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Charge transfer in slow collisions of H¿ with Na
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We reexamined charge-transfer cross sections for protons colliding with Na(3s) atoms for collision energies
from the threshold at 1.7 eV to 40 eV using the recently developed hyperspherical close-coupling method. Our
results disagree with the recent calculations by Duttaet al. @Phys. Rev. A63, 022709~2001!#, but are in good
agreement with the earlier calculations of Croft and Dickinson@J. Phys. B29, 57 ~1996!# except at energies
below 3 eV. Our calculations support the doubt on the experimental data of Kushawaha.
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I. INTRODUCTION

Collisions involving sodium atoms and protons have been
studied extensively in the last few decades. Most of the the-
oretical and experimental works have been focused on colli-
sions at energies of the order of keV’s. Despite its apparent
simplicity, this collision system has generated a great deal of
controversy. In the higher-energy region, the controversy has
been more or less settled now, in that newer theoretical and
experimental results for total charge-transfer cross sections
are in good agreement@1–7#. Attention in the keV-energy
region has recently been turned to differential cross sections
and orientation parameters, including the recent experiments
with laser-cooled Na targets@8#. In the low-energy region,
from the threshold at 1.7 eV to, say, about 50 eV~all the
collision energies in this paper refer to the center-of-mass
energies!, controversy still remains even for the total charge-
transfer cross sections. Such cross sections are needed in
order to understand the ionization distribution of stellar
winds @9# and the interpretation of spectral distributions of
the resonance line of sodium atoms@10#. Experimentally
there exists only one measurement by Kushawaha@11#. This
experimental result was first challenged by Croft and Dick-
inson who performed quantum-mechanical close-coupling
calculations based on the molecular states of the collision
complex@12#. They have used the so-called reaction coordi-
nates @13,14# to account for electron translational effects.
The total charge-transfer cross sections from the calculation
by Croft and Dickinson showed rapid decrease as the colli-
sion energy drops below 10 eV, while the experimental data
of Kushawaha gave a relatively constant cross section in this
region. In a recent paper@15#, Dutta et al. did a similar
quantum-mechanical calculation with identical molecular ba-
sis except that the electron translational effect was intro-
duced via atomic plane-wave-type translational factors. Their
results show strong disagreement with those of Croft and
Dickinson, but are in good agreement with the experimental
data of Kushawaha.

In view of this controversy, we decided to examine the
proton-sodium collision system using the recently developed
hyperspherical close-coupling method~HSCC! @16#. The
HSCC method is formulated similarly to the perturbed sta-
tionary states~PSS! approximation but without the well-
known difficulties encountered in the PSS approach. Thus,

unlike the reaction coordinate method used by Croft and
Dickinson or the electron translational factors used by Dutta
et al., no additional assumptions were needed beyond the
truncation of the number of adiabatic channels included in
the calculation. For proton-sodium collisions at low energies,
only the valence electron of sodium is involved; thus we
approximate the sodium as a one-electron atom in a core
potential, with the model potential taken from Croft and
Dickinson. We then solved the model collision system by
expanding the total wave function in hyperspherical coordi-
nates similar to that used in the PSS approach except that the
hyper-radius is the adiabatic parameter. The HSCC method
will be briefly reviewed in Sec. II.

From the present HSCC calculation, we were unable to
reproduce the results of Duttaet al. We found good agree-
ment with the results of Croft and Dickinson except at ener-
gies below 3 eV. The origin of these discrepancies will be
discussed in Sec. III after our calculated results are pre-
sented. In Sec. IV we will conclude with comments on the
different theoretical approaches for low-energy ion-atom col-
lisions and the relation between the HSCC and traditional
approaches.

II. THEORETICAL METHOD

To determine the electron-capture cross sections in ion-
atom collisions, we use the hyperspherical close-coupling
method where the hyperradial equations are solved using a
combination of the R-matrix propagation and slow/smooth-
variable discretization methods. The theory has been de-
scribed in detail in Ref.@16#. We give here only a brief
overview of the method.

The HSCC method has been developed for describing
three-body collision systems so far. We approximate the
proton-Na collision system as consisting of an electron in a
Na1 core and a proton. The effective potential of Na1 was
taken from Allan @17#, which was also used by Croft and
Dickinson. The three-body problem is then solved in the
mass-weighted hyperspherical coordinates. In the ‘‘molecu-
lar’’ frame, the first Jacobi vectorr1 is chosen to be the
vector from Na1 to H1, with reduced massm1; and the
second Jacobi vectorr2 goes from the center of mass of Na1

and H1 to the electron, with reduced massm2. The hyper-
radiusR and hyperanglef are defined as
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wherem is arbitrary. Another angleu is defined as the angle
between the two Jacobi vectors. We choosem to be equal to
m1. The hyperradiusR is then very close to the internuclear
distance.

After introducing the rescaled wave function

C~R,V,v̂ !5c~R,V,v̂ !R3/2sinf cosf, ~3!

the Schro¨dinger equation takes the form
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1Had~R,V!2mR2EDC~R,V,v̂ !50,

~4!

whereV[$f,u% andv̂ denotes the three Euler angles of the
body-fixed frame axes with respect to the space-fixed frame.
Had is the adiabatic Hamiltonian

Had~R,V,v̂ !5
L2

2
1mR2V~R,V!, ~5!

whereL2 is the square of the grand-angular-momentum op-
erator andV(R,V) gives the total Coulomb interaction.

To solve Eq.~4!, we expand the rescaled wave function in
terms of the normalized and symmetrized rotation functions
D̃, and the body-frame adiabatic basis functionsFmI(R,V),

C~R,V,v̂ !5(
n

(
I

FnI~R!FnI~R,V!D̃IM J

J ~v̂ !, ~6!

wheren is the channel index,J is the total angular momen-
tum, I is the absolute value of the projection ofJ along the
body-fixedz8 axis, andMJ is the projection along the space-
fixed z axis. To solve the hyperradial equations, we divide
the hyperradial space into sectors. We then use a combina-
tion of the R-matrix propagation method@18# to propagate
the R matrix from one sector to the next, and the slow/
smooth-variable discretization method@19# within each sec-
tor. TheR matrix is propagated to a large hyperradius~de-
pending on the collision energy! where the solution is
matched to the known asymptotic solutions to extract the
scattering matrix. The electron-capture cross section for each
partial waveJ is then obtained from the calculated scattering
matrix.

The method described above has to be carried out for each
partial waveJ until a converged cross section is reached.
Using the numerical procedure introduced in Liuet al. @16#,
such calculations can be easily carried out for many partial

waves. We have checked that the results are insensitive to the
matching radius within the number of channels included in
the calculation, see below.

III. RESULTS AND DISCUSSION

We are interested here in the determination of electron-
capture cross section for the reaction

H11Na~3s!→H~n52!1Na1 ~7!

for collision energies from the threshold at 1.7 eV to 40 eV.
To compare the present HSCC results with the calculations
of Croft and Dickinson and of Duttaet al., we used the same
set of molecular basis~or hyperspherical channels! in the
calculation. The adiabatic hyperspherical potentials included
are shown in Fig. 1. Note that the curves are not molecular
potential curves, but are rather hyperspherical potential
curves. However, we have chosen the scaling mass such that

FIG. 2. Comparison of the total charge-transfer cross sections
for H11Na(3s)→H(n52)1Na1 reactions.

FIG. 1. Hyperspherical adiabatic potential curves for NaH1.
The figure shows fourI 50 channels in solid lines, twoI 51 chan-
nels in broken lines.
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the hyperradius is essentially equal to the internuclear sepa-
ration except for distances less than around 0.1 a.u. Compar-
ing Fig. 1 with the molecular potential curves, there are no
apparent differences.

In Fig. 2 we show the total charge-transfer cross section
@or equivalently total charge-transfer cross section to H(n
52) states in this energy region# from the present HSCC
calculation and compare it to the experimental data of
Kushawaha, the calculations of Duttaet al., and of Croft and
Dickinson. Clearly ours do not agree with the experiment nor
with the theoretical results of Duttaet al., but agree well
with the calculations of Croft and Dickinson except at ener-
gies below about 3 eV. In this low-energy region, our cross
section drops rapidly while in Croft and Dickinson, the cross
section shows a kink at about 3 eV.

What are the sources of the differences among the three
theoretical calculations? To begin with, the potential curves
from the three calculations are essentially identical. Thus we
next compare the coupling matrix elements. The comparison
of radial matrix elements is not possible since they are not
shown in the papers of Croft and Dickinson, nor in the paper
by Duttaet al. In the HSCC calculation, the radial coupling
was not calculated, nor used. However, one can compare the
rotational coupling matrix elements from the three different
approaches. This is especially relevant for the present colli-
sion system since all three calculations agree that theI 51
channels are predominantly populated in the 3–40 eV re-
gion.

In Fig. 3 the rotational coupling matrix elements from the
three calculations are shown.@The rotational coupling is

given asC(R)/R2. Only C(R) is shown in the figure follow-
ing the general convention.# First we focus on the rotational
coupling between the 12P and the 22S ~see Fig. 1! poten-
tial curves. The couplings from Croft and Dickinson and
from Duttaet al.are in good agreement.~We have multiplied
the data of Duttaet al. in their Fig. 3 byA2 to get the correct
comparison.! This is not surprising since the two methods
intrinsically are similar. The rotational coupling from the
HSCC agrees well with these two calculations, especially in
the region where it is important (R,5 a.u.). Other rota-
tional matrix elements in Fig. 3 also show reasonable agree-
ment. But does the difference in the rotational coupling ac-
count for the discrepancy in the calculated total charge-
transfer cross sections? By comparing ourI 51 cross
sections with those from Croft and Dickinson~not shown!,
we found good agreement over the whole energy range. In
contrast, theI 51 component cross sections from Duttaet al.
are much higher throughout the energy range. In fact, despite
that all the three calculations were carried out using six chan-
nels as shown in Fig. 1, a two-channel calculation including
only the 22S and 12P channels can already produce nearly
identical results. We replaced the rotational coupling matrix
elements from our calculation by those from Duttaet al. and
we were unable to reproduce their results. Instead the results
remain close to what we obtained from the HSCC method.

We next discuss the difference in the total cross sections
between the HSCC and those of Croft and Dickinson below
3 eV. As indicated above, for theI 51 channels, we have
good agreement over the whole energy range. However, in

FIG. 3. Comparison of rotational coupling matrix elements from the three different calculations indicated in the figure. In the present
calculation, we have chosenm to be equal tom1 such that the hyperradius is essentially equal to the internuclear distance forR.0.1 a.u.
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Croft and Dickinson, theirI 50 cross sections to the 32S
and 42S channels become dominant at energies below 3 eV.
Thus the discrepancy between the present HSCC and that of
Croft and Dickinson is due to the radial coupling for which
we have not been able to make a direct comparison. In our
calculation, cross sections for the 32S and 42S channels
drop precipitously at low energies as for the 12P channel
and remain small in comparison to that channel.

By examining the potential curves in Fig. 1 we found that
it is easier to interpret the results from the present calcula-
tion. At low energies, the radial coupling between 22S and
3 2S is not efficient for making direct transition from the
2 2S curve to the 32S curve despite the avoided crossing at
about 12 a.u. since the energy gap is too large. An efficient
mechanism for populating the excited states is via the rota-
tional coupling. The electron will follow the 22S curve and
gets promoted to a hyperradius~or internuclear separation!
below 4 a.u. where the 22S curve and the 12P curve are
nearly degenerate. The rotational coupling between 22S and
1 2P shown in Fig. 3 in this region would provide an effec-
tive mechanism in exciting the electron to the 12P curve,
thus populating theI 51 channels after the collision. As
the collision energies decrease, the classical turning point for
each partial wave will move further to largerR where the
energy gap between the 22S curve and the 12P curve
becomes larger~see Fig. 1!, thus the rotational coupling
becomes inefficient and thus theI 51 charge-transfer cross
section drops rapidly. At these low energies, there are no
mechanisms that can efficiently populate the 32S and the
4 2S channels directly and any transition would have to go
through the 12P channel as the intermediate step. One may
wonder if the 32S can be efficiently populated by the rota-
tional coupling with the 12P at the crossing near 9 a.u.
However, this coupling can occur only after the 12P chan-
nel is populated at smallerR, and thus should at most have
the same energy dependence as the 12P channel. Thus we
do not expect theI 50 channel to become dominant at lower
energies.

In Fig. 4 we show the impact-parameter-weighted charge-
transfer probability vs impact parameter at selective collision
energies. Note that in our calculation we never use the semi-
classical concept. In comparing the partial-wave cross sec-
tions from the quantum calculation with the transition prob-
abilities from the semiclassical calculation, we employ the
relation

sJ5
2pbP~b!

k
, ~8!

with J5kb, wherek is the momentum. Except for 5 eV, we
note that the cross section derives its contribution mostly
from impact parameters below 3 a.u., clearly showing that
the rotational coupling is the dominant mechanism for popu-
lating the charge-transfer channels in this energy region.

IV. CONCLUSIONS

In this paper we used the hyperspherical close-coupling
method~HSCC! to calculate electron-capture cross sections
for the H11Na(3s)→H(n52)1Na1 reaction, from thresh-
old at 1.7 eV to 40 eV. Our results agree with the earlier
calculations of Croft and Dickinson except at energies below
3 eV. Our results do not agree with the recent calculations of
Dutta et al. nor with the earlier experiment of Kushawaha.
The HSCC calculations were carried out without the need of
introducing somewhatad hoc reaction coordinates or elec-
tron translational factors. On the other hand, a good agree-
ment between the HSCC results and the reaction coordinate
calculations of Croft and Dickinson indicates that charge-
transfer cross sections are not very sensitive to the precise
form of the switching function used in the reaction coordi-
nate method. Still the remaining discrepancy at lower ener-
gies may be an indication of the limitation of the reaction
coordinate approach. From the few collision systems we
have examined so far, the discrepancy occurs only when the
cross sections are small, as in the present case. In other
words, despite of the somewhatad hocnature of the reaction
coordinate method, it can be used to obtain reliable reaction
cross sections at low energies.
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