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a b s t r a c t

We establish some new oscillation criteria for a class of second-order p-Laplace dynamic
equations with a nonpositive neutral coefficient on a time scale. The results obtained sup-
plement and improve those reported in the literature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper, we study the oscillatory behavior of a second-order neutral dynamic equation with a p-Laplacian like op-
erator 

r(t)|z∆(t)|p−2z∆(t)
∆

+ q(t)|x(δ(t))|p−2x(δ(t)) = 0 (1.1)

on a time scale T, where z(t) := x(t) − a(t)x(τ (t)) and p > 1 is a constant. The p-Laplace equations have applications
in continuum mechanics as seen from [1–3]. The increasing interest in oscillation and nonoscillation of solutions to vari-
ous classes of differential equations and dynamic equations is motivated by their applications in the natural sciences and
engineering. We refer the reader to [4–21] and the references cited therein.

We assume that the following assumptions are satisfied:
(H1) τ ∈ Crd(T, T), τ(t) ≤ t , τ is strictly increasing, and limt→∞ τ(t) = ∞;
(H2) δ ∈ Crd(T, T), δ is strictly increasing, and limt→∞ δ(t) = ∞;
(H3) r, a, q ∈ Crd(T, R), r(t) > 0, 0 ≤ a(t) ≤ a0 < 1, and q(t) > 0, where a0 > 0 is a constant.

A time scaleT is an arbitrary nonempty closed subset of the real numbersR, and the caseswhen this time scale is equal to
the reals or to the integers represent the classical theories of differential or difference equations. Several authors have studied
the theory of dynamic equations on time scales; see, e.g., [22–25] and the references cited therein. Since we are interested in
oscillatory properties, we assume throughout this paper that the given time scale T is unbounded above. We assume t0 ∈ T
and it is convenient to assume t0 > 0, and define the time scale interval of the form [t0, ∞)T by [t0, ∞)T := [t0, ∞) ∩ T.

By a solution of (1.1) we mean a nontrivial real-valued function x ∈ Crd[Tx, ∞)T, where Tx ∈ [t0, ∞)T, which has the
property that r|z∆

|
p−2z∆

∈ C1
rd[Tx, ∞)T and satisfies (1.1) for t ∈ [Tx, ∞)T. The solutions vanishing in some neighborhood

∗ Corresponding author. Tel.: +86 13869959692.
E-mail addresses: bohner@mst.edu (M. Bohner), litongx2007@163.com (T. Li).

http://dx.doi.org/10.1016/j.aml.2014.05.012
0893-9659/© 2014 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.aml.2014.05.012
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2014.05.012&domain=pdf
mailto:bohner@mst.edu
mailto:litongx2007@163.com
http://dx.doi.org/10.1016/j.aml.2014.05.012


M. Bohner, T. Li / Applied Mathematics Letters 37 (2014) 72–76 73

of infinity will be excluded from our consideration. A solution x of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative; otherwise, it is nonoscillatory. Eq. (1.1) is called oscillatory if all its solutions oscillate.

In what follows, we briefly comment on the related results that motivate our study. Most oscillation results reported
in [4,5,7–10,16–20] for Eq. (1.1) have been obtained under the assumptions that p = γ + 1 and a(t) ≤ 0, where γ is a
ratio of odd positive integers. Assuming a(t) ≥ 0, Erbe et al. [10,11] and Karpuz [12] proved several oscillation criteria
for particular cases of Eq. (1.1); see [10, Theorems 2.6–2.10], [11, Theorem 3.4 and Corollary 3.5], and [12, Theorem 8]. In
particular, Karpuz [12, Theorem 8] proved that every solution of a second-order neutral delay dynamic equation

(x(t) − a(t)x(τ (t)))∆∆
+ q(t)x(δ(t)) = 0

oscillates or tends to zero asymptotically provided that 0 ≤ a(t) ≤ 1, lim supt→∞ a(t) < 1, and


∞

t0
q(t)∆t = ∞ (where

∞

t0
q(t)∆t := limt→∞

 t
t0
q(s)∆s).

Recently, Agarwal and Bohner [26], Agarwal et al. [27], Bohner [28], Bohner et al. [29], Karpuz [30], Şahiner and
Stavroulakis [31], and Zhang and Deng [32] established some sufficient conditions which ensure that a first-order delay
dynamic inequality

x∆(t) + q(t)x(τ (t)) ≤ 0
has no eventually positive solutions.

We stress that theorems in [10–12] cannot ensure that all the solutions of second-order dynamic equations with a non-
positive neutral coefficient are oscillatory. The purpose of this paper is to develop a new method for the analysis of the
oscillation of Eq. (1.1) via comparison principles.

2. Oscillation results

In this section, we study the oscillatory behavior of (1.1) relating oscillation of this equation to the existence of positive
solutions to the associated first-order dynamic inequalities. In what follows, all functional inequalities are assumed to hold
eventually, that is, for all t large enough. We also let τ−1

∈ Crd(T, T) be the inverse function of τ .

Theorem 2.1. Assume (H1)–(H3) and let
∞

t0
r−1/(p−1)(t)∆t = ∞ (2.1)

and 
∞

t0
q(t)∆t = ∞. (2.2)

Suppose there exists a function α ∈ Crd(T, T) such that α(t) > t and limt→∞ τ−1(δ(α(t))) = ∞. If the first-order dynamic
inequality

u∆(t) + Q (t)u

τ−1(δ(α(t)))


≤ 0 (2.3)

has no eventually positive solutions, where

Q (t) :=
1
a0


1

r(t)

 α(t)

t
q(s)∆s

1/(p−1)

, (2.4)

then Eq. (1.1) is oscillatory.
Proof. Assume (1.1) has a nonoscillatory solution x on [t0, ∞)T. Without loss of generality, we can suppose that there exists
a t1 ∈ [t0, ∞)T such that x(t) > 0, x(τ (t)) > 0, and x(δ(t)) > 0 for all t ∈ [t1, ∞)T. Eq. (1.1) yields

r(t)|z∆(t)|p−2z∆(t)
∆

= −q(t)|x(δ(t))|p−2x(δ(t)) < 0 for all t ∈ [t1, ∞)T. (2.5)

Then r|z∆
|
p−2z∆ is strictly decreasing on [t1, ∞)T. Therefore, z and z∆ are of constant sign eventually. We claim that x is

bounded. Assume now that x is unbounded. Along the same lines as in [10, Theorem 2.6], there exists a t2 ∈ [t1, ∞)T such
that

z(t) > 0 and z∆(t) > 0 for all t ∈ [t2, ∞)T. (2.6)

Using (1.1) and (2.6), we conclude that, for all t ∈ [t2, ∞)T,
r(t)(z∆(t))p−1∆

+ q(t)zp−1(δ(t)) ≤ 0.

It follows from (2.6) that there exist a t3 ∈ [t2, ∞)T and a constant c > 0 such that z(δ(t)) ≥ c for all t ∈ [t3, ∞)T. Thus,
we obtain, for all t ∈ [t3, ∞)T,

r(t)(z∆(t))p−1∆
≤ −cp−1q(t) < 0.
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Integrating this inequality from t3 to t , we have

r(t)(z∆(t))p−1
− r(t3)(z∆(t3))p−1

≤ −cp−1
 t

t3
q(s)∆s.

The latter inequality and condition (2.2) yield limt→∞ r(t)(z∆(t))p−1
= −∞, which contradicts z∆ > 0. Hence, x and z

are bounded. Next, we prove that z∆ > 0 eventually. If not, then there exists a t4 ∈ [t3, ∞)T such that z∆(t) < 0 for all
t ∈ [t4, ∞)T. Inequality (2.5) implies that, for all t ∈ [t4, ∞)T,

z∆(t) ≤ −


−

c0
r(t)

1/(p−1)

< 0,

where c0 := r(t4)|z∆(t4)|p−2z∆(t4) < 0. The latter inequality and condition (2.1) imply that limt→∞ z(t) = −∞, which
contradicts the fact that z is bounded, and hence z∆ > 0 eventually. Then, z < 0 eventually. On the other hand, we get by
the definition of z that

x(t) =
x(τ−1(t)) − z(τ−1(t))

a(τ−1(t))
,

and so

x(δ(t)) =
x(τ−1(δ(t))) − z(τ−1(δ(t)))

a(τ−1(δ(t)))
≥ −

z(τ−1(δ(t)))
a(τ−1(δ(t)))

≥ −
z(τ−1(δ(t)))

a0
.

Then, by virtue of (1.1), we see that
r(t)(z∆(t))p−1∆

+
q(t)
a0p−1


−z(τ−1(δ(t)))

p−1
≤ 0.

Integrating the latter inequality from t to α(t) (α(t) > t), we find

r(α(t))(z∆(α(t)))p−1
− r(t)(z∆(t))p−1

+
1

a0p−1

 α(t)

t
q(s)


−z(τ−1(δ(s)))

p−1
∆s ≤ 0,

and hence

−r(t)(z∆(t))p−1
+

1
a0p−1

 α(t)

t
q(s)


−z(τ−1(δ(s)))

p−1
∆s ≤ 0.

By virtue of the latter inequality and the fact that (−z)∆ < 0, we deduce that

−r(t)(z∆(t))p−1
+

1
a0p−1

 α(t)

t
q(s)∆s

 
−z(τ−1(δ(α(t))))

p−1
≤ 0,

which yields

z∆(t) ≥ −
1
a0


1

r(t)

 α(t)

t
q(s)∆s

1/(p−1)

z

τ−1(δ(α(t)))


.

Writing the latter inequality in the form

− z∆(t) −
1
a0


1

r(t)

 α(t)

t
q(s)∆s

1/(p−1)

z

τ−1(δ(α(t)))


≤ 0. (2.7)

Setting u := −z > 0, then u is a positive solution of the first-order dynamic inequality (2.3). This contradiction completes
the proof. �

On the basis of Theorem 2.1 and [27, Theorem 3.1], one can obtain the following result.

Corollary 2.1. Assume (H1)–(H3), (2.1), and (2.2). Suppose also that there exists a function α ∈ Crd(T, T) such that α(t) > t,
τ−1(δ(α(t))) < t, and limt→∞ τ−1(δ(α(t))) = ∞. If

lim sup
t→∞

sup
λ∈E

λ exp−λQ

t, τ−1(δ(α(t)))


< 1,

where Q is as in (2.4) and

E := {λ : λ > 0, 1 − λQ (t)µ(t) > 0},

then Eq. (1.1) oscillates.
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Theorem 2.2. Assume (H1)–(H3), (2.1), and (2.2). Suppose that there exists a function α ∈ Crd(T, T) such that α is nondecreas-
ing, α(t) > t, τ−1(δ(α(t))) < t, and limt→∞ τ−1(δ(α(t))) = ∞. If

lim sup
t→∞

 t

τ−1(δ(α(t)))
Q (s)∆s > 1, (2.8)

where Q is as in (2.4), then Eq. (1.1) is oscillatory.

Proof. As in the proof of Theorem 2.1, we obtain (2.7). Define u := −z. Then, we get

u∆(t) + Q (t)u

τ−1(δ(α(t)))


≤ 0,

where u > 0 and u∆
= −z∆ < 0. Therefore, we have

0 ≥ u(t) − u

τ−1(δ(α(t)))


+

 t

τ−1(δ(α(t)))
Q (s)u


τ−1(δ(α(s)))


∆s

≥ u(t) +

 t

τ−1(δ(α(t)))
Q (s)∆s − 1


u


τ−1(δ(α(t)))


,

which contradicts (2.8). The proof is complete. �

3. Examples

The following two examples illustrate the applications of the main results in this paper.

Example 3.1. For t ≥ 1, consider a second-order neutral delay differential equation
x(t) −

1
2
x(t − 2π)

′′

+
1
2
x(t − 4π) = 0. (3.1)

Let p = 2, r(t) = 1, a(t) = a0 = 1/2, τ(t) = t−2π , δ(t) = t−4π , q(t) = 1/2, andα(t) = t+π . Then τ−1(δ(α(t))) = t−π

and Q (t) =
 α(t)
t q(s)∆s/a0 =

 α(t)
t q(s)ds/a0 = π . By virtue of Ladde et al. [13, Theorem 2.1.1], we obtain that the first-

order differential inequality

u′(t) + πu(t − π) ≤ 0

has no eventually positive solutions. Hence, by Theorem 2.1, every solution of (3.1) oscillates. It is not difficult to verify that
x(t) = sin t is an oscillatory solution of this equation.

Example 3.2. For T := 2Z = {2k
: k ∈ Z}∪ {0}, consider a second-order neutral delay dynamic equation with a p-Laplacian

like operator


t|z∆(t)|p−2z∆(t)

∆
+ q0

x
t
8

p−2

x

t
8


= 0, (3.2)

where z(t) := x(t)− a0x(t/2), a0 ∈ (0, 1), p ∈ [2, ∞), and q0 > 0 are constants. Let r(t) = t , a(t) = a0, τ(t) = t/2, δ(t) =

t/8, q(t) = q0, and α(t) = 2t . Then τ−1(δ(α(t))) = t/2 and Q (t) = q01/(p−1)/a0. It follows from Bohner and Peterson
[24, Theorem 5.68] that condition (2.1) holds. It is not hard to verify that all the assumptions of Theorem 2.2 are satisfied.
Therefore, we deduce that (3.2) is oscillatory.

4. Summary

We suggested several oscillation criteria for Eq. (1.1) under the assumptions that (2.1) holds, τ(t) ≤ t , and 0 ≤ a(t) ≤

a0 < 1. The results obtained in this paper complement and improve [10, Theorems 2.6–2.10], [11, Theorem3.4 and Corollary
3.5], and [12, Theorem 8], since our results can insure that all the solutions of (1.1) are oscillatory.

Three interesting problems for future research can be formulated as follows.
(P1): Is it possible to establish the oscillation criteria for (1.1) in the case where


∞

t0
r−1/(p−1)(t)∆t < ∞?

(P2): Suggest a different method to investigate (1.1) in the case where τ(t) ≥ t .
(P3): Develop a different method to study (1.1) in the case where a(t) ≥ 1.
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