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INFLUENCE OF DISLOCATIONS 

ON BUMPS OCCURRENCE IN DEEP MINES 
 
Petr P. Prochazka 
Association of Czech Civil Engineers 
110 00 Prague, Czech Republic 
 
 
 
ABSTRACT 
 
The problem of bumps occurrence in deep mines during longwall mining appears to be one of the most serious in the design of 
engineering of mining. They are caused for various reasons, but basically it is an aftermath of accumulated energy, which is released 
under some unfavorable conditions. In this paper the influence of given dislocations and their slope in a coal seam are studied based 
on free hexagon method. This method belongs to a set of discrete element methods and enables one to define and calculate stresses in 
natural way along the interfacial boundaries of adjacent particles (elements). Since the bumps are connected with a possible slip along 
the dislocations, dynamical response has to be taken into account. The velocity of excavation of the mine is considered by successive 
change of values of Eshelby’s forces on the face of the side wall. 
  
 
INTRODUCTION 
 
In deep mines the problem of bumps occurrence during long 
wall mining belongs to one of the most serious from the set of 
problems to be solved in the project stage of mining 
engineering design. It causes disaster of such an extent that 
human lives are lost, material and energy expanses are 
enormous and renovation of the afflicted mine is almost 
impossible. The reason for bumps occurrence consists in 
accumulation of extreme energy in the neighborhood of the 
mine face and its release under certain conditions. In former 
papers of the author, e.g. Prochazka 2004, the triggering 
conditions have been based exclusively on an assumption of 
nucleation of cracks in front of the mine face (side walls). In 
the above said paper the formulation and solution was 
presented as stability problem and no inertia terms were 
involved. Considering an advancement of mining and possible 
slip along the dislocation inertia terms have to be also 
embodied in the formulation and their approximation desired 
special treatment. This approach basically follows the well-
known ideas of PFC (particle flow code), Cundall 1971 and 
Cundall, et al. 1979. Certain theoretical background is found 
in Moreau 1994. The disadvantage of the PFC consists in the 
way of modeling contacts at points of the interfacial 
boundaries of adjacent particles, so that the calculation of 
stresses is not quite accurate or almost impossible in very 

many cases of geometrical arrangement of the elements. This 
fault is removed in the present theory and numerical approach.   
 
The mechanical properties and other data being necessary for 
correct computation have been first consulted with 
experiments, which published Haramy et al. 1995; Prochazka 
et al. 2002 prepared scale models for simulation of bumps in 
laboratory. Couple of experimental studies has been carried 
out on scale models describing this phenomenon in real mines 
in Bohemia. The experiments show the overall properties of 
the bumps, failure strength of the material, surface cracking, 
and others, which can be observed from outside of the sample 
tested. Using high speed video camera other detailed 
information about important properties of this phenomenon 
was obtained and later on a comparison was drawn with the 
numerical results.  
 
A slip along a dislocation can be solved in a very natural way 
using dynamical version of Uzawa’s algorithm, Prochazka 
1995, for example. By virtue of separation of domains being 
defined on both sides of the dislocation even linear equations 
can characterize the behavior of the underground continuum. 
The influence of such a movement on structures possibly 
located in the region of accessibility of the waves caused by 
the slip can be identified. The only problem now occurs on 
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how to describe the behavior (possibly nonlinear) in the 
separated parts of the underground continuum. 
 
The domain describing both rock and coal seam is therefore 
divided in hexagonal elements (particles) of arbitrary shape, 
which are mutually disjoint and non-overlapping. The Uzawa 
algorithm is substituted by penalty formulation, which is more 
useful for unknown location of disconnections of the particles. 
The material of each hexagon behaves linearly; the linear 
Hooke law is obeyed. The only nonlinearities are moved to the 
interfacial boundaries between adjacent elements. The 
interfaces obey the generalized Mohr-Coulomb hypotheses, 
Prochazka 1995, for example, and the material is identified by 
the parameters, which are well-known from soil or rock 
mechanics. Among those parameters the angle of internal 
friction, cohesion (shear strength), tensile strength, and others 
belong to the input data for the computation. Naturally, the 
behavior inside of the elements can also be selected nonlinear, 
but if small enough elements are presumed, this assumption is 
superfluous.  
 
Since the way of cracking in the rock mass is not a priori 
known, the fracture mechanics problem turns to contact 
problem in this paper and the penalty formulation is postulated 
in the method of free hexagons. The mechanical explanation 
of the penalty method is very easy, as the penalties are 
represented by spring stiffness. As the radial (tension or 
compression) and tangential (shear) constrain between 
adjacent elements exist, both radial and shear springs are of 
interest to us.  
 
The situation inside of each particle is described by boundary 
elements, Brebbia et al. 1984, for example, which can involve 
also inertia terms. This advantage is not utilized in the 
presented approach; the formulation in particles is static and 
the inertia terms are, similarly to the PFC, lumped at the 
center of the particles. The stencil for the description of time 
development starts with explicit finite difference scheme, and 
is basically identical with the PFC, only the hierarchy of 
computation - D’Alembert forces, acceleration, velocity and 
displacements – is ordered conversely.  
 
The time dependent excavation of the underground opening is 
described by Eshelby’s forces, Eshelby 1963. They are 
applied on the side wall of the opening and their time 
dependent (successive) decrease characterizes the velocity of 
mining.  Similar approach is used when describing an opening 
of tunnel with lining, digging a ditch and also, which is the 
original application of Eshelby, description of the influence of 
change of temperature in fibers in the theory of composites. 
 
BASIC ASSUMPTIONS 
 
In some mines the structure and behavior of stress states 
during mining in a coal seam and surrounding rock can be 
described as demonstrated in Fig. 1. Left is the line of 
symmetry in the picture. Along the interface of the coal seam 
with the overburden the stresses in the virgin state are uniform 

and after the adit is created by excavation the redistribution of 
those stresses causes that the load of the side faces (walls) of 
the opening increases principally. Very often the zones with 
cracked milieu in the seam are filled by gas, which raises the 
danger of instability and subsequent movement of particles of 
the coal seam. Two important problems are of basic interest to 
us:  

- the velocity of excavation (the faster the excavation, 
the greater danger of bumps occurrence) 

- the slope of cracks in the seam.  
Since there is no intimacy about the way of loss of stability, 
basically each option of movement should be taken into 
account. This is almost impossible in applications and great 
consumption of computer time can be expected. This is why 
discrete element methods (DEM) have been established.    
 

 
 

Fig. 1. Description of properties of a coal seam and 
distribution of vertical stresses at different stages of mining 

 
Under the assumption that the material properties of both rock 
and coal are known, hexagon elements are created and linear 
behavior in them is supposed. Since the elements are 
considered to be small enough, isotropic case is also taken into 
account, i.e. the elements are homogeneous and isotropic with 
material characterization given by modulus of elasticity E and 
Poisson’s ratio ν, for example. Starting with static equilibrium 
in the first stage of excavation, after dislocations in the rock 
continuum and in the coal seam appears time dependent 
dynamical equilibrium has to be considered. Classical 
problem involving generalized Coulomb's friction and 
exclusion of tensile stress exceeding the tensile strength along 
the interfaces (predisposed dislocations) is solved. Typical set 
up of adjacent elements is illustrated in Fig. 1. In what follows 
the distribution of mass inside each element is neglected in 
such a sense that it is centered in each element. First the 
solution of elastic problem in an element is formulated and 
after this the element is put into the neighborhood of adjacent 
elements. Regular distribution of elements is assumed, i.e. 
only one matrix relating tractions and boundary displacements 
is necessary to create. Also 2D problem is solved as fully 
sufficient for describing the threat of bumps in deep mines.  
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Fig.  2. Adjacent grains set up 
  
 
BOUNDARY ELEMENT SOLUTION IN ONE ELEMENT 
 
A typical element is denoted by the domain Ω and the 
boundary is Γ . As said before, two-dimensional case is 
considered as fully representative. The solution of elasticity on 
each hexagonal element is approximated by concentration of 
DOFs at the centers of boundary abscissas of the hexagonal 
element under consideration, and distribution of boundary 
displacements and tractions along the edges of the hexagon 
are assumed to be uniform. Note that higher order of 
approximation can be used, but then the starting shape is 
formed strictly according to the approximation. If, for 
example, linear distribution of both tractions and 
displacements is supposed, hexagon is strictly the particle. If 
even quadratic or cubic approximation is introduced, 
curvilinear hexagons are attained. The higher approximation 
cannot harm the numerical results, but complicate the 
numerical computation very much and for small elements, 
which are required in every case, they do not have any benefit.  
 
Then, generally, integral equations formulate the problem: 
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where i and k run 1,2, and s = 1,…,6, ikδ  is Kronecker’s delta. 
The fields },{= 21 uuu and },{= 21 ppp denote displacements 
and tractions, respectively, αμi are components of the 
eigenstrain tensor, which will be used for simulation of gas in 
the predisposed dislocations. The point },{= 21 xxx  is the 
integration point and  },{ 21 ξξ=ξ  is the observer.  
 
In case of regular hexagons and uniform distribution of both 
displacements and tractions it holds ikikc δ2
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The terms with asterisk are known kernels - fundamental 
solutions - which arise from the solution of source problem in 
unbounded area and for the plain strain state can be listed as 
(for example, see Brebbia et al. 1984): 
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where ν  is Poisson's number, G is the shear modulus, 

2
2

2
1

2 +=,-= rrrxr iii ξ , and },{= 21 nnn is the unit outward 
normal. 
 
Knowing the kernels and substituting approximations for 
boundary displacements and tractions, matrix equations are 
obtained: 
 

VpKubBpAu +=+=                ,                      (3) 
 

where A , B  and K are square matrices (12 *12), u is the 
vector of displacement approximations at vertices, p  is the 
vector of tractions and b  and V are vectors of volume weight 
influences. The latter are vectors (1*12). Note that the matrix 
K plays the role of the stiffness matrix in finite elements, but 
here is non-symmetric and full (not banded). The transfer 
from the first relation (3) to the second one is enabled by the 
fact that the matrix B is regular and therefore invertible. 
In Fig. 3 various shapes of deformed elements are shown. The 
shape is in accordance with the uniform or linear 
approximation of the displacements and tractions along the 
boundary elements, it means that no deformation of the edges 
of hexagons can appear. In the second case in this picture even 
elements can lose convexity in the deformed state. This case 
does not make any harm on solvability and uniqueness of the 
problem. 
 

        
 

Fig. 3. Deformed shapes of hexagons due to the selected 
approximation 
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STATICAL CONTACT CONDITIONS 
 
Let us consider a hexagon i  being in possible contact with 
neighboring hexagons 61,..., jj , see Fig. 4. In the next 
denotation we omit the symbol j  and identify the neighbors 
by indices 6,...,1 . Then in Fig. 4 kiik NN =  is the resultant of 
the traction np  acting in the normal direction to the interface 
between elements i and kj , kiik TT =  is the resultant of the 
shear traction tp  acting along the interface between the same 
elements i and kj . The indices of N  and T  must commute 
as action – reaction law takes place. In Fig. 5 denotation of 
soft contact modeled by springs in both normal and tangential 
directions is seen. Symbols nk and tk  stand for spring 
stiffness in normal and tangential directions, respectively, 
characterizing the appropriate interface.  
 
Hereinafter we consider only two adjacent elements, i and j , 
for example. Introduce a pseudo-cone K, which is defined as: 
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where i

n
j

nn uuu -=][ , i
t

j
tt uuu -=][ . The displacement 

resultant u  occurring on the interface of elements i and j  is 
split into normal nu and tangential (shear) tu components, n  
is the unit outward normal with respect to element i, V is an 
admissible space of displacements, traction p  has now 
components },{ tn pp , i.e. projections to the normal and 

tangential directions to the interface considered, +
np is the 

tensile strength, c is the cohesion or shear strength, and φ is 
the angle of internal friction of the material (rock, coal), κ is 
the modified Heaviside function being equal to one for 
negative arguments and zero otherwise. Here strict sign 
convention is used: positive sign is tension, while negative 
one means compression. Note that the pseudo-cone K 
becomes a cone for 0=+

np and frictionless case.  
 

 
 

Fig. 4.  Resultants of contact forces 
 

 
FISCHERA’S CONDITIONS 
 
Fischera’s conditions have been formerly formulated for K 
being a cone. In our case the conditions in normal direction 
can be written as: 
 

,0≥-)-( ++
nnnn pppp κ  0≥][ nu , 

   0=]}[-)-({ ++
nnnnn upppκp                       (4) 

 
Similarly, in the tangential direction it holds: 
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The energy of the system can be stored as:  
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where α  runs over all hexagon elements, α = 1,…,N , β runs 
all interfacial edges of possible contacts βΓ , n1,...,=β , Γ is 
the external boundary where p is prescribed, and  
 

xεσuu d )(),( T
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Ωα
α

∫=a                          (7)                               

 
is the internal energy (bilinear form) inside a hexagon 

αΩ ,  , αα εσ are respectively stresses and strains in αΩ .  
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Fig. 5.  Denotation and meaning of springs constraining                                                                                

three neighboring elements 
 
 
PENALTY FORMULATION 
 
Setting ,][= nnn ukp  ttt ukp ][= , where tn kk , are normal 
spring and tangential spring stiffnesses, and substituting these 
relations in (6) yields 
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In the latter formulas the spring stiffnesses play the role of 
penalty and are maintained according to the requirements of 
the contact conditions.  
 
The Lagrangian principle leads to minimization of the 
functional Π   with respect to the displacement field. Note 
that if lagrangian multipliers are introduced into the above 
problem the formulation leads to “minmax” with enormous 
extent of additional unknowns. On the other hand the control 
of values of the parameters assigned to the interfacial 
boundary is much more reliable then if penalty formulation is 
used for numerical needs. 
 
DYNAMICAL RESPONSE 
 
If each hexagonal element is considered small enough, lump 
mass dynamical problem can be formulated according to Fig. 
5, where for the sake of simplicity the influence of rotation is 
neglected. Suppose the element i is moving while the others in 
the neighborhood remain stable at some time instant. Then on 
the element i the following forces act: 
  
In x-direction:  
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and in y-direction: 
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where ik

xF and ik
yF  are the forces in springs related to the 

differences },{ ik
y

ik
x ΔΔ  between displacement vector },{ k

y
k
x uu  

and },{ i
y

i
x uu at the centers of gravity of elements kj  and i  by 

the spring stifnesses ik
y

ik
x kk , , where the neighboring elements 

are denoted as before 6,...,1=, kjk ;  i
xF  is the inertia force 

projected to x-direction, yk  is acting in y-direction,  i
yF  is the 

projection to y-direction, g
yF  is the gravitational force, and ρ  

is the mass density of the element under consideration, see 
Figs. 6 and 7. 
 
This simplification is possible only under assumption that the 
particles are small, i.e. their number is large. Using this 
facilitation (very similar to classical DEM, as PFC), also 
rotations can be involved in the formulation. Because of the 
clarity of explanation they are omitted and only mentioned in 
the next paragraphs.   
 
As mentioned above the time steps are expressed in terms of 
finite differences. At each time step an iteration of new 
positions of elements is carried out, i.e. the system of pseudo-
elliptic equations is solved by iteration. New time step then 
follows from the values obtained from the latter iteration and 
the initial conditions.   
 

 
Fig.  6.  Resulting forces acting in the element i   
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As said above, in some concrete iteration step the elements 
61,..., jj   remain unmovable. The only displacement at this 

instant is that of the element i. On the other hand the 
displacements of the neighboring elements are for this stage 
also known. So, the spring forces in normal and tangential 
directions due to the spring stiffness vector },{ ik

t
ik
n kk are done 

as: 
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n
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n
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(11)           
                      
where ik

nF , ik
tF  are now forces caused by differences 

between displacement vectors },{ k
t

k
n uu  and },{ i

t
i
n uu at the 

centers of gravity of elements kj  and i , where the 
neighboring elements are denoted as before 6,...,1=, kjk . 

The only problem remains to solve: how to express ik
y

ik
x kk ,  in 

terms of normal and tangential stiffnesses. Note that the 
contact forces in Fig. 4 are calculated as: 

 

iky
ik

nki FFN αsing+= ,     iky
ik

tki FFT αcosg+=      (12) 
 

The relations between spring stifnesses are derived in the 
following paragraph.  

          
Fig. 7.  Angles of normals with x-direction 

and its close vicinity 
 

                                
SPRING STIFFNESS 
 
The main objective here is to formulate the equations of 
equilibrium between adjacent elements of each element i, i = 
1, . . . , n , where n is the number of elements. From this 
equilibrium it is necessary to determine the displacements of 
centers of kj  and i , and possibly rotations iφ of each 
element. Recall that the connection of the adjacent elements is 

generated by the springs with index i (the current disk) and k 
( kj  are the adjacent elements). 
 
In the sense of (11) the physical equations for every couple of 
adjacent elements are formulated as: 
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where ik

t
ik
n FF ,  are normal and tangential forces in the 

springs on interface between element i  and kj  with spring 

stifnesses ik
t

ik
n kk ,  and T),( ik

t
ik
n λλ  is the vector of 

eigenstress (which may represent additional plastic behavior, 
hereditary problems on interfaces, change of temperature of 
the filler, etc.), and tnsuu k

s
i
s

ik
s ,,- ==Δ .  

 
Let the abscissa between elements kj  and i  under 
consideration be deviated from x axis by an angle ikα . Then 
the transformation of forces to the Oxy coordinate system is 
written by: 
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where ikT is transformation matrix and superscript T denotes 
transposition. 
 

Recall a well known fact that ikT  is unitary, it means that 
T1- = ikik TT . Since the same equations hold for displacements, 

the following forces-displacements relation holds valid as: 
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where 
 

ik
ik
tik

ik
n

ik
x kkk αα 22 sin+cos= ;     

ik
ik
nik

ik
t

ik
y kkk αα 22 sincos +=  

 

ik
ik
n

ik
n

ik
xy kkk α2sin)-(

2
1

= ; ik
ik
tik

ik
n

ik
x αλαλλ sin-cos= ; 

   ik
ik
tik

ik
n

ik
y αλαλλ cossin +=             (16) 



Paper No. 2.03 
 

7 

 
It remains to express T}{ ii ,VH , see Fig. 6. It simply holds: 
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If no rotations were considered, the above formulas would be 
valid without improvement and the computation may start. 
Summing the forces in x-direction yields from (9): 
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and the equilibrium in y-direction follows from (10): 
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The latter equations can be unified to the form: 
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In the case of admitted rotations of disks, additional unknown 
angles describing the rotations of disks have to be introduced. 
Recall that three DOF (two displacements u', v' and one angle 
of rotation ( φ′ ) in 2D are to be sought. 
 
This assertion will be précised in the next text. The solution of 
latter equation is known as: 
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where 01 -= tth is the time step,  01100   ),(= ),(= ttwwtww is 
the initial time,  1t  is the time in the next time step. At the 
middle of the time interval, the value of displacement w and 
the first derivative by time t are derived as: 
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From equations (21) and (22) it follows an important bound 

estimate on the time step h: 
nk

m
h

2
≤
π

. The only 

troublesome point remains for 0→nk . Then linear relation 
follows from the governing equation and, consequently, the 
velocity is constant. This is in compliance with the 
D’Alembert law. The last inequality leads us also to the fact 
that in case of large penalty nk  no differences in 
displacements can be expected due to inertia forces, and also 
possible penetration of one element into the other in contact is 
excluded, for example.  
 
Using the well known approximation formula for second 
derivative and the above approximate formulas we get:  
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which is an explicit formula for calculating )1=(ξw . 
Applying the vector projection to the coordinates system, 
resulting movement is received. At the moment the center of 
gravity of the element is then moved assuming the deformed 
body as rigid. 
 
ADDITIONAL DYNAMICAL FORCES INSIDE THE 
PARTICLE WITH FIXED NEIGHBORHOOD 
 
Additional dynamical forces have to be added to the static 
formulation. As said above the lumped mass is considered at 
the center of gravity of each element. The situation is 
simplified due to this assumption and the calculation of 
necessary integrals is therefore removed. The volume integrals 
can also be calculated using very similar process done by the 
Eshelby forces idea. This is no simplification, but possible 
approach of expressing volume integrals, which are higher 
order singular. Decoding the equations (16) yields  
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which is a system of 12 equations for 12 unknowns 
displacements, six in 1x direction and six in 2x  direction. This 
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system is always solved in an iteration step, i.e. the 
neighboring elements are considered fixed and the value of 
displacements is taken from the previous step.  
 
EXAMPLES 
 
Study on a longwall mining under gas explosion loading is 
carried out in what follows. First the volume weight forces 

ib can be neglected, as only a small part of the rock 
mechanically cooperates with the coal seam. The effect of 
overburden (mostly several hundreds of meters) is simulated 
as loading along the upper part of the domain describing the 
whole system rock – coal seam.  In this sense the forces sjV  
involve only the dynamical effects. There is no aim to delve 
into details concerning the description of the time 
development steps, which are based on finite differences. The 
formulas for that are exactly the same as those used for PFC 
and other similar distinct element codes. This means that the 
rotation of particles is suppressed, as this is mostly caused by 
irregular shape of the particles, cf. [2-4]. For completeness it 
is worthy of note that if the rotation should be contemplated in 
the system of equilibrium very similar procedure as 
introduced in [1] can be used. The D’Alembert law required 
and basic relations velocity - movement are based on the 
simplest stencil in each element s with neighbors 6,...,1=j . 
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where })(,){(≡)( 21
tsjtsjtsj VVV  is an average of the inertia 

force vector in the element s , iρ  is the mass density of the 

particle, })(,){≡)( 21
tsjtsjtsj uu u  is an average of the 

acceleration, and the upper index t  means the time instant. 
The equation for angular acceleration (when employed) is 
calculated as: sss IM ω= , where I is the polar moment of 
inertia of the particle, sω  is the angular acceleration. The 
acceleration is calculated as:  
 

]})(-)([
1

{=)( 2/-2/+ ttsjttsjtsj
t

δδ
δ uuu  ,              (26) 

                    
where tsj )(u is the velocity of the center of boundary for 
particle s being in interface with the particle j  at time t . 
Finally the velocities can be used to relate the average 
movements of the particle: 
 

tttsjtsjttsj δδδ 2/++ )(+)(=)( uuu                 (27) 
                          

Under the above introduced expressions the volume integrals 

for tsj )(V do not need to be calculated at all and in the 

remaining volume integrals for })(,){(≡)( 21
tsjtsjtsj QQQ  the 

Eshelby trick can be employed.  
 
The domain describing the problem is a rectangle of 26 m x 
9.5 m, the coal seam is 4.75 m high. Regular distribution of 
hexagons is considered, internal radius of each hexagon is 
0.25 m, the adit has the width 3 m. Number of particles is 
1532. Material parameters of the rock mass have the following 
values (Carmichael 1989, Bell 2000): the elastic modulus E = 
50 GPa, the shear modulus G = 20 GPa, the angle of internal 
friction is 25 degrees, the shear strength c  = 1 MPa and the 
tensile strength =+

np  100 kPa. The coal seam is characterized 
by E = 5 GPa, G = 2 GPa, the angle of internal friction is 22 
kPa, +

np  = 10 kPa, c = 150 kPa, gas pressure = 1 MPa The 
load along the upper boundary of the domain due to the 
volume weight γ  = 25 kN/m 3  is given by the overburden. 
Depth of the mine is considered as 1000 m. In Fig. 8 setting of 
hexagonal elements is seen, shaded part describes the coal 
seam and the upper part of the particle setting simulates part 
of the overburden. The rock is divided into two parts: the 
upper part expresses the depth of the mine and is characterized 
by additional loading. The lower part of the overburden is 
described by elastic particles with cohesive boundaries. 
Boundary conditions of the entire domain are simulated by 
rollers along the outer boundary. The boundary of the adit is 
free supported in final stage, but in the time range Eshelby’s 
forces are selected according to the current position of the 
mine heading (say, mining shield). They are time dependent 
and decrease from the extreme values calculated from the 
virgin state (no opening is created) to the zero value at the 
time of far enough heading from the observed location 
considered in our examples. The zones of cracked coal seam 
are simulated by eigenstrains applied inside of the elements, 
which characterize the inclined predisposed dislocations. In 
Fig. 9 one predicted dislocation full of gas is shown with its 
location. The inclination of this dislocation from the 
horizontal direction is 600. The shaded particles denote the 
interface between the coal seam and the overburden. Since the 
hereditary laws are not considered here, shorter time between 
the virgin state and the critical state (when the mine face is at 
a far distance from the observed location) is taken into 
account. In the following pictures each particular hexagonal 
element is drawn in undeformed shape (regular hexagons), 
although they undertake a local deformation (described by 
movements of the centers of gravity of deformed elements and 
the deformation of the originally hexagonal shape). The 
reason is that the accumulation and fictitious overlapping of 
particles underlines a concentration of stresses. In reality, no 
overlapping is attained, as the penalty does not allow it.  
 
In Fig. 10 the deformation of the coal seam is depicted, 
belonging to the case of mine face at a far distance from the 
observed location. Closer view of the picture leads us to the 
conclusion that the movement of the particles is not only in 
front of the dislocation but also the particles below the 
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dislocation are disconnected and move slightly. The 
concentration of elements characterizes stresses along the 
dislocation in the orientation of the adit.  
 

 
 

Fig. 8. Set up of particles 
 

 
 

Fig.  9. Location of one predisposed dislocation  
 

 
 
Fig. 10. Way of movements of the particles, concentration of 

stresses and additional dislocations, one dislocation 
 
Fig. 11 shows two predisposed dislocations while Fig. 13 
depicts three predisposed dislocations which are considered in 
our examples. The toe of the first dislocation at the lower 
boundary of the domain is found 2.5 m from the tortuous wall 
of the mine, the second 5 m from the previous and the third 
dislocation is at the distance of next 5 m from the previous 
dislocation.  
 

Eventually, in Fig. 14 three dislocations are assumed with the 
same inclination as previous ones and the way of movement, 
stress concentration and additional cracks are shown. From the 
pictures it seems to be obvious that the influence of more than 
one dislocation is not principal in our case of distribution of 
the damage. For completeness vectors of movements of 
particles are seen in Fig. 15.  
 

 
 

Fig. 11. Location of two predisposed dislocation  
 
Next a reverse gradient of a predicted dislocation full of gas is 
shown in Fig. 16. The inclination of this dislocation from the 
horizontal direction is 1200. The previous case and the current 
one will be compared.  
 

 
 
Fig. 12. Way of movements of the particles, concentration of 

stresses and additional dislocations, two dislocations 
 

The following picture, Fig. 17, shows the movements at the 
stage when the mine face is far from the observed cross 
section. Comparing this case with that depicted in Fig. 10 it 
appears that the cracks are distinct and the bumps occurrence 
is likely. 
 
The particles are cast away from the massif but the side face 
brakes the movement and try to stabilize the opening. The 
column of the mass on the face, on the other hand, is not stiff 
enough and probably the coal seam burst will take place.  
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Fig. 13. Location of two predisposed dislocation  
 

 
 
Fig. 14. Way of movements of the particles, concentration of 

stresses and additional dislocations, three dislocations 
 

Figs. 15 and 22 show that in the first inclination the mass 
remains relatively compact, although some cracks appear 
there. High degree of destruction is observed in the second 
case of dislocations inside of the coal seam.  
 

 
 

Fig. 15. Vectors of movements of the centers of gravity for 
three dislocations 

 
Fig. 18 shows two predisposed dislocations while Fig. 20 
depicts three predisposed dislocation with the inclination 1200. 
The position of the upper part of the first dislocation is found 
2.5 m from the tortuous wall of the mine, the second 5 m from 
the previous and the third dislocation is next 5 m from the 
previous dislocation, all measured with respect to the interface 
between the coal seam and the overburden. 
 

 
 

Fig. 16. Location of two predisposed dislocation  
 

 
 
Fig. 17. Way of movements of the particles, concentration of 

stresses and additional dislocations, one dislocation 
 
Fig. 19 introduces the movements of particles, stress 
concentration and cracks due to two dislocations and Fig. 21 
describes the same situation in the case of three dislocations. 
Fig. 22 deals with vectors of movements for three 
dislocations.  
 

 
 

Fig. 18. Location of two predisposed dislocation  
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Fig. 19. Way of movements of the particles, concentration of 

stresses and additional dislocations, two dislocations 
 

 
 

Fig. 20. Location of three predisposed dislocation  
 
It is worth noting that the displacements are small although 
the overburden is high (1000 m). This is the impact of relative 
movements caused by Eshelby’s forces acting on the side face 
of mine. In the zone of the predisposed dislocations the 
movement at the critical point is almost horizontal while on 
the fringes of the domain describing the problem partly 
vertical displacements are observed.  
 
As a conclusion, the second case of inclination of the 
dislocations is much more dangerous for the bumps 
occurrence.  
 
CONCLUSIONS 
 
In this paper application of the free hexagon method, 
belonging to the discrete elements, to selected problems is 
presented. Mainly assessment of bumps occurrence in deep 
mines is studied. Basic relations are formulated showing 
relatively simple algorithm for preparation of computer code, 
involving natural way of computation of the system of 
pseudo-linear equations. The time steps are described with an 
explicit formula, which can be easily used for the problem 
described by a special loading characterized by the Eshelby 
forces.  
 
For explication of the theory the influence of inclination of 
predisposed dislocations in coal seams is presented. Two 
typical cases are discussed, where the second, when the 
dislocations are inclined from horizontal by 1200, are much 

dangerous for such a fatal phenomenon as rock bursts than the 
case of 600 inclinations. One can esteem that vertical direction 
of the dislocations will behave similarly as the first case. 
 

 
 
Fig. 21. Way of movements of the particles, concentration of 

stresses and additional dislocations, three dislocations 
 

 
 

Fig. 22. Vectors of movements of the centers of gravity for 
three dislocations 
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