumented cross section were meas-
ured over a period of two years [13]. The results are depicted 
in Figures 13 and 14. 
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Fig. 12. Comparison of the shear strain invariant γ with the ratio vres / cs. 

 
 
 

   
 

 
 
 
 
 

 
 

Fig. 13. Cross section with results of the horizontal inclinometer measurements. 
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One can notice that the traffic with dynamic loading of about 
280 cycles per day or 100.000 cycles per year results in per-
manent displacements. It is obvious that the magnitude γ is 
greater than the threshold cyclic shear strain γtv ≈ 8E-5 for the 
subsoil with IP ≈ 0 as defined in Hsu and Vucetic [2004]. But 
the increase of permanent displacements reduces nearly loga-
rithmically with time and the number of cycles, respectively. 
 
 

 
Railway line in South Germany 

On a railway line section in South Germany a double-track 
superstructure and substructure were also founded on a very 
marshy ground with about 1.5 m soft clay and about 3.0 m 
peat.  
Before rehabilitation of the railway line the cross section was 
instrumented with geophones and down-hole tests were car-
ried out to obtain the shear and compression wave velocities 
(see Figure 15).  
 

The results of the measurements can be summarized as fol-
lows: 
 

• clayey gravel below the rail track: cs ≈ 130 m/s, 
• soft clay below the clayey gravel: cs ≈ 110 m/s  
• peat below the soft clay: cs ≈ 90 m/s. 

 
The shear wave velocity in the transition zone between ballast 
and clayey gravel (0.5 m below the top of sleepers) was esti-
mated as cs ≈ 160 m/s. 
 
Geophones (SM 6, 4.5 Hz) were placed on the sleeper, in the 
ballast and in the subsoil. Thus it was possible to measure 
particle velocity (Figure 16) and to obtain the displacements 
by time-integration of the measured particle velocity (Figure 
17). From the displacements below the sleeper one can calcu-
late an average shear strain in the zone of the clayey gravel 
(see Figure 18) and also in the zone of soft clay and peat (see 
Figure 19). 

 
 

 
 

uniaxial geophone (vertical direction)  
three-dimensional geophone 

 
Fig. 15. Cross section with instrumentation of geophones and results from down-hole tests. 
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Fig. 16. Measured particle velocity during the train passage. 
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Fig. 17. Calculated particle displacements during the train passage. 
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Fig. 18. Comparison of the shear strain invariant γ with the ratio vres / cs in area of the clayey gravel. 
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Fig. 19. Comparison of the shear strain invariant γ with the ratio vres / cs in area of soft clay and peat. 
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The average shear strain invariants in the clayey gravel, in the 
soft clay and in the peat are nearly the same. In the soft clay 
and in the peat the strain component in vertical direction  
εyy = ∂uy / ∂Y is higher, but the shear strain γxy ≈ ∂uy / ∂X is 
lower than in the clayey gravel. 
 
One can notice that the shear strain magnitude γ is signifi-
cantly higher than the ratio vres / cs. The highest shear strain 
magnitude γ is nearly proportional to the vertical displacements 
with maximum about 4.6E-4 (Figure 18). The highest ratio  
vres / cs is about 2.8E-4 in the transition zone between the bal-
last and the clayey gravel (0.5 m below the top of the sleeper); 
3.3E-4 in the soft clay (2 m below the top of the sleeper) and 
1.2E-4 in the peat (4 m below the top of the sleeper).  
The shear strain magnitude γ is much larger than the threshold 
cyclic shear strain γtv ≈ 1.3E-4 for the clayey gravel with  
IP ≈ 10 and γtv ≈ 2.8E-4 for the soft clay with IP ≈ 25 - 30  
according to Hsu and Vucetic [2004].  
Thus it can be assumed that the permanent displacements due 
to dynamic loading of about 1.000 cycles per day or nearly 
400.000 cycles per year do not increase logarithmically but 
nearly linearly with time and the number of cycles, respec-
tively. At this railway line section it is necessary to tamp the 
ballast about once a year. 
 
 
CONCLUDING REMARKS 
 
It can be observed that there is a clear difference in the soil 
behaviour in the zone close to the loading area and in the zone 
at a large distance from the loading area.  
 
In the zone close to the loading area displacements and hence 
shear strains depend mainly on excitation characteristics. Soil 
undergoes cyclic loading conditions and inertia effects of the 

soil mass do not play an important role for the wave propaga-
tion. However, at a larger distance from the loaded area energy 
dissipation during the wave propagation in soil (radiation 
damping) becomes significant.  
Figure 20 shows schematically the load in the zone close and 
in a larger distance to the loading area. 
 
In a larger distance from the loading area Rayleigh waves with 
the velocity cr dominate near to the surface. Rayleigh wave 
velocity cr is only slightly lower than the shear wave velocity 
cs and the compression waves have much lower vibration 
amplitude. Therefore, by rotating the coordinate system (see 
Figure 20) the plane wave propagation becomes nearly a one-
dimensional wave propagation. The maximum vibration  
amplitude is perpendicular to the wave propagation direction. 
The following equation is valid:  
 

          γ = γxy = ∂ux / ∂Y + ∂uy / ∂X ≈ ∂u / ∂t / cs = v / cs   (4) 
 

In a three-dimensional case, especially if the compression 
waves have more influence like in tunnelling, this relationship 
does not valid. Here, general equations for strains and dis-
placements as function of cs and cp should be used, see e.g. 
Kolymbas [2005].  
 
In the zone close to the loading area, which has the largest 
potential for permanent deformations due to dynamic loading, 
soil undergoes almost cyclic loading conditions like in a cyclic 
simple shear or cyclic triaxial test. Thus, for example,  
doubling the loading frequency results in a doubled particle 
velocity, while the shear strain amplitude remains the same. 
Consequently, the equation γ ≈ v / cs can not be applied in this 
area.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 20. Schematic representation of the conditions in the close and distant zones with respect to the loading area. 
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