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ABSTRACT 
 
Almost all soils exhibit cross-anisotropic stiffness to some extent. However, measuring the cross anisotropic properties of soils is 
difficult because of the need to determine the 3 independent stiffness parameters Ev, Eh, Gvh, and the associated Poisson’s ratios, vh 

and hh. Current techniques that are employed, for example using bender elements or field geophysics, are not always reliable, whilst 

preparing specimens in different orientations and subsequent testing using standard laboratory techniques has practical constraints.  
 
The resonant column is a laboratory apparatus that has been extensively used to measure the torsional stiffness (Gvh).  Relatively 

recent development has also allowed the Stokoe resonant column to measure Young’s modulus from flexural excitation of the 
specimen.  The apparatus has also been used to determine Ev through axial oscillation. Thus a modified resonant column apparatus 

can apply four different excitations (flexure in two directions, torsion and longitudinal excitation) to a soil.  
 
This paper reports a series of dynamic finite element numerical simulations of physical tests in the resonant column apparatus, carried 
out to model both the apparatus and a cross-anisotropic soil specimen.  Forward modelling has been carried out to determine the 
impact of different degrees of anisotropy on the resonant frequencies of ‘specimens’ with their axes of anisotropy aligned in different 
directions relative to the vertical axis of the apparatus.  Methods of determining the elastic parameters from these data are assessed. 
 
 
INTRODUCTION 
 
Small strain stiffness parameters such as Young’s moduli and 
shear moduli (G, E) are essential when modelling the 
deformation behaviour of soils. Within geotechnical design, 
soil stiffness is nearly always thought of as isotropic, using 
moduli that are the same in all directions. However it has long 
been recognized that in reality the small strain stiffness of 
natural soils is anisotropic, that is Gv ≠ Gh and Ev ≠ Eh, where 

the subscript v and h relate to the vertical and horizontal 
direction in which the stiffness is measured.  
 
This elastic anisotropy can usefully be categorized as either 
inherent anisotropy or stress-induced anisotropy. Inherent 
anisotropy develops during deposition of the material, due to 
particles becoming aligned with the plane of deposition. The 
degree of anisotropy is generally greater, all other things being 
equal, in clay rich soils (which have platy particles) than in 
sands (which tend to have more rounded particles). Stress 

induced anisotropy occurs when an anisotropic loading is 
applied to the soil. It has been shown that for sands the degree 
of anisotropy is low when subjected to an isotropic stress at 
small strains (Kuwano and Jardine, 2002, Tatsuoka and 
Kohata, 1995) but increases as the strain increases and the 
loading conditions become anisotropic (Bellotti et al., 1996, 
Kuwano and Jardine, 2002). 
 
A variety of different measurement methods are available to 
determine small strain stiffness, both within the field (such as 
seismic cross-hole and down-hole profiling, and surface-wave 
testing) or through laboratory tests (such as triaxial, resonant 
column, and bender element tests). In practice the majority of 
these tests can only measure stiffness in one plane, and 
therefore different tests are required to determine anisotropic 
behaviour. The combination of down-hole and cross-hole test 
data can be used to derive a number of stiffness parameters, 
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however factors such as poor wall coupling, large hole 
spacing, spatial variability of the ground, and background 
noise can make interpretation of the data difficult. In the 
laboratory the use of local strain triaxial testing (e.g. Clayton 
and Khatrush, 1986) with bender elements (e.g. Pennington et 
al., 1977) has provided the capability to measure soil stiffness 
in a variety of planes.  However, local strain measuring 
systems do not always have very small strain resolution, and 
bender element data is dependent on a number of factors such 
as input waveform and frequency, signal-to-noise ratio, mode 
conversions and near field effects, that make the results 
variable (Yamashita et al., 2009) and sometimes unreliable. 
 
The resonant column apparatus is typically used to determine 
the shear modulus of soils by measuring the resonant 
frequency of the soil/apparatus system under torsional 
vibration. Modifications to the original resonant column 
apparatus and testing method have allowed flexural and axial 
vibration to be applied to a sample, to derive values of 
Young’s modulus. Using a variety of modes of vibration 
allows a number of different stiffness values to be derived, 
which might potentially allow anisotropic stiffness to be 
determined. To investigate the value of this, a series of finite 
element analyses, modelling both the resonant column and the 
soil sample, have been carried out, and resonant frequencies 
determined. These frequencies have been used with the 
classical resonant column equations to derive the stiffness of 
the modelled soil, and these have then been compared with the 
soil properties used in the finite element model. This paper 
reports the results of these analyses and discusses the potential 
to use the resonant column to determine anisotropic soil 
properties. 
 
 
THEORY 
 
To determine anisotropic stiffness parameters it is necessary to 
adopt a model of elastic behaviour, and to develop methods of 
analysing the results of the test.  Both exist in the literature. 
 
 
Anisotropy 
 
For an isotropic material stiffness is constant in all directions. 
Only two soil parameters are required. Commonly the 
parameters are Young’s modulus (E) with Poisson’s ratio (), 
but in some applications shear modulus (G) and bulk modulus 
(K) are used. For an isotropic material the relationship ratio 
between shear modulus, G, measured in torsion, and Young’s 
modulus, E, measured in either flexure of longitudinal 
vibration should be a function of Poisson’s ratio, and since 
 

)1(2.  GE    (1) 

 
E / G can be expected to vary from about 2.5 for an 
unsaturated or dry material with isotropic stiffness (assuming 
  0.25) to 3 ( = 0.5) for a saturated, undrained isotropic 
material. 

However, in general, soils are not isotropic. For a completely 
anisotropic behaviour, the stiffness in each orthogonal plane is 
different, that is Gv ≠ Gh1 ≠ Gh2 and Ev ≠ Eh1 ≠ Eh2, where 

v, h1 and h2 represent the vertical, first horizontal and second 
horizontal directions respectively, as shown in Figure 1. A 
total of 21 independent parameters are required to describe the 
stiffness of a fully anisotropic material. However in most 
cases soils can be assumed to be transversely isotropic. In a 
transversely isotropic soil stiffness in the horizontal plane is 
assumed to be isotropic, and the vertical direction is the axis 
of anisotropy (such that Gv ≠ Gh1, Gh1 = Gh2 and Ev ≠ Eh1, 

Eh1 = Eh2). To describe a transversely isotropic elastic 

material five independent parameters are required (Love, 
1927). Commonly these are Young’s modulus (Ev and Eh); 

the Poisson’s ratio linking strains in the horizontal directions 
to the vertical direction (vh), Poisson’s ratio linking strain in 

one horizontal direction to the other (hh); and the shear 

modulus in the vertical plane (Gv). The shear modulus in the 

horizontal plane, Gh, is calculated from Gh =Eh / 2(1 + hh)). 

 
Since Ev and Gv are independent parameters, in theory the 

ratio Ev  / Gv can adopt any value for a transversely isotropic 

material.  
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Fig. 1. Properties of material in different directions (a) for 
isotropic (b) for anisotropic and (c) for cross-anisotropic 

materials. 
 
 
Resonant Column Apparatus 
 
The test procedure for a fixed-free RC involves vibrating a 
cylindrical column of soil and measuring the amplitude of the 
vibration during a frequency sweep. The resonant frequency is 
then obtained from the frequency response curve, determined 
from the peak amplitude observed.  As shown in Figure 2 
various vibration modes can be applied to the soil (torsional, 
flexural (bending) and longitudinal) and from the resonant 
frequencies so obtained the shear modulus, flexural Young’s 
modulus and vertical Young’s modulus can be calculated. 
 
For the routine interpretation of a fixed-free resonant column 
test the specimen is assumed to be elastic, homogeneous and 
isotropic and fixed at its base, with the drive system (drive 
mechanism, end platen, etc.) fixed to the top of the sample 
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assumed to be a lumped mass.  The solution for the torsional 
mode of vibration is given as (Richart et al., 1970). 
     

sV

ln

sV

ln

oI

I 
tan     (2) 

from which,  
2
sVG      (3) 

where 
Io is the mass polar moment of inertia of lumped mass 

attached to the free end,  
I is the mass polar moment of inertia of specimen,  
l is the length of the specimen  
ωn is the circular resonant frequency (=2f) from torsional 

vibration of the specimen, 
Vs is the calculated shear wave velocity of the soil,  

 is the density of the specimen, and 
G is the inferred shear modulus of the soil. 
 
The solution for the flexural mode of vibration is given as 
(Cascante et al., 1998). 
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Ib and Eflex are the second moment of inertia and the flexural 

modulus of the specimen respectively,  
N is the number of masses, mi evenly distributed between hoi 

and h1i, added during calibration;  

mT is the mass of the specimen, and   

ωf is the circular resonant frequency from flexural vibration of 

the specimen. 
 
Finally the solution for the longitudinal mode of vibration is 
given as (Kohoutek, 1981). 
 

EA

lTm

EA

lTm

M
Tm 2

tan

2 
   (6) 

 
where  
M is the total lumped mass attached at the free end of the 
specimen,  
E is the Young’s modulus of the specimen,  
A is the cross sectional area of the specimen and ω is the 

circular resonant frequency from longitudinal vibration of the 
specimen 
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Fig. 2. (a) Different mode of vibration of a specimen in RCA. 

(b) Axis representation for RCA. 
 
 
 
NUMERICAL MODELLING 
 
To assess the effects anisotropy has on the stiffness values 
derived from a resonant column test a finite element model of 
the resonant column and a specimen with known cross-
anisotropic properties was developed. Clayton et al. (2009) 
had previously developed an FE model of a Stokoe’ resonant 
column using the finite element software ABAQUS (version 
6.8). They were able to validate their model against measured 
laboratory test results on aluminium bars. They showed that 
the FE model accurately predicted the behaviour of a 
calibration bar of known properties. Their model was therefore 
adopted as a starting point for this work.   
 
Modifications were made to include a specimen (diameter 
70mm and length 140mm) with defined elastic transversely 
isotropic properties. The geometry and density of the 
individual components of the drive mechanism (drive plate, 
magnets, accelerometer and counter weight) accurately 
replicate the complex geometry of the physical drive 
mechanism of a Stokoe resonant column apparatus (Figure 3).  
 
The specimen and drive mechanism were modelled separately 
and merged together to ensure all connections were rigid. The 
model was carefully partitioned such that the model was built 
using predominately hexagonal elements of size 4mm x 4mm 
x 4mm; however some triangular prisms (wedges) were used 
in transition regions. 22646 elements were used, of which 
12110 elements were for the specimen alone. The number of 
elements and element sizes were chosen to minimize the effect 
of meshing error on resonant frequency, as suggested by 
Clayton et al. (2008). Natural frequency extraction (sometimes 
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referred to as ‘frequency analysis’) was used to calculate the 
natural modes of vibration and the corresponding natural 
frequencies by computing the eigenvectors and the 
eigenvalues of the model. 
 
 

(a) (b)(a) (b)  
Fig. 3. Modelled resonant column apparatus with a sample, 

(a) before partition, and (b) after meshing. 
 
 
A number of different specimens were analyzed. One set of 
analyses (‘iso’) modelled an isotropic specimen, with a further 
two sets being undertaken to include specimen anisotropy. In 
the first anisotropic model (‘vc’) the plane of isotropy was 
horizontal, equivalent to a specimen cut vertically from a 
typical transversely isotropic soil.  In second anisotropic 
model (‘hc’) the plane of isotropy was vertical, equivalent to a 
specimen cut horizontally from a transversely isotropic soil, 
before being mounted vertically in the apparatus, as shown in 
Figure 4.  
 

 
Fig. 4. Different sampling directions in a block sample. For a 
cross-anisotropic material sampling in horizontal direction 1 

and 2 are same.  
 
 
 
 

RESULTS AND DISCUSSION 
 
The first set of analyses was conducted on isotropic specimens 
(‘iso’) with varying aspect (height to diameter) ratios. Giso, 

Eiso, Eflex1iso and Eflex2iso were calculated from resonant 

frequencies for the respective torsional, longitudinal and 
flexural modes of vibration using Equations 2 - 6, where ‘iso’ 
denotes isotropic material, and ‘1’ and ‘2’ denote the two 
different flexural directions. Since the specimen was isotropic, 
Eflex1iso and Eflex2iso were equal and were denoted as 

Eflexiso.  

 
The reason for testing an isotropic specimen with differing 
length/ diameter ratios was to investigate the validity of 
Equations 3 & 5. In the derivation of Equation (4) it is 
assumed that shear stiffness does not contribute significantly 
to deformations, and therefore to the resonant frequency in 
flexure. Classical elastic (Timoshenko) beam bending theory 
suggests that the contribution of shear stiffness is negligible 
where the length/diameter ratio of a beam is greater than 6. 
Since in a standard resonant column test the length/diameter 
ratio is of the order of 2, it was thought that significant errors 
might exist in the routine calculation of Eflex.  

 
In the derivation of Equation 6 the effects of platen stiffness 
and lateral restraint are not taken into account.  For short 
specimens it was thought that these might be significant, 
leading to over prediction of Young’s modulus. 
 
Figure 5 shows the ratios of the Eflex1iso, Eiso, and Giso, 

calculated from the extracted frequencies obtained from 
torsional, longitudinal and flexural mode of vibration 
respectively, by using Eqs. 2 – 6, to those input as material 
properties. It can be seen that the calculated value of Eflexiso 

is dependent on l/d ratio, and for the conventional resonant 
column l/d ratio (=2) an error of around 10% will occur. Thus 
in using the resonant column in flexural vibration mode any 
derived value of E will need to be a corrected.  The effect of 
aspect ratio on the shear modulus determined from torsional 
vibration appears negligible.  The effect on Young’s modulus 
derived from longitudinal vibration remains small down to 
aspect ratios of unity. 
 
In the second set of numerical analyses, the specimen was 
modelled as a vertically cut transversely isotropic material 
(‘vc’), with the axis of isotropy in the horizontal plane. Gvc, 

Evc, Eflex1vc and Eflex2vc were calculated from Eqs. 2 - 6, 

where the subscript ‘vc’ represents vertical cut sample. As 
might be expected, Gvc and Evc values computed from the 

resonant frequencies in torsion and in longitudinal vibration 
were equal to the input values of Gv and Ev respectively.  

However, given the contribution of shear stiffness to the 
flexural stiffness of a 2:1 aspect ratio specimen identified 
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(above) for the isotropic ‘specimen’,  the values of Young’s 
modulus calculated from the resonant frequency under flexural 
excitation (Eflexvc) differed from those in longitudinal 

excitation, and depended both on the input value Ev and Gv, as 

shown in Figure 6. 
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Fig. 5. Ratio of calculated stiffness to the defined stiffness for 

an isotropic material with slenderness ratio. 
 
 
A third set of numerical analyses were performed to model a 
horizontally cut (‘hc’) specimen where the plane of isotropy is 
perpendicular during resonant column testing, as shown in 
Fig. 4. Similar cross-anisotropic parameters to those used in 
the second set of analyses were chosen.  Ghc, Ehc, Eflex1hc 

and Eflex2hc were calculated from Equations 2 - 6, where the 

subscript ‘hc’ represents horizontally cut specimen. 
 
From these analyses it could be seen that, irrespective of the 
values taken by all other parameters, Ehc was equal to Eh. 

Eflex1hc and Eflex2hc were equal to 0.9-0.93 Eh for the 

analyses that were conducted, but (by comparison with the 
effects shown in Fig. 6) shear stiffness in the plane of flexure 
may have a significant effect 
 
Ghc was not equal to Gh or Gv. This stems from the fact that 

in the plane of torsional shear vibration, the shear properties of 
the specimen are not uniform, but vary from Gh to Gv. The 

value of Ghc inferred from the torsional resonant frequency 

results from a combination of shear moduli Gh and Gv, and 

from our analyses is approximately equal to the square root of 

the product of the shear moduli in the vertical and horizontal 
planes (Figure 7). 
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Fig. 6. Effect of vertical shear modulus on Young’s modulus 

inferred from flexural vibration. 
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Fig. 7. Relationship between Shear modulus determined from 

horizontally cut specimens, and shear moduli values. 
 
These results suggest that, at least in principle, resonant 
column testing of both vertical and horizontal specimens cut 
from a transversely isotropic soil can allow the degree of 
anisotropy to be quantified. Gv can be determined from 
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torsional resonance of vertically cut specimens, as usual. Ev 

can be determined from longitudinal resonance, and from 
flexural resonance and (with correction) Cascante’s equation.    
Eh can be determined from horizontally cut specimens.  The 

shear stiffness in the horizontal plane (Gh) can be deduced 

from Gv and the measured value of Ghc, since 

vGhcGhG /2    (7)  

In practice, values of shear moduli are likely to be more 
reliable than values of E, since the former are measured in 
torsion, and will be little affected by bedding effects, which 
may reduce measured values of Young’s modulus for stiffer 
materials. 
 
CONCLUSIONS 
 
The standard (torsional) resonant column test determines the 
independent shear modulus in the vertical plane, Gv, when 

carried out on a conventional vertically-cut specimen.  This 
value would equal one-third of the Young’s modulus (E) for 
an isotropic undrained specimen, but the ratios Gv / Ev and  

Gv / Eh will vary if the material is transversely isotropic.   

  
For an isotropic material the use of flexural vibration to derive 
E using Eq. 4 introduce errors of about 10 % when the aspect 
ratio (l/d) of the specimen is (as usual) around 2. This error in 
Eflex occurs because no shear deformation is included in 

deriving Eqs. 4 – 5.  However, although longitudinal vibration 
(and the use of Eq. 6) may provide a more accurate method for 
calculating E, more complex apparatus is required.  
 
Numerical analyses of the resonant column apparatus with 
transversely isotropic soil shows that the degree of anisotropy 
of a soil can only be deduced if both vertical and horizontal 
cut specimens are tested. When this is done a maximum of 
four independent variables can be obtained with reasonable 
accuracy from flexural (or longitudinal) and torsional 
vibration of vertically and horizontally cut specimens. Values 
of Ev and Eh can be measured using longitudinal vibration of 

vertical and horizontal cut specimens respectively. Flexural 
vibration can also be used to calculate these stiffnesses, 
although the effect of shear stiffness in the plane of distortion 
needs to be borne in mind. Shear stiffness in the vertical plane 
can be obtained using torsional vibration of a vertical cut 
specimen.  Shear stiffness in the horizontal plane can 
determined using Equation (7), once the values of Gv and Ghc 

have been obtained. 
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