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A single extreme-ultraviolet (XUV) attosecond pulse or pulse train in the time domain is fully characterized
if its spectral amplitude and phase are both determined. The spectral amplitude can be easily obtained from
photoionization of simple atoms where accurate photoionization cross sections have been measured from, e.g.,
synchrotron radiations. To determine the spectral phase, at present the standard method is to carry out XUV
photoionization in the presence of a dressing infrared (IR) laser. In this work, we examine the accuracy of current
phase retrieval methods (PROOF and iPROOF) where the dressing IR is relatively weak such that photoelectron
spectra can be accurately calculated by second-order perturbation theory. We suggest a modified method named
swPROOF (scattering wave phase retrieval by omega oscillation filtering) which utilizes accurate one-photon and
two-photon dipole transition matrix elements and removes the approximations made in PROOF and iPROOF.
We show that the swPROOF method can in general retrieve accurate spectral phase compared to other simpler
models that have been suggested. We benchmark the accuracy of these phase retrieval methods through simulating
the spectrogram by solving the time-dependent Schrödinger equation numerically using several known single
attosecond pulses with a fixed spectral amplitude but different spectral phases.

DOI: 10.1103/PhysRevA.91.023407 PACS number(s): 32.80.Fb, 42.65.Re

I. INTRODUCTION

Since the first report of the generation of attosecond pulse
trains (APT) [1] and single attosecond pulses (SAP) [2] in
the extreme ultraviolet (XUV) in 2001, attosecond pulses are
becoming essential laboratory tools for probing the dynamics
of atoms, molecules, and solids. Today, attosecond pulses are
mainly produced by high-order harmonic generation (HHG)
process with intense femtosecond near-infrared (NIR) to mid-
infrared (MIR) laser pulses in a gas medium. For applications
in science and technology and for the purpose of probing
dynamics in the attosecond time scale, it is desirable that
single attosecond pulses are routinely generated, with the
goal of shorter pulse duration, higher intensity, and higher
photon energy, especially for the water window and the x-ray
region. So far, attosecond pulses as short as 80 as [3] and 67
as [4] have been reported. These pulses have central energy
below 150 eV. To generate SAP, temporal gating techniques
such as polarization gating [5] and double optical gating
[6] have already been developed. Recently, spatiotemporal
gating methods including attosecond lighthouse [7,8] and
noncollinear optical gating [9] have also been introduced [10].

In the past decade, APT and SAP have been used to study
dynamics of atoms, molecules, and condensed matter. In the
experiment, an APT or SAP is used to excite the target in the
presence of a near-infrared laser (typically around 800 nm).
The dressing laser will modify the medium as well as the
wave packet generated by the attosecond pulse, as the delay
between the two pulses is varied. Thus, wave-packet dynamics
such as quantum interference, shakeup, autoionization, ac
Stark shift, or time delay in photoionization, have been
explored in many experiments [11–28], mostly by detecting
the electron momentum spectra. Recently, transient absorption
spectroscopy has also been used [29–34] in view that better
spectral resolution can be achieved by measuring photons. A
recent review on experimental activities with attosecond pulses
is given by Lepine et al. [35].

In spite of a wealth of literature on attosecond pulses
in the past decade, precise real-time observation of electron
dynamics on attosecond time scale is still very limited since
a precise characterization of such pulses in the time domain
remains a challenging task [36–41]. The spectral amplitude
of attosecond pulses can be easily retrieved from the XUV-
only photoelectron spectrum provided that the one-photon
ionization cross section of the target is known. Thus, the
main difficulty in attosecond pulse characterization is the
accurate retrieval of the spectral phase. With known spectral
amplitude and phase, the attosecond pulse in the time domain
is obtained by a simple inverse Fourier transform. Today,
methods that have been developed for determining the phase
of attosecond pulses include streaking, RABITT, PROOF,
and iPROOF. In attosecond streaking [42], the XUV pulse
is converted into an electron wave packet via photoionization.
Due to the presence of the phase-locked dressing IR field,
the photoelectron spectrum in a given direction modulates
as a function of the time delay between the XUV and
the IR pulses. To achieve pronounced modulation, the IR
field has to be relatively intense, but not intense enough to
ionize the atom by itself alone. Assuming that the strong
field approximation (SFA) is accurate enough to describe
the electron spectrum at each time delay [43], the phase
of the XUV pulse can be retrieved using the so-called
FROG-CRAB method (frequency-resolved optical gating for
complete reconstruction of attosecond bursts) [44,45]. In
order to use the standard FROG algorithm, the FROG-CRAB
introduces an additional “central momentum approximation,”
which assumes the bandwidth of the XUV is small compared to
its central energy. Many of the time-domain XUV attosecond
and IR femtosecond pulses are thus retrieved simultaneously.
However, the accuracy of the FROG-CRAB method has
never been carefully calibrated. It is well known that the
standard SFA is not an accurate theory for predicting the
photoelectron spectra in an intense laser field. Although further
derivation beyond standard SFA such as the Coulomb-Volkov
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approximation [46] can improve the accuracy, the validity
of such central momentum approximation is not guaranteed
when characterizing a broadband XUV pulse. Yakovlev et al.
[47] investigated the central momentum approximation by
assuming an artificial bound-free transition matrix element that
has a sharp minimum, and they found that the FROG-CRAB
tends to retrieve a “time-domain wave packet” rather than the
XUV pulse. More calibrations using accurate matrix element
and broader band XUV pulses are strongly desirable. Such
uncertainty in the FROG-CRAB method renders the claims
for precise duration of attosecond pulses and the interpretation
of time-domain experimental results less trustworthy.

Since accurate theory for retrieving attosecond pulses via
strong field ionization is very complicated, it is desirable to
retrieve the spectral phase by applying a weak IR field. In
the limit that second-order perturbation theory is adequate
for describing the photoelectron spectra, the theory is on
good footing. Indeed, this is how the attosecond pulse trains
are characterized [1]. Using the so-called RABITT method
(reconstruction of attosecond beating by interference of two-
photon transition), the relative phase between two successive
odd harmonics (separated by 2ω) can be accurately obtained
from the modulation (with frequency 2ω) of the even-harmonic
sidebands versus the time delay. The 2N th sideband harmonic
is generated by absorbing a (2N − 1)th XUV harmonic and
an IR photon, or by absorbing a (2N + 1)th XUV harmonic
and emitting an IR photon. The amplitudes from the two
pathways interfere, thus the phase difference between the two
neighboring harmonics is encoded in the spectra and can be
retrieved accurately. The RABITT method does not work if the
harmonics is separated by ω (generated by an ω +2ω two-color
field) nor for a single attosecond pulse where the spectral
phase information is encoded in the interference between the
first-order term from the XUV alone and two second-order
terms involving XUV plus IR processes. A phase retrieval
method based on analyzing this first-second-order interference
(FSI) term was proposed by Laurent et al. [48]. They called
their method as iPROOF, which was an improved version
of the PROOF method (phase retrieval by omega oscillation
filtering) proposed by Chini et al. [49]. The PROOF method
starts with the strong field approximation for describing XUV
ionization in a weak dressing IR field. By expanding the
SFA equation in the weak field limit, they analyzed the ω

oscillation (instead of the 2ω oscillation in RABITT) due to the
first-second-order interference. Since PROOF does not include
the atomic structure, this model is not expected to explain
the experimental electron spectra. The iPROOF is based on
the correct second-order perturbation theory and it should be
possible to use it to characterize attosecond pulse trains as well
as single attosecond pulses. Unfortunately, the two-photon
transition matrix elements used in iPROOF were calculated
with an additional approximation [50,51] which renders the
phase retrieved via iPROOF inaccurate.

In this article, our goal is to benchmark the accuracy
of the spectral phase retrieved for single attosecond pulses
using PROOF, iPROOF, and our swPROOF (scattering wave
PROOF) method. The swPROOF takes advantage of accurate
atomic transition matrix elements which are calculated by
using real scattering wave functions. This method is based on
fundamentally correct theory so long that the IR intensity is

in the region where second-order perturbation theory is valid.
It is the correct counterpart of the RABBIT method which
was applied to retrieve attosecond pulse trains. To benchmark
the accuracy of the phase retrieval, in this work we solve the
time-dependent Schrödinger equation (TDSE) numerically in
the presence of a given XUV pulse and a delayed dressing
IR field. The computed spectrogram is to serve as the “real”
experimental data. The PROOF, iPROOF, and swPROOF
methods are then applied on this spectrogram to retrieve the
spectral phase that can be checked against the actual input
XUV spectral phase. The main contribution of this work is that
we calculate the two-photon transition matrix elements used
in the swPROOF accurately via the Dalgarno-Lewis method
[52] without adopting the approximations used in iPROOF.
We will show that the swPROOF method indeed improves
the attosecond pulse characterization. Note that all the three
methods are based on “phase retrieval by omega oscillation
filtering” (PROOF). The original PROOF [49] could be more
correctly represented by such as “pwPROOF” since it uses
plane waves to describe continuum electrons, but in this paper
we follow its original name without introducing too many
terms.

This paper is organized as follows: Sec. II A gives a
general framework of the spectral phase retrieval from the
first-second-order interference (FSI) term in the photoelectron
spectra based on the second-order perturbation theory. In
Secs. II B and II C we present the evaluation of the one- and
two-photon transition dipole matrix elements in details. The
approximations used in PROOF and iPROOF are discussed in
Sec. II D. In Sec. II E, the concept of continuum-continuum
phase is elaborated since it also enters in the formulation of
numerous articles on time-delay studies. In Sec. III A, we
compare the electron spectra calculated from TDSE with the
spectra from PROOF, iPROOF, and swPROOF methods, and
we also show the sensitivity of the FSI term to the spectral
phase. The results of the pulse characterization are given in
Sec. III B, assuming that the IR intensity is either known or
unknown in the retrieval process. In Sec. III C, we study
the effect of the dressing IR intensity to identify where the
present swPROOF method begins to fail. The conclusions are
presented in Sec. IV. Atomic units are used in this paper unless
otherwise stated.

II. THEORETICAL METHODS

A. First-second-order interference term in photoelectron
spectra

Consider a combined XUV pulse and an IR field interact
with an argon atom. Both fields are linearly polarized along
the z axis. The XUV pulse can be described by

EXUV(t) =
√

I (t) cos[�0t + φ(t)]

= 1

2π

∫ ∞

−∞
ẼXUV(�)ei�td�

= 1

2π

∫ ∞

−∞
U (�)ei�(�)ei�td�, (1)

where �0 is the central frequency, I (t) is the temporal intensity
profile, and φ(t) is the temporal phase including attosecond
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chirps. U (�) and �(�) are the spectral amplitude and phase,
respectively. The XUV photon energy � is assumed to be much
greater than the ionization threshold Ip = 15.76 eV so that the
electron wave packet created by XUV lies in the continuum
regime. The kinetic energy of the photoelectron is E = � −
Ip. The IR field is assumed to be monochromatic such as

ẼL = EIR

2
eiωτ , (2)

where ω is the IR photon energy. For a typical 800-nm laser,
ω = 1.55 eV. τ represents the time delay between the XUV
and IR fields. We only consider photoelectrons ionized from
the outer shell of the argon atom so that single active electron
approximation (SAE) can be applied. The effective potential
of the ionic core is modeled by

V (r) = −Z + a1e
−a2r + a3re

−a4r + a5e
−a6r

r
, (3)

where Z = 1 is the asymptotic charge seen by the active
electron. The coefficients ai are obtained by fitting the
numerical potential calculated from the self-interaction free
density functional theory, which can be found in Ref. [53] for
argon atom. The ground state of argon has angular quantum
number li = 1 and magnetic quantum number mi = 0, ± 1.

We consider ionization from mi = 0 state only for linearly
polarized light along the z axis. The detected photoelectron
has a momentum k = (

√
2E,θ,ϕ) where θ and ϕ are angles

of detection with respect to the z axis. Due to azimuthal
symmetry, the photoelectron spectrum is independent of ϕ.
When both XUV and IR fields are weak, the spectrogram
S(E,θ,τ ) can be modeled by perturbation theory

S(E,θ,τ ) =
∣∣∣∣Ẽ∗

XUV(�)dd (E,θ )

+Ẽ∗
XUV(� − ω)

EIR

2
e−iωτ da(E,θ )

+Ẽ∗
XUV(� + ω)

EIR

2
eiωτ de(E,θ ) + o

(
E2

IR

)∣∣∣∣
2

.

(4)

The first term in Eq. (4) describes the process that the electron
initially at ground state absorbs one XUV photon � and
transits to continuum state with energy E. dd denotes the
one-photon dipole transition matrix element. The second term
in Eq. (4) corresponds to the path that the electron first absorbs
one XUV photon � − ω and then absorbs one IR photon ω,
while the third term corresponds to the path that the electron
first absorbs one XUV photon � + ω and then emits one IR
photon ω. da and de denote the two-photon transition matrix
elements for the absorption and emission path, respectively.
The complex conjugate in Eq. (4) is consistent with our
definition of Fourier transform in Eq. (1). The term o(E2

IR)
includes contributions from higher-order paths involving two
or more IR photons. The total spectrogram is the modulus
square of the coherent superposition of all possible quantum
paths that lead to a final state with energy E. Since ω � Ip for
noble gas atoms, contribution from the path that the electron
first absorbs (or emits) one IR photon and then one XUV

photon is negligible [54]. Therefore, in this work we only
include paths that the electron absorbs one XUV photon first.

We can expand S(E,θ,τ ) by the order of EIR:

S(E,θ,τ ) = SXUV(E,θ ) + SFSI(E,θ,τ ) + o
(
E2

IR

)
. (5)

Here, SXUV(E,θ ) = |U (�)|2|dd (E,θ )|2 is the IR free XUV-
only photoelectron spectrum. SFSI(E,θ,τ ) comes from the
interference between one-photon and two-photon paths, which
is proportional to EIR:

SFSI = EIRRe{Ẽ∗
XUV(�)ẼXUV(� − ω)eiωτ ddd

∗
a

+ Ẽ∗
XUV(�)ẼXUV(� + ω)e−iωτ ddd

∗
e }

= EIRU (�)|dd |{U (� − ω)|da| cos(ωτ + 
a)

+U (� + ω)|de| cos(ωτ + 
e)} (6)

= A(E,θ ) cos[ωτ + �(E,θ )]. (7)

Equation (6) implies that the FSI term is a superposition of two
oscillating terms: one comes from the interference between
the direct and the absorption path (d − a interference), the
other comes from the interference between the direct and the
emission path (d-e interference). For a given (E,θ ) the FSI
term oscillates with τ at the IR frequency ω, as shown by
Eq. (7). A and � are the amplitude and phase of such oscillation
given by

A = EIRU (�)|dd |{|U (� − ω)|2|da|2 + |U (� + ω)|2|de|2

+ 2U (� − ω)U (� + ω)|da||de| cos(
a − 
e)} 1
2 , (8)

� = tan−1

[
U (� − ω)|da| sin 
a + U (� + ω)|de| sin 
e

U (� − ω)|da| cos 
a + U (� + ω)|de| cos 
e

]
.

(9)

The phase 
a or 
e depends on the spectral phase �(�) and
the phase of dipole matrix elements


a = �(� − ω) − �(�) + arg(dd ) − arg(da), (10)


e = �(�) − �(� + ω) + arg(de) − arg(dd ). (11)

Equations (8)–(11) are used to retrieve the spectral phase �(�)
assuming that the spectral amplitude U (�) is already known.
Clearly adding a constant to �(�) does not change 
a or 
e,
thus the FSI term carries information of the relative phase
only. Therefore, the characterization method that is based
on the analysis of FSI can retrieve only the relative spectral
phase which determines the temporal pulse shape and duration.
Since the absolute spectral phase is not determined, the carrier
envelope phase (CEP) of the XUV pulse in the time domain
is not fixed in this method. On the other hand, Liu et al. [55]
have demonstrated that the photoelectron spectra generated
by a single attosecond pulse in the presence of an intense
IR field (4.5 × 1013 W/cm2) are sensitive to the CEP of the
attosecond pulse. This CEP dependence can be understood
in terms of the coherent superposition of two electron wave
packets. The electron in the first wave packet comes from
direct photoionization by absorbing one XUV photon, while
the electron in the second wave packet is released by the intense
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IR field and then rescatters on the parent ion. This method
requires intense IR pulse where strong field ionization theory
is usually less accurate.

In practice, one cannot decompose the perturbation series
from an experimental spectrogram S(E,θ,τ ) directly. How-
ever, one can apply the Fourier decomposition with respect to
τ such that

S(E,θ,τ ) = S0(E,θ ) + Sω(E,θ,τ ) + S2ω(E,θ,τ ) + . . . .

(12)
Here, S0 = SXUV + o(E2

IR) is a dc term that is independent
of τ , Sω = SFSI + o(E3

IR) oscillates with τ at a frequency
ω, and S2ω = o(E2

IR) oscillates with τ at a frequency 2ω.
When the IR intensity is weak, S0 ≈ SXUV, Sω ≈ SFSI, and
S2ω is negligible. Thus, the FSI term is obtained by applying
a filter on the measured spectrogram and then selecting its
omega component. Note that in the case of single attosecond
pulse, S2ω is due to the interference not only between the two
two-photon paths as in the RABBIT case, but also between
the one-photon path and the three-photon path (absorbing or
emitting two IR photons). In either case, there is a contribution
proportional to E2

IR.

B. One- and two-photon dipole transition matrix elements

In order to characterize the XUV pulse, complex matrix
elements dd , da , de in Eq. (4) are required. We consider the
field-free Hamiltonian

H0 = − 1
2∇2 + V (r). (13)

The eigenstates of H0 consists of both bound and continuum
parts. The ground state of argon atom can be written as

〈r|i〉 = ui(r)

r
Y10(θr ,ϕr ), (14)

where r = (r,θr ,ϕr ) is the position vector and Ylm is a spherical
harmonic. The continuum state with energy E = k2/2 and
quantum numbers l, m is given as

〈r|klm〉 = ukl(r)

r
Ylm(θr ,ϕr ). (15)

The energy normalized radial wave function ukl(r) has the
asymptotic form

lim
r→∞ ukl(r) =

√
2

πk
sin

[
kr + Z

k
ln(2kr) + ηl(E)

]
, (16)

ηl(E) = − lπ

2
+ σl(E) + δl(E), (17)

where σl = arg[�(l + 1 − iZ/k)] is the Coulomb phase shift,
δl is the partial wave phase shift due to the short-range
deviation from a pure Coulomb potential.

The final photoelectron state with momentum k =
(
√

2E,θ,ϕ) can be expanded by partial waves

〈r|k(−)〉 =
∑
L,M

e−iηL(E)Y ∗
LM (θ,ϕ)YLM (θr ,ϕr )

ukL(r)

r
. (18)

This wave function behaves asymptotically as the superposi-
tion of a plane wave plus an incoming spherical wave.

Since z = r cos θr , the one-photon dipole transition matrix
element can be calculated as the following:

dd (E,θ ) = 〈k(−)|z|i〉
=

∑
L,M

eiηL(E)YLM (θ,ϕ)〈YLM | cos θr |Y10〉〈ukL|r|ui〉

=
√

1

12π
{P0(cos θ )eiη0(E)〈uk0|r|ui〉

+ 2P2(cos θ )eiη2(E)〈uk2|r|ui〉}. (19)

From Eq. (19), dd consists of s wave and d wave so that dd is
symmetric with respect to the polarization axis.

The two-photon transition matrix element is given as

dκ (E,θ ) = lim
ε→0

∑
α,λ,m

〈k(−)|z|αλm〉〈αλm|z|i〉
Eκ − Eα + iε

=
∑

L,M,λ,m

eiηL(E)YLM (θ,ϕ)〈YLM | cos θr |Yλm〉

× 〈Yλm| cos θr |Y10〉WL,λ(E,Eκ )

=
√

1

12π

{
P1(cos θ )eiη1(E)W1,0(E,Eκ )

+ 4

5
P1(cos θ )eiη1(E)W1,2(E,Eκ )

+ 6

5
P3(cos θ )eiη3(E)W3,2(E,Eκ )

}
. (20)

The label κ can be replaced by either a (absorbing one IR
photon, Ea = E − ω) or e (emitting one IR photon, Ee =
E + ω). In Eq. (20), we introduce a two-photon radial matrix
element that reads as

WL,λ(E,Eκ ) = lim
ε→0

∑
α

〈ukL|r|uαλ〉〈uαλ|r|ui〉
Eκ − Eα + iε

. (21)

WL,λ(E,Eκ ) is a summation over all intermediate states with
energy Eα , including both bound and continuum, while the
angular quantum numbers are fixed. From Eq. (20), da and de

consist of p wave and f wave so that they are antisymmetric
with respect to the polarization axis. Furthermore, we can see
that SXUV(E,θ ) is symmetric and SFSI(E,θ,τ ) is antisymmetric
with respect to the polarization axis.

C. Dalgarno-Lewis method for calculating two-photon matrix
elements

The radial wave function uαλ(r) is the eigenfunction of the
radial Hamiltonian

Hλ = −1

2

∂2

∂r2
+ V (r) + λ(λ + 1)

2r2
(22)

with the eigenvalue Eα . The radial matrix element WL,λ(E,Eκ )
can be rewritten by introducing the resolvent operator

WL,λ(E,Eκ ) = 〈ukL|r
(

lim
ε→0

1

Eκ − Hλ + iε

)
r|ui〉

= 〈ukL|r|ρκλ〉. (23)
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The intermediate radial wave function

ρκλ(r) =
(

lim
ε→0

1

Eκ − Hλ + iε

)
r|ui〉

=
[
℘

1

Eκ − Hλ

− iπδ(Eκ − Hλ)

]
r|ui〉

= ρ
(R)
κλ − iπuκλ〈uκλ|r|ui〉. (24)

Here, ℘ prescribes the principal-value integration that con-
tributes to the real part of ρκλ (off-shell part). δ represents
the Dirac delta function that contributes to the imaginary part
of ρκλ (on-shell part). The real wave function ρ

(R)
κλ (r) is the

solution of the following inhomogeneous ordinary differential
equation

(Eκ − Hλ)ρ(R)
κλ (r) = rui(r) (25)

with the boundary condition ρ
(R)
κλ (r) = 0 at r = 0. This

approach of calculating WL,λ is known as the Dalgarno-Lewis
method [52].

In our problem Eκ = κ2/2 is a positive energy, so that
ρκλ(r) is required to be a continuum wave function which
behaves as a complex outgoing wave asymptotically [56]

lim
r→∞ ρκλ(r) = −π

√
2

πκ
ei[κr+ Z

κ
ln(2κr)+ηλ(Eκ )]〈uκλ|r|ui〉. (26)

In order to fulfill the asymptotic form (26), the physical
solution of Eq. (25) should have the smallest asymptotic
amplitude as discussed in Ref. [57].

Instead of solving the Dalgarno-Lewis equation [Eq. (25)],
for simplicity if one substitutes the asymptotic form of ukL(r)
and ρκλ(r) into Eq. (23), one would obtain an approximate
result [50,51]

WL,λ(E,Eκ ) ≈ iei{ηλ(Eκ )−ηL(E)}〈uκλ|r|ui〉T cc(E,Eκ ). (27)

Here, 〈uκλ|r|ui〉 is the radial part of the one-photon transition
matrix element from the ground state to an intermediate
continuum state. The term T cc accounts for the continuum-
continuum transition and has an analytical form

T cc(E,Eκ ) = − 1√
kκ

(2κ)iZ/κ

(2k)iZ/k

(
i

κ − k

)2+i(Z/κ−Z/k)

×�[2 + i(Z/κ − Z/k)]. (28)

D. Approximations in atomic parameters by the PROOF and
iPROOF methods

According to the discussion in Sec. II A, the spectrogram
measured along a particular direction is sufficient to retrieve
the spectral phase. To simplify our analysis, in the following
discussion we focus on photoelectrons detected along the +z

direction. Thus, θ = 0 and PL(cos θ ) = 1. Therefore,

dd (E) =
√

1

12π
{eiη0(E)〈uk0|r|ui〉 + 2eiη2(E)〈uk2|r|ui〉}, (29)

dκ (E) =
√

1

12π

{
eiη1(E)W1,0(E,Eκ ) + 4

5
eiη1(E)

×W1,2(E,Eκ ) + 6

5
eiη3(E)W3,2(E,Eκ )

}
. (30)

In the swPROOF method, we use the Dalgarno-Lewis ap-
proach to calculate accurate dκ (E). If WL,λ(E,Eκ ) is replaced
by its asymptotic approximation (27), dκ (E) is reduced to a
simple form

dκ (E) = iT cc(E,Eκ )dd (Eκ ). (31)

Equation (31) is the basis of the iPROOF method [48].
In this approximation, the two-photon matrix element can
be explicitly separated into two terms: a single XUV pho-
ton dipole transition matrix element, times a continuum-
continuum transition amplitude T cc in the presence of an IR
field. The amplitude and phase part can be written separately
as

|dκ (E)| = T cc
κ (E)|dd (Eκ )|, (32)

arg[dκ (E)] = arg[dd (Eκ )] + ϕcc
κ (E) + π

2
, (33)

where

T cc
κ (E) = |T cc(E,Eκ )|, (34)

ϕcc
κ (E) = arg[T cc(E,Eκ )] (35)

are the amplitude and phase of the continuum-continuum term.
The one-photon transition matrix element dd calculated by

using the model potential (3) for argon are shown in Fig. 1.
|dd (E)| shows a minimum (Cooper minimum [58]) at E =
26 eV (corresponding � = 42 eV), and the phase arg[dd (E)]
shows a significant jump around this minimum.

In Fig. 2, two-photon transition matrix elements da and de

are shown. |da| and |de| are two orders of magnitude larger
than |dd |, and the minima of |da| and |de| are relatively deeper.
Note that the minima of |da| and |de| shift toward opposite
directions. The phases of da and de also show rapid change
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FIG. 1. (Color online) (a) Amplitude and (b) phase of the one-
photon dipole transition matrix element dd (E) of argon.
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FIG. 2. (Color online) (a) Amplitude and (b) phase of the two-
photon transition matrix element da(E) (green or light gray) and
de(E) (blue or dark gray) of argon. For the swPROOF method (solid
line), the iPROOF method (dashed line), and the PROOF method
(dotted-dashed line) (ω = 1.55 eV).

near the minima. The discrepancy between the two-photon
matrix elements in the swPROOF method and the iPROOF
method mainly lies in the low-energy region.

Further approximations can be introduced to derive the
PROOF method [49]. First, we neglect the long-range
Coulomb potential by setting Z = 0 in Eq. (28), which is
consistent with the strong field approximation (SFA):

T cc(E,Eκ ) = 1√
kκ

1

(κ − k)2
. (36)

Furthermore, we assume ω � E which is often referred to as
the soft-photon approximation [59,60]:

Eκ = E ∓ ω ⇒ κ = k

√
1 ∓ 2ω

k2
≈ k ∓ ω

k
, (37)

T cc(E,Eκ ) ≈ 1√
k2 ∓ ω

(∓ω
k

)2 ≈ k

ω2
. (38)

Third, the atomic physics in photoionization process is also
neglected. The bound-free transition matrix element reduces
to a constant dd (E) ≈ D. Therefore,

dκ (E) = i
k

ω2
D. (39)

In this work, we assign |D| = 0.06, the corresponding |dd (E)|
and |dκ (E)| used in the PROOF method are plotted in black
dotted-dashed line in Figs. 1 and 2, respectively. Figure 3
shows the ratio |da(E)|/|dd (E − ω)| and |de(E)|/|dd (E + ω)|
for the swPROOF, iPROOF, and PROOF methods. One can see
that the PROOF method leads to large error in the low-energy

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
200

250

300

350

400

450

500

550

600

650

700

750

k (a.u.)

| d
κ
(E

)|
|d

d
(

)
E

κ
|

 

 

FIG. 3. (Color online) The ratio |da(E)|/|dd (E − ω)| (green or
light gray) and |de(E)|/|dd (E + ω)| (blue or dark gray) for the
swPROOF method (solid line), the iPROOF method (dashed line),
and the PROOF method (dotted-dashed line) (ω = 1.55 eV).

region, whereas for k > 1.7 a.u. or E > 40 eV, these three
methods match each other quite well.

One can also rewrite the phase 
a or 
e in Eqs. (10)
and (11) by introducing an atomic phase ψa or ψe such that


a(E) = �(� − ω) − �(�) + ψa(E) − π

2
, (40)


e(E) = �(�) − �(� + ω) + ψe(E) + π

2
. (41)

The atomic phases ψa and ψe are in general given by

ψa(E) = arg[dd (E)] − arg[da(E)] + π

2
, (42)

ψe(E) = arg[de(E)] − arg[dd (E)] − π

2
. (43)

In the iPROOF method, according to Eq. (33)

ψa(E) = arg[dd (E)] − arg[dd (E − ω)] − ϕcc
a (E), (44)

ψe(E) = arg[dd (E + ω)] − arg[dd (E)] + ϕcc
e (E). (45)

In the PROOF method,

ψa(E) = ψe(E) = 0. (46)

Figure 4 shows the atomic phases ψa(E) and ψe(E) in the
swPROOF and the iPROOF methods. They are all negative
and quite close to each other. Each atomic phase has a
sharp valley around the Cooper minimum. For the energy
region E > 40 eV, |ψa(E)| ≈ |ψe(E)| < 0.02π so it would
be reasonable to remove the atomic phase as PROOF does.
From Eqs. (40) and (41), one can deduce that as long as ω is
small and the spectral phase �(�) changes smoothly over a
broad frequency range, 
a and 
e roughly differ by π . Thus,
the d-a interference and the d-e interference in Eq. (6) tend to
be out of phase and the FSI term is actually a result of strong
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FIG. 4. (Color online) The atomic phase ψa(E) (green or light
gray) and ψe(E) (blue or dark gray) in the swPROOF method (solid
line), the iPROOF method (dashed line), and the PROOF method
(dotted-dashed line) (ω = 1.55 eV).

cancellation between these two oscillating terms. This makes
it essential to calculate the atomic phases accurately.

E. Continuum-continuum time delay

The atomic phases given in Eqs. (42) to (45) are important
for many recent studies on attosecond time delays in photoion-
ization experiments [18,19,22]. It is “believed” that these time
delays can reveal some aspects of the electron dynamics. Since
the time delay is measured in the presence of a dressing IR
field, the effect of the IR field has to be accurately accounted
for in order to extract effective information of the atomic target
under the XUV alone. In an intense IR field, the standard strong
field approximation (SFA) assumes that the photoelectron is
driven by the IR field freely, which is not accurate enough
to interpret the time delay in attosecond time scale. Under
various approximations beyond SFA, it has been claimed
that the interplay of the probe IR field and the long-range
Coulomb potential (so-called Coulomb-laser coupling) leads
to an additive time delay, so that the measured time delay can
be separated into an intrinsic Wigner-type delay [61,62] and
an IR-induced delay due to Coulomb-laser coupling [63,64].

This separation can also be seen within the perturbation
theory supposing the field is weak [19,22]. From Eqs. (6), (40),
and (41), one can define a time delay via either d-a interference
or d-e interference:

τa = 
a

ω
= �(� − ω) − �(�)

ω
+ ψa

ω
− π

2ω
, (47)

τe = 
e

ω
= �(�) − �(� + ω)

ω
+ ψe

ω
+ π

2ω
. (48)

On the right-hand side of Eqs. (47) or (48), the first term is
the finite-difference approximation of −∂�/∂� which is the
group delay of the XUV field. The second term yields an
atomic time delay τ at

a (E) = ψa(E)/ω or τ at
e (E) = ψe(E)/ω.

The atomic delay can be calculated from the one- and two-
photon transition matrix element via Eqs. (42) and (43) in

general. When the asymptotic approximation is applied as in
the iPROOF method [see Eqs. (44) and (45)], the atomic delay
can be separated into two parts explicitly:

τ at
a (E) = τW

a (E) + τ cc
a (E), (49)

τ at
e (E) = τW

e (E) + τ cc
e (E). (50)

The first part

τW
a (E) = arg[dd (E)] − arg[dd (E − ω)]

ω
, (51)

τW
e (E) = arg[dd (E + ω)] − arg[dd (E)]

ω
(52)

is the finite-difference approximation of ∂{argdd}/∂E, which
is a Wigner-type delay in single-photon ionization. This
delay is related to the electron dynamics following the
absorption of an XUV photon. The second part is a continuum-
continuum delay induced by the IR transition taking into
account the long-range potential with a Coulomb tail, given by
τ cc
a (E) = −ϕcc

a (E)/ω or τ cc
e (E) = ϕcc

e (E)/ω. The continuum-
continuum phase ϕcc

κ is obtained via Eqs. (28) and (35). Beyond
the asymptotic approximation used in iPROOF, one can also
correct the long-range amplitude of the asymptotic wave
function ukL(r) and ρκλ(r) so that the continuum-continuum
phase can be corrected by an additional term [51]

ϕ̃cc
κ = ϕcc

κ + arg

[
1 + iZ

2

(
1

κ2
+ 1

k2

)
κ − k

1 + iZ(1/κ − 1/k)

]
.

(53)

Figure 5(a) shows the Wigner-type delay τW [see Eqs. (51)
and (52)]. τW

a and τW
e are not identical since they are finite

difference to the left side and to the right side, respectively.
In the low-energy region where the variation of the dipole
phase in an energy scale comparable or less than the difference
step ω = 1.55 eV, the finite difference to the left and to the
right sides have considerable discrepancy. From this figure, the
Wigner-type delay in general is negative and has a minimum
of −110 as roughly near the Cooper minimum.

In Figs. 5(b) and 5(c), we plot the continuum-continuum
delay τ cc calculated analytically from the asymptotic approx-
imation (iPROOF) and the long-range amplitude-corrected
asymptotic approximation (53). In order to check the validity
of the separation of the atomic delay into two additive parts
mentioned above, we also plot the “effective” continuum-
continuum delay extracted from the accurate matrix element
(as used in swPROOF method). This value is obtained by
subtracting the Wigner-type delay from the atomic delay
calculated via Eqs. (42) and (43) directly. One can see that
in the high-energy limit the amplitude-corrected asymptotic
approximation tends to reproduce the swPROOF result,
whereas the asymptotic approximation (iPROOF) yields a
relatively larger delay in magnitude. In the low-energy region,
the separation of atomic time delay is not very accurate. Thus,
when utilizing the analytical continuum-continuum delay to
extract a Wigner-type time delay from the atomic time delay,
the error may become tens of attosecond in magnitude. At
first glance, our result looks quite opposite to the result
in Refs. [65,66] where the separation of atomic time delay
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FIG. 5. (Color online) (a) The Wigner-type delay calculated from
the one-photon dipole transition matrix element. (b) τ cc

a obtained from
the asymptotic approximation used in iPROOF (dashed line) and
from the long-range amplitude-corrected asymptotic approximation
(dotted-dashed line), compared with the corresponding value that was
obtained via subtracting the Wigner-type delay from the atomic delay
given in swPROOF method (solid line). (c) Same as (b) but for τ cc

e

(ω = 1.55 eV).

is verified, however, they are actually consistent. Note that
Refs. [65,66] utilize a RABITT-type experiment so that the
atomic time delay is defined through a-e interference. The
Wigner-type delay, continuum-continuum delay, and atomic
delay in Refs. [65,66] correspond to the average of d-a and
d-e values in our calculation. When averaging Figs. 5(b)
and 5(c), one can expect that the difference between swPROOF
and amplitude-corrected data will be greatly reduced, which
is in agreement with Refs. [65,66]. We comment that the
verification in Refs. [65,66] is actually an average effect which
may not be successful for all targets and for all energy regions.

III. RESULTS AND DISCUSSION

A. Comparison of FSI terms between TDSE and theoretical
models

We simulate the XUV+IR spectra for argon by solving
the single active electron TDSE numerically. The model
potential for argon is given in Eq. (3). The discrete variable
representation (DVR) basis set is used in the computation.
Details of the numerical method have been represented in
Refs. [67,68]. An 800-nm IR pulse with peak intensity
1011 W/cm2 is used in this simulation which mimics the
typical experimental condition. To reduce the computational
load, we limit ourselves to a relative short IR pulse (8.8 fs
in FWHM) with a cosine-squared envelope. The box size and
number of grid points were chosen to ensure convergence. The
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FIG. 6. (Color online) (a) The spectral amplitude, (b) the whole
spectral phase, (c) the spectral phase zoomed in near the central
frequency, and (d) the intensity profile in the time domain of four
XUV pulses used in the simulation.

XUV pulses have the same predetermined spectral amplitude
U (�), but several different spectral phases �(�) are chosen.

Figure 6(a) shows a Gaussian amplitude with central
frequency at 60 eV and bandwidth of 22 eV, which would
correspond to a FWHM duration of 83 as for a transform-
limited pulse. The four input spectral phases and the zoomed-in
phases near the central frequency are plotted in Figs. 6(b)
and 6(c), respectively. We always set �(�) = 0 at the central
frequency; recall that the absolute phase cannot be retrieved.
Figure 6(d) shows the intensity profile in the time domain for
each pulse, indicating that the duration ranges from 87 to 235
as, while peak intensity from 9.0–3.0 ×1011 W/cm2, also the
peak position can shift by 100 as for different pulses.

Figure 7(a) shows the spectrogram obtained from TDSE
simulation for electrons detected along the +z direction and
for the XUV pulse case 2 in Fig. 6. Figure 7(b) shows
the magnitude of the Fourier components filtered from the
spectrogram. Clearly, the dc component S0 is almost identical
to the IR free spectra SXUV, i.e., for XUV alone. This part
is independent of the XUV phase. Our interest lies in the ω

component Sω which can be treated as the FSI term. This part
varies as the XUV phase changes, however, it is about one order
of magnitude smaller than the dc part. The 2ω component S2ω

is one more order smaller than the FSI term.
The FSI amplitude A(E) and phase �(E) [see Eq. (7)] can

be either extracted from the TDSE spectrogram or calculated

023407-8



BENCHMARKING ACCURATE SPECTRAL PHASE . . . PHYSICAL REVIEW A 91, 023407 (2015)

FIG. 7. (Color online) (a) TDSE simulated spectrogram for the
electron detected along the +z direction. The XUV pulse is chosen
as case 2 in Fig. 6. The IR pulse has the following parameters: wave-
length = 800 nm, peak intensity = 1011 W/cm2, FWHM duration =
8.8 fs, CEP = 0, cosine-squared envelope. A positive τ means the
IR pulse comes first. (b) Magnitude of the Fourier component S0

(top solid line), Sω (middle dotted-dashed line), and S2ω (bottom
dotted-dashed line) filtered from (a), the TDSE result of the IR-free
spectra SXUV (top dashed line) is also plotted.

from the known U (�), �(�) and relevant matrix elements in
the PROOF, iPROOF, and swPROOF methods via Eqs. (8)–
(11). Figure 8 shows the comparison of such results. A(E)
shows a valley and �(E) shows a large phase jump around the
central energy E0 = �0 − Ip ≈ 44 eV. The overall agreement
in �(E) is better than in A(E), and the TDSE result is well
reproduced by the swPROOF method where the atomic matrix
elements are calculated using the Dalgarno-Lewis method. The
remaining discrepancies between swPROOF and TDSE might
result from the finite duration of the IR pulse used in the TDSE
simulation, as opposed to a monochromatic wave assumed in
the theoretical model. Although the difference in the individual
matrix elements obtained in the swPROOF method and the
iPROOF method is not significant (see Fig. 2), A(E) given by
the iPROOF method shows considerable error. Remember the
FSI term is the superposition of the d-a interference term and
the d-e interference term as shown in Eq. (6). Since there is a
strong cancellation between these two terms as we discussed at
the end of Sec. II D, the error in the final FSI term can become
considerable even if the error in each individual interference
term is small. The PROOF method yields even larger error in
the low-energy region. One can also see that A(E) cos �(E)
is roughly one fifth of A(E) sin �(E) in magnitude.

Figure 9 presents the sensitivity of the FSI modulation as the
spectral phase is varied. A(E) is very insensitive to the spectral
phase �(�). Although �(E) is sensitive, its origin as the tan−1
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FIG. 8. (Color online) (a) A(E), (b) �(E), (c) A(E) cos �(E),
(d) A(E) sin �(E) extracted from the TDSE simulation Fig. 7 (red
solid line) and calculated from the actual XUV pulse (case 2 in
Fig. 6) and the atomic matrix element in swPROOF (black or dark
gray dashed line), iPROOF (blue or dark gray dotted-dashed line),
and PROOF (green or light gray dashed line). Note that A(E) and
�(E) are not affected by the CEP of the XUV pulse.
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pulses shown in Fig. 6. The IR parameters are the same as in Fig. 7.
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function usually results in some discontinuity so it is more
difficult to fit. As can be seen from Fig. 9(c), A(E) cos �(E)
is not only sensitive to the spectral phase, but also a smooth
function of electron energy. Thus, A(E) cos �(E) is more
suitable for fitting, as we shall show in the next subsection.

B. Accuracy of spectral phase retrieval

Starting from the simulated FSI modulation ATDSE(E),
�TDSE(E), the known spectral amplitude U (�), and the matrix
element dd , da , de in either swPROOF, iPROOF, or PROOF
methods, one can retrieve the spectral phase �(�) through the
fitting procedure. We parametrize �(�) as

�guess(�) =
4∑

n=1

an(� − �0)n. (54)

This implies the spectra phase is always set to zero at �0 = 60
eV which removes the arbitrariness of the constant phase. From
�guess one can calculate Aguess, �guess via Eqs. (8)–(11), and
the optimal spectral phase �fit is the one which minimizes an
error function Q.

Two methods of spectral phase retrieval will be addressed
here. First, we assume that the IR intensity (and thus EIR) is
known. This is to check the intrinsic accuracy of the three
theoretical methods based on the modulation of the FSI term
in the spectrogram. In this case, the error function is defined
as

Q =
∫ 80 eV

10 eV
[ATDSE(E) cos �TDSE(E)

−Aguess(E) cos �guess(E)]2dE. (55)

Second, in experiments the IR intensity is generally not
precisely determined, thus EIR may be treated as another fitting
parameter. Due to this additional uncertainty, the error function
has to include both A(E) cos �(E) and A(E) sin �(E) such
as

Q =
∫ 80 eV

10 eV
{[ATDSE(E) cos �TDSE(E)

−Aguess(E) cos �guess(E)]2

+ [ATDSE(E) sin �TDSE(E)

−Aguess(E) sin �guess(E)]2}dE. (56)

The optimization is done via a genetic algorithm (GA). We
actually use the micro-GA which evolves small population
including 10 individuals [69,70].

The comparison between the actual pulse and the retrieved
pulse for case 1 to case 4 is shown in Figs. 10, 11, and 12.
The IR intensity used in TDSE simulation is 1011 W/cm2

and this intensity is assumed to be known in the pulse
retrieval. Note that pulses retrieved from different methods
originally have different peak intensities as well as different
peak positions in the time domain. However, a streaking-type
pulse characterization experiment is usually not expected to
retrieve such parameters. To compare pulse shapes easily, we
have normalized (rescaled and shifted) each pulse such that
its peak value is one and this peak appears at time zero. In
Figs. 10 and 11, we also plot the comparison of the actual
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FIG. 10. (Color online) (a) The whole spectral phase, (b) the
spectral phase zoomed in near the central frequency, (c) the nor-
malized intensity profile in the time domain, and (d) the normalized
electric field of the actual and retrieved XUV pulses for case 1.
The IR pulse used in the simulation has the following parameters:
wavelength = 800 nm, peak intensity = 1011 W/cm2, FWHM du-
ration = 8.8 fs, CEP = 0, cosine-squared envelope. In the fitting
procedure, EIR is known.

and retrieved spectral phase for case 1 and case 2. Clearly, the
spectral phase is well retrieved by the swPROOF method, the
iPROOF has more error, and the PROOF is even worse. The
whole spectral phase retrieved by PROOF looks flatter than
others, but it does not guarantee a transform-limited pulse due
to its nonzero curvature (see the zoom-in plot of the spectral
phase). In Table I, we list the pulse duration and peak position
of the actual and retrieved XUV pulse from case 1 to case 4,
respectively.

For case 1, the pulse duration of the input pulse is 235 as
which is to be compared to 83 as in the transform-limited one.
The pulse shape retrieved from swPROOF is the closest to the
actual one, and the pulse duration extracted from swPROOF
lies within better than 10% of the actual value. For iPROOF and
PROOF, the errors become larger in general, especially that
PROOF yields a quite different pulse shape. Additionally, we
notice that peak positions obtained from iPROOF and PROOF
can easily differ by more than 20 as. For case 2, the input
pulse has duration of 130 as which is closer to 83 as. The
pulse retrieved by swPROOF is in very good agreement with
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FIG. 11. (Color online) (a) The whole spectral phase, (b) the
spectral phase zoomed in near the central frequency, (c) the nor-
malized intensity profile in the time domain, and (d) the normalized
electric field of the actual and retrieved XUV pulses for case 2. The
input IR parameters are the same as in Fig. 10. In the fitting procedure,
EIR is known.

the input pulse. While in this case pulse durations retrieved
from iPROOF and PROOF are acceptable, these two methods
give different tail shapes from the input, and peak positions
still shift by 12 as or more. For case 3, the input pulse has
duration of 103 as which can only be accurately reproduced
by swPROOF. The iPROOF overestimates the pulse duration
by more than 20% and the PROOF yields a transform-limited
pulse. For case 4, the input pulse has duration of 87 as, which
is very near the transform-limited duration. All of these three
methods can retrieve the pulse duration accurately, however,
the peak position given by iPROOF and PROOF still has errors
more than 10 as.

These results provide the benchmark on how accurately the
spectral phase or EXUV(t) of an isolated attosecond pulse can
be determined in a given experiment even for such a highly
idealized “experimental” situation. In our simulation, even the
swPROOF method may not exactly reproduce the actual XUV
pulse. This error mainly results from the short IR pulse used
in the simulation, and we believe that this error can be reduced
if a longer IR pulse (for example, over 20 fs) is used.

If the IR intensity is taken as unknown when retrieving
the XUV pulse, an additional freedom is added on the fitting
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FIG. 12. (Color online) The normalized temporal intensity pro-
file of the actual and retrieved XUV pulses for (a) case 3 and (b) case
4. The input IR parameters are the same as in Fig. 10. In the fitting
procedure, EIR is known.

procedure. The corresponding results are given in Fig. 13 and
Table II. From these results, overall it shows that swPROOF
is more accurate and robust than iPROOF and PROOF. The
iPROOF method behaves well in cases 1 and 2 but fails in
cases 3 and 4, while PROOF is acceptable in cases 2 and 4 but
fails in cases 1 and 3. Admittedly, if one is looking at a single
pulse parameter in a particular case alone (for example, the
pulse duration in case 1), then one cannot say definitely that

TABLE I. The actual and retrieved XUV pulse parameters for
cases 1–4 (read from Figs. 10–12). The IR pulse used in the
TDSE simulation has a peak intensity of 1011 W/cm2. In the fitting
procedure, EIR is known.

Case 1 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 235 255 213 294
XUV peak position (as) 59 62 79 27

Case 2 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 130 130 124 122
XUV peak position (as) 89 92 77 75

Case 3 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 103 100 125 83
XUV peak position (as) 91 103 73 57

Case 4 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 87 87 89 87
XUV peak position (as) −4 −8 −14 −37
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FIG. 13. (Color online) The normalized temporal intensity pro-
file of the actual and retrieved XUV pulses for (a) case 1, (b) case 2,
(c) case 3, and (d) case 4. The IR pulse used in the TDSE simulation
is given in the caption of Fig. 10. In the fitting procedure, EIR is
unknown.

TABLE II. The actual and retrieved XUV pulse parameters for
cases 1–4 (read from Fig. 13). The IR pulse used in the TDSE
simulation has a peak intensity 1011 W/cm2. In the fitting procedure,
EIR is unknown.

Case 1 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 235 254 235 270
XUV peak position (as) 59 62 86 63

Case 2 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 130 129 135 122
XUV peak position (as) 89 89 91 86

Case 3 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 103 100 118 83
XUV peak position (as) 91 97 70 48

Case 4 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 87 84 123 88
XUV peak position (as) −4 −7 −10 −26
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FIG. 14. (Color online) The normalized temporal intensity pro-
file of the actual and retrieved XUV pulses for (a) case 1 and (b)
case 2. The IR pulse used in the TDSE simulation has the following
parameters: wavelength = 800 nm, peak intensity = 1012 W/cm2,
FWHM duration = 8.8 fs, CEP = 0, cosine-squared envelope. In the
fitting procedure, EIR is unknown.

the swPROOF method is the best. However, when considering
all shapes and parameters of these four cases, definitely the
swPROOF method is the most accurate.

C. Effect of the IR intensity on phase retrieval

As the dressing IR intensity increases, quantum paths
involving two or more IR photons will have more contribution
to the total spectrogram. Therefore, the omega oscillating
component Sω extracted from the spectrogram starts to deviate
from the first-second-order interference term SFSI as we
discussed in Sec. II A. Such deviation will impose larger
error on the pulse characterization process. Figure 14 and
Table III show the result when the IR intensity used in the
simulation was increased to 1012 W/cm2. At this IR intensity,
the swPROOF method can still retrieve the XUV pulse
successfully with the error less than 10%. Figure 15 shows
the result when the dressing IR intensity increases further
to 1013 W/cm2. At such high intensity, none of these three
methods can retrieve the XUV pulse accurately, which implies
the breakdown of the second-order perturbation theory.

IV. CONCLUSIONS

In this work, we examined the accuracy of single attosecond
pulse characterization methods. When the dressing IR field

023407-12



BENCHMARKING ACCURATE SPECTRAL PHASE . . . PHYSICAL REVIEW A 91, 023407 (2015)

TABLE III. The actual and retrieved XUV pulse parameters for
cases 1 and 2 (read from Fig. 14). The IR pulse used in the TDSE
simulation has a peak intensity 1012 W/cm2. In the fitting procedure,
EIR is unknown.

Case 1 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 235 227 216 217
XUV peak position (as) 59 60 84 37

Case 2 Actual swPROOF iPROOF PROOF

XUV pulse duration (as) 130 122 125 121
XUV peak position (as) 89 85 74 83

is below about 1012 W/cm2, the photoelectron spectra in
the XUV+IR two-color field is adequately described by the
second-order perturbation theory. To “calibrate” the intrinsic
accuracy of the retrieval method, we generated “experimental”
photoelectron spectra with known spectral amplitude and
phase of the single attosecond XUV pulses in the known IR
dressing field. Adopting the PROOF and iPROOF methods to
retrieve the spectral phases, we established the lack of accuracy
of the spectral phases retrieved, which are then reflected in
the errors of pulse duration, pulse shape, and peak position
in the time domain. Our results show that approximations
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FIG. 15. (Color online) The normalized temporal intensity pro-
file of the actual and retrieved XUV pulses for (a) case 1 and (b) case 2.
The FWHM duration of the XUV pulse is given in the legend. The IR
pulse used in the TDSE simulation has a peak intensity 1013 W/cm2,
other parameters are the same as in Fig. 14. In the fitting procedure,
EIR is unknown.

used in PROOF and iPROOF have detrimental effects on the
retrieved attosecond pulses. In the PROOF method, both first-
and second-order dipole transition elements are calculated
approximately. In iPROOF, the second-order matrix elements
are approximated. These approximations are undesirable and
unnecessary since theoretical tools are available for their
accurate evaluations. We obtained accurate two-photon dipole
matrix elements using the so-called Dalgarno-Lewis method.
The modified retrieval method, which we called swPROOF,
is based on an accurate theory as long as the IR intensity is
constrained to below about 1012 W/cm2. For attosecond pulse
trains with harmonics separated by 2ω, this method reduces
to the familiar RABITT method. For attosecond pulse trains
where harmonics is separated by ω, and for single attosecond
pulses, the swPROOF method can be applied when accurate
one- and two-photon dipole matrix elements for the target gas
atoms are calculated, at least within the single active electron
model. Our simulation has proven that the swPROOF method
is more universal and robust than the current PROOF and
iPROOF methods.

The examples shown in this work demonstrate that spectral
phases can be accurately retrieved from numerical experimen-
tal spectra calculated from solving TDSE. Using real experi-
mental data, the accuracy will be compromised. The accuracy
reported in our analysis is to be taken as the best scenario, as
additional “noises” from real experimental data are added. This
work shows that details of the temporal profile of attosecond
pulses are very difficult to obtain exactly. This would limit the
accuracy of the retrieved durations of attosecond pulses and
temporal resolution in any time-domain measurements. This is
not surprising since in the weak field limit, features of the pho-
toelectron spectra are dominated by the spectral intensity. The
spectral phase enters in the interference between the first- and
second-order terms, which is only a small effect. The spectral
phase is expected to show more pronounced effect at higher
IR intensity, but then strong field ionization theory becomes
more complicated. We note that the accuracy of the widely
used FROG-CRAB method for retrieving spectral phases
has not been carefully examined through TDSE simulation
yet.

Looking ahead, attosecond pulses in the water-window
region and beyond will be generated with mid-infrared lasers
in the near future. Will the swPROOF method still be
the method for characterizing such attosecond pulses? At
higher photon energies, the atomic parameters are normally
less important, but electrons from multiple inner shells are
generated. Helium is the only target that does not have this
complication, but its photoionization cross section is notori-
ously smaller. While high-order harmonics have been reported
way beyond 150 eV with mid-infrared lasers, attosecond
pulses at these energies still have not been reported. Clearly,
characterization of such attosecond pulses in the time domain
is an important issue that has to be faced in theory and in
experiments.
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