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A new hybrid composite beam (HCB) has recently been used in the construction of three bridges in Missouri, USA. HCB consists
of self-consolidating concrete (SCC) that is poured into classical arch shape and tied at the ends by steel tendons. Both the concrete
and the steel are tucked inside a durable fiberglass shell, and the voids are filled with polyiso foam.'is paper aims to examine the
flexural behavior of an in-service HCB, evaluate the current methodology and assumptions, and propose modifications to that
methodology. To achieve these goals, the strains induced in HCB elements due to different loading stages were experimentally
measured. Numerical predictions of the strains were performed via the existing methodology, the modified procedure, and a finite
element model (FEM) that was constructed using ANSYS V14.'e linear FEM predicted the strains with acceptable accuracy.'e
model clarified that the foam achieves partial composite action between the HCB elements, resulting in a strain incompatibility
between them.'e current methodology was found to be unable to predict the maximum compressive strain in the concrete arch.
'emodified procedure is based on the strain compatibility assumption. However, it models the HCBs as curved beam rather than
a straight one, using a simplified spring model to represent the beam supports. 'ese modifications achieved significant en-
hancements in estimating the strains under service loads.

1. Introduction

Fiber reinforced polymer (FRP) composites are extensively
used as construction material in applications ranging from
externally bonded laminates for strengthening and
upgrading of existing infrastructures, wraps for seismic
retrofit of columns, internal reinforcement bars, grids, and
prestressing tendons to all-composite structural systems.
'eir extraordinary properties such as high strength-to-
weight ratio, corrosion resistance, dimensional stability,
excellent durability, transparency to electromagnetic radi-
ation, and low to moderate tooling costs make them ideal
alternatives for resolving a number of problems facing
highway bridges, particularly corrosion and deterioration.
However, fully composite FRP structural members fail to be
cost competitive compared to traditional concrete and steel
members used in civil engineering applications. 'is in-
creased initial cost can be traced directly to the raw material
costs and low stiffness of FRP composites. 'e most effective

use of the FRP, as primary load carrying members, is found
to be in the form of hybrid systems comprised of FRP and
traditional construction materials [1].

A new type of HCB has recently been used to construct
three bridges (B0439, B0410, and B0478) in MO, USA. 'e
underlying concept of the HCB was conceived by Hillman in
1996 [2]. 'e HCB consists of a self-consolidating concrete
(SCC) arch that is tied at the ends using high-strength
galvanized steel strands. 'e concrete and steel, which
present the compression and tension reinforcement, re-
spectively, are encased inside a durable fiberglass composite
shell. Due to this unique configuration, the glass fiber
reinforced polymer (GFRP) box protects the steel and
concrete from the environmental effects and serves as the
formwork for the concrete arch, while the strength and
stiffness are provided by an efficient use of the steel in purely
axial tension and the concrete in purely axial compression.
In addition to the optimization of load carrying behav-
ior offered by this configuration, it results in a lightweight
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member that can be transported easily and erected rapidly
making this technology well suited to Accelerated Bridge
Construction (ABC).

A limited number of research studies have been
implemented on the HCB [3–9]. 'e results gathered from
these studies demonstrate that the structural behavior of the
HCB is not completely understood. Recent studies per-
formed by [3, 4] revealed that the current design method-
ology is unable to predict the normal strains correctly at
some locations indicating that the design methodology may
need refinement.'us, the primary objectives of this work to
analyze the flexural behavior of in-service HCB under
service loads, evaluate the current design methodology and
assumptions, and introduce refinements to the current
procedure. As a part of this investigation, HCB elements in
bridge 0410 were instrumented with various sensors. 'e
induced strains when the concrete arch poured, and under
several load cases, were measured experimentally and pre-
dicted analytically. 'e numerical predictions were then
compared to the field data.

2. Bridge 0410

Bridge 0410 was the second HCB Bridge to be constructed in
Missouri. B0410 HCBs are the longest span HCBs yet
constructed. B0410 spans 31.7m (1248–in.), and its out-to-
out dimension of the deck is 9.35m (368–in.). B0410 consists
of a simply supported single-span HCBs. Due to their long
spans, the beams were fabricated as multicelled, double-web,
beams to significantly reduce the time of fabrication and
erection.

Each multicelled HCB has an overall depth of 152.4 cm
(60–in.) and a varying width ranging from 167.6 cm (66–in)
at the bottom to 182.9 cm (72–in.) at the top. Each single
HCB consists of an SCC arch with 25.4 cm (10–in.) depth
and 26.7 cm (10.5–in.) width.'e concrete arch is reinforced
with 2–12.7mm (2–1/2–in.) diameter, 1.72GPa (270 ksi)
seven-wire galvanized steel strands. It is tied via 44-12.7mm
(44–1/2–in.) diameter, 1.72GPa (270 ksi) steel strands
arranged in two layers.'e entire system is encapsulated in a
GFRP shell with 152.4 cm (60–in.) depth and 34.9 cm
(13.75–in.) width. 'e concrete arch is connected to the
upper GFRP flange with a SCCweb of varying width, and the
voids were filled with polyisocyarunate (polyiso) foam. A
typical cross section of B0410 is depicted in Figure 1.

3. Load Testing and Instrumentation of
Bridge 0410

Structural elements of HCB2 were instrumented using
different strain gauges to allow for the evaluation of the
design procedure. 'ese sensors allow also for the moni-
toring of the short-term and long-term behaviors of the
HCB. Four electrical resistance strain gauges were adhered
to tension strands. A concrete arch and its web were
instrumented using nine vibrating wire strain gauges
(VWSGs)/thermistors (seven gauges to measure normal
strains and two gauges to measure shear strains). Twelve
electrical resistance strain gauges were adhesively bonded to

the FRP shell (seven sensors to measure normal strains and
five to measure shear strains). Twelve thermocouples were
placed at various locations. All but the FRP shell sensors
were placed during the shell fabrication at Harbor Tech-
nologies, Maine, USA.'e FRP strain gauges were placed on
the shell by researchers from Missouri University of Science
and Technology (Missouri S&T) prior to the concrete pour
at the precast plant in Virginia, USA. Following fabrication,
data collection indicated that two strand strain gauges and
two VWSGs within the concrete arch were not functioning
properly. While uncertain, these sensors could have been
damaged due to the exposure to very high temperature
during the resin infusion process or during the trans-
portation and erection processes. Figure 2 displays the lo-
cations of the sensors within the member. Only the
functional normal strain sensors are displayed in this figure.
'e VWSGs placed in the concrete are denoted by C and the
FRP gauges are denoted by F, while the strand gauges are
denoted by S.

Due to the construction sequence of the HCB bridges,
the beam is subjected to three stages of dead and live loading.
In the first stage, both the GFRP shell and the strands are
subjected to stresses from casting the concrete arch and web.
In the second stage, the noncomposite HCB is subjected to a
load result from the deck and barriers pour. In the third
stage, the composite HCB is subjected to a live load from in-
service traffic.

Strain readings were taken an hour before the concrete
arch was poured and continued for 25-hours. 'e initial
strain data was subtracted from the strain readings recorded
at the end of the arch pour. 'is provided the strains induced
in the shell and strands due to stage 1 loads. Unfortunately, no
data was collected while the deck was being poured (stage 2).

A load test was conducted with two fully loaded, ten-
wheel, three-axle trucks to simulate stage 3 loading. 'ese
trucks performed three stops, simulating three different load
cases. 'e stops were selected to produce maximum bending
moments and shear forces in HCB2. Figure 3 illustrates the
stops performed. 'e front axle load (P1) of the first truck
(T-1995) was 7.48 metric tons (16.48 kip), the middle axle
load (P2) was 7.07 metric tons (15.58 kip), and the rear axle
load (P3) was 11.07 metric tons (24.4 kip). 'e P1 of the
second truck (T-2406) equaled 7.45 metric tons (16.42 kip),
the P2 equaled 9.31 metric tons (20.52 kip), and the P3
equaled 9.09 metric tons (20.04 kip).

'e traffic was stopped, and initial strain measurements
were recorded before performing the three stops. As in the
first stage, these strains served as baseline and were sub-
tracted from the strains induced by the three stops. Hence,
the strains induced in the HCB2 elements due to pure live
loading were obtained.

4. Material Properties

A MATLAB code was constructed to calculate the normal
strains in HCB2. 'e code accounted for the material
nonlinearity; however, the mathematical calculations
showed that all the materials behaved within their elastic
ranges under the applied loads. Consequently, only the
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linear properties of the constituent materials are presented
in the following sections.

4.1. Concrete. In B0410, SCC was used to form the com-
pression reinforcement of the HCBs. 'e field tests showed
that the average compressive strength of the concrete arches
of theHCBs was about 75.8MPa (11 ksi). Since quality control
specimens were not available to obtain specific concrete
properties, based on a previous study [10], the traditional
equations used with the normally vibrated concrete were used
in the current study to calculate the SCC properties.

'e current methodology assumes that the concrete
below the neutral axis (NA) has cracked. In the current

study, the concrete subjected to tensile stress was assumed
to contribute to the strength and stiffness of the HCB up to
the modulus of rupture of the concrete. 'is aimed to
allow the comparison between the tensile strains captured
by some sensors in the arch and the estimated strains. 'e
elastic modulus, Ec, and the modulus of rupture, fr, were
calculated using the ACI 318-11 [11] equations in
American Standard English (ASE) units from the
standard:

Ec � 57000
��

fc′


(ASE), (1)

fr � 7.5
��

fc′


(ASE), (2)
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Figure 1: Typical cross section of bridge 0410.
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where fc′ is the compressive strength of concrete. In
equations (1) and (2), fc′, fr, and Ec are in psi.

4.2. Steel Reinforcement. Two types of reinforcement bars
were used in B0410. Typical Grade 60 mild steel reinforcing
bars were used to reinforce the bridge deck, while seven-wire
strands, conventional prestressed concrete strands
(1860MPa class) (Grade 270), were used in the HCBs.
Young’s modulus of the strand was assumed to be
196,500MPa (28,500 ksi). 'e typical mild steel bars were
assumed to have Young’s modulus equal to 199,948MPa
(29,000 ksi). Both steel types were assumed to have Poisson’s
ratio of 0.3, and 7849 kg/m3 (490 lb/ft3) density.

4.3. FRP Composites. 'e laminate composition of the FRP
shell of B0410 is a woven-glass reinforcing fabric with
varying percentages of the fibers oriented in the 0°, 90°, and
±45° directions relative to the longitudinal axis. 'e matrix
used to infuse the fibers is RTM-80545 vinylester resin. 'e
shell was assumed to behave as orthotropic transversely
isotropic material in the FEA. While in the mathematical
calculations, only the longitudinal (0° direction) properties
were used. 'e GFRP was assumed linear elastic up to
failure. 'e manufacturer provided the mechanical prop-
erties of the shell. Poisson’s ratio ]xy was assumed to be 0.26,
and ]yz was assumed to be 0.30 [12]. A summary of the
material properties used for modeling the FRP shell is listed
in Table 1.

4.4. Polyisocyanurate Foam. Polyisocyanurate (polyiso)
foam is a 32 kg/m3 (2.0 lb/ft3), rigid, closed cell foam

supplied as blocks with 61 cm (24 in.) width. 'e elastic
moduli and shear moduli were provided by the manufac-
turer in the longitudinal and perpendicular directions. In
this study, the foam was assumed to behave as orthotropic
transversely isotropic material. Since the compression and
tensionmoduli are close to each other, the tension properties
only were used in modeling the foam. Poisson’s ratio ]xy and
]xz were assumed to be 0.33 [13]. A summary of the material
properties used for modeling the polyiso foam is listed in
Table 2.

5. Finite Element Modeling of Bridge 0410

'e bridge superstructure was modeled via the commercial
FEA software ANSYS 14. 'e FEM consisted of 224568
elements and 213634 nodes. 'e Y-axis was oriented in the
gravity direction and the X-axis was oriented in the longi-
tudinal direction of the beams, while the Z-axis was oriented
in the lateral direction of the HCBs. Based on the mathe-
matical predictions, all the materials were modeled as linear
elastic. 'e results obtained from the FEMs also assured that
all the materials behaved within their elastic range.

5.1. Element Types and Model Simplifications

5.1.1. Hybrid Composite Beam (HCB). 'e HCB was
modeled using a combination of one-, two-, and three-
dimensional space elements. 'e GFRP shell and the con-
crete web have small thicknesses relative to their lengths and
widths; therefore, they were modeled using shell181 element.
Shell181 is a four-node element with six degrees of freedom
(DOFs) at each node. 'e concrete arch was modeled using
solid65 element, and the polyiso foam was modeled using

T-2406 T-1995

0.9 m
(36″)

0.9 m
(36″)

C.L. HCB1

C.L. HCB2
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C.L. of the bridge

(c)

Figure 3: Load testing truck stops. (a) stop 1. (b) stop 2. (c) stop 3.
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solid185 element. Both elements are eight-node elements
having three translational DOFs at each node. 'e HCB
strands were modeled using beam188 element, which has six
DOFs at each node.'e tension reinforcement is arranged in
two layers that lie directly on the lower FRP flange. In the
FEM, the strands were shifted upward and modeled in one
layer separated from the lower flange by 2.54 cm (1 in.) of
foam. To simplify modeling, the 44 strands were modeled via
five separate beam elements.'e total cross-sectional area of
the five beam elements equals the cross-sectional area of the
44 strands. A perfect bond between all the components of the
HCB was assumed. 'is was achieved by meshing all the
constituents using the samemesh. Figure 4 displays the finite
element modeling of HCB using ANSYS V14.

5.1.2. Bridge Deck. Solid65 elements were used to model the
bridge concrete slab. 'ree solid elements were used
throughout the slab thickness to allowmodeling of the upper
and lower reinforcement bars via beam188 elements. 'e
parapet was poured simultaneously with the slab, and its
reinforcement extended into the deck. Previous studies
[3, 14] proved that when composite action is achieved be-
tween the slab and the parapet, the deflection and stress of
the bridge girders are significantly decreased. Consequently,
the parapet was included in the FEM and simulated using
solid65 element. A Previous study [6] demonstrated that the
shear connectors of the HCB achieved full composite action
between the bridge deck and the HCBs. In the FEA, a perfect
bond was assumed between the deck components and be-
tween the deck and the HCBs.

5.2. Modeling of Loads. In the first stage, the weight of the
concrete arch and web was applied as uniform load on the
lower foam elements (the foam elements below the concrete
arch). In the second stage, the weight of the deck was applied
as uniform load on the upper flange elements of the non-
composite HCB. In the last stage, the trucks axle loads were
applied to the bridge superstructure as a uniform distributed

load over each tire contact area on the upper surface of the
deck elements. Finally, a linear superposition was performed
between the three stages to obtain the total stresses in the
different components of the HCB.

5.3.Modeling ofBoundaryConditions. Each end of the HCBs
of B0410 is supported on two steel-laminated neoprene
bearing pads. Each elastomeric bearing pad, located un-
derneath the chimney, is 30.5 cm× 30.5 cm× 1.9 cm
(12–in.×12–in.× 0.75–in.). 'e stress-strain behavior of an
elastomer is controlled by the shear modulus and the shape
factor of the elastomer [15]. According to AASHTO LRFD
[16], the elastomer shall have a shear modulus from
0.655MPa (95 psi) to 1.379MPa (200 psi). In the current
work, the shear modulus of the elastomer was assumed to be
1MPa (145 psi).'e shape factor, P, of rectangular elastomer
layer is given by [16]

P �
LW

2hri(L + W)
, (3)

where L is the dimension of the bearing in the longitudinal
direction of the beam (X-dir.), W is the dimension of the
bearing normal to the longitudinal beam axis (Z-dir.), and
hri is the thickness of a single elastomer layer.

A simplified equation based on the shear modulus, G,
and the shape factor is provided by [17] to detect the stiffness
of the bearings as follows:

Eb � 6GP
2
, (4)

where Eb is the effective compressive modulus of the
bearing.

Yazdani et al. [15] derived six translational and rota-
tional stiffness values that can simulate the restrained forces
and moments at the beam-pad interface. According to their
study, the translational stiffness of the bearing in the X-
dir.(kxb) and the rotational stiffness about the Z-axis(krzb)
are given by

kxb �
CGAxz

H
, (5)

krzb �
CEbIz

H
, (6)

where Axz is the area of the bearing in the xz plane, H is the
total thickness of the bearing, Iz is the moment of inertia of
the bearing about the Z-axis, and C is a factor that presents
the effects of aging and cold temperatures on the elastomer

Table 1: Material properties used for modeling the FRP shell.

Property Strength MPa (ksi) Stiffness GPa (msi) Shear modulus GPa (ksi)

Tensile properties
S+

L � 372(54) E+
x � 27.6(4) Gxy � 6.3(919)

S+
T � 124(18) E+

y � 15.7(2.3) Gxz � 6.3(919)

SLT � 21(3) E+
z � 15.7(2.3) Gyz � 3.7(530)

Compressive properties
S−L � 138(20) E−x � 8.96(1.3) Gxy � 6.3(919)

S−T � 152(22) E−y � 9.5(1.4) Gxz � 6.3(919)

SLT � 21(3) E−z � 9.5(1.4) Gyz � 3.7(530)

Density kg/m3 (lb/ft3) ρ � 1682(105)

Table 2: Material properties used for modeling the poly-
isocyanurate foam.

Elastic modulus
kPa (psi) Poisson’s ratio Shear modulus kPa (psi)

E+
x � 8440(1225) ]xy � 0.33 Gxy � 1516(220)

E+
y � 3190(463) ]xz � 0.33 Gxz � 1516(220)

E+
z � 3190(463) ]yz � 0.308 Gyz � 1219(177)
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stiffness. 'e aging and temperature effects can increase the
stiffness of the elastomer up to 50 times the original stiffness
[18]. Based on the results obtained by [15], Cwas assumed to
be 25 in the current study.

A previous FEA study of B0439, the first HCB bridge
constructed in Missouri, revealed that modeling the bearing
pads with pin supports that restrained the translational
movements in all the directions led to acceptable predictions
of the HCBs deflections [3]. In the current study, twomodels
of B0410 superstructure were constructed with different
boundary conditions to study the best simulation of the
bearings effects. In the first model, the bearings were sim-
ulated via pin-pin supports similar to the previous study [3].
In the second model, the bearings were simulated by pre-
venting the vertical movement in the gravity direction (Y-
dir.), in addition to applying the translational and rotational
springs given by equations (5) and (6), respectively. In the
second model, the out-of-plane translational and rotational
springs (kzb, and krxb and kryb, respectively), derived by [15]
were not applied because the bridge incorporates the use of
concrete diaphragms that span between the HCBs ends and
rest directly on the interior and exterior bents. 'ese di-
aphragms were simulated in both models by applying
supports that restrained the lateral translation of the HCBs at
the contact areas between the diaphragms and the beams.
'e comparison between the field-measured strains pro-
duced by the three load stops and the FEM predictions
showed that the second model achieved slightly better
correlation with the experimental data. Consequently, the
HCBs’ supports in the second and third stages were sim-
ulated using roller supports combined with translational and
rotational springs as done in the second model.

While the concrete arch was poured (the first stage); the
HCB was supported on two concrete blocks. 'ese blocks
were assumed to prevent the displacement of the HCB in all
directions. Consequently, in this stage, the HCB was
modeled with pin supports at each end.

6. Mathematical Calculations

'e current design methodology [5, 19], models the HCB as
a straight, simply supported beam with varying sectional
properties along the length of the beam. 'is procedure is
based on the following assumptions:

(i) Plane sections that are perpendicular to the neutral
axis (NA) before bending remain plane and per-
pendicular to the NA after bending (linear strain
distribution throughout the HCB’s depth)

(ii) 'e strain of different constituents at the same level
is equal (a perfect bond between the beam’s
constituents)

(iii) 'e concrete below the NA has cracked and no
longer contributes to the strength of the beam

'emethodology uses the transformed area technique to
transform the different constituents of the HCB to equiv-
alent amounts of the GFRP of the webs. It calculates then the
beam stiffness at 1/10th points along the beam length to
account for the nonprismatic nature of the beam’s cross
section. In the current work, the elastic neutral axis (ENA)
and the stiffness at 1/20th points along the beam length were
determined, according to the current design procedure, as
follows:

ni �
Ei

Ew
,

Atij � niAij,

yj �


m
i�1Atijyij


n
i�1Atij

,

Ij � 
m

i�1
Itij + Atij yij −yj 

2
 ,

(7)
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(concrete 

end block) 

Figure 4: Finite element modeling of multicelled hybrid composite beam using ANSYS V14.0.
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where ni is the modular ratio of the component i, Ew is the
modulus of elasticity of the FRP web, Ei is the elastic
modulus of the component i, Aij is the cross-sectional area
of the component i at the section j, Atij is the transformed
area of the component i at the section j, yij is the distance
from the c.g. of the component i to the extreme lower fiber of
the beam at the point j, yj is the distance from the ENA of
the composite section to the extreme lower fiber of the beam
at the section j, Itij is the transformed moment of inertia of
the component i with respect to its c.g. at the section j, Ij is
the transformed moment of inertia of the composite section
with respect to the ENA at the section j, m is the total
number of the HCB components, and j� 1, 2, . . ., 21.

'e following AASHTO LRFD [16] equations were used
to distribute the truck loads to HCB2:

g �
S

3.0
 

0.35 Sd

12.0L2 

0.25

(ASE), (8)

g �
S

6.3
 

0.6 Sd

12.0L2 

0.125

(ASE), (9)

where S is the spacing of the beams in feet, d is the depth of
the beam in inch, and L is the span of beam in feet. Equation
(8) was used when one lane was loaded, while equation (9)
was used when two lanes were loaded.

Finally, the bending moments were calculated and the
induced normal strains in the different components were
obtained at each section via equation (10):

εij �
Mj yj −yij 

IjEw
, (10)

where εij is the normal strain of component i at the section j
and Mj is the bending moment at section j.

7. Modified Methodology

Two modifications were applied to the current design
methodology to enhance the strain estimation in the dif-
ferent components of the HCB. One modification was ap-
plied to the beam geometry while the other was applied to its
boundary condition.

Due to the parabolic profile of the compression re-
inforcement, both horizontal movements and normal forces
are expected to induce through the beam’s length. Conse-
quently, the stresses and strains are expected to be sensitive
to the type of translational restraint that is provided at the
end of the beam in its longitudinal direction (X-dir.). 'e
current design methodology models the HCB as a straight
simply supported beam. 'erefore, neither axial forces in-
duce through the beam nor the model is sensitive to the
restrained translational DOFs in the longitudinal direction.
It was noticed, during the mathematical modeling of the
current bridge discussed herein, B0410, and B0439 [3], that
the ENAs of the noncomposite and composite HCB (stages 2
and 3) form curved path. 'is path begins at the bottom at
the supports with an apex at the center of the beam.
'erefore, the first modification was achieved by modeling

the HCB as a curved beam based on the ENAs’ locations
rather than modeling it as a straight beam.

'e second proposed modification was performed by
modeling the supports at each end with a roller support,
preventing the displacement in the Y-dir., a translational
spring in the X-dir., and a rotational spring about the Z-axis.
Under static vertical loads, both the FRP shell and the
strands are expected to deform downward only while the
concrete arch is expected to perform horizontal and vertical
movements. 'e horizontal deformation of the concrete
arch is partially restrained by the strands at the beam’s end,
while the horizontal movement of the overall beam is
partially restrained by the bearing pads at each end. Because
the concrete arch is the source for the HCB’s horizontal
movement under static vertical loads, it may be acceptable to
simulate the restrained horizontal forces at each end of the
beam using a translational spring with the following
stiffness:

Kx � Kxb + Kxs, (11)

where Kx is the translational spring stiffness at the end of the
HCB in the X-dir., Kxb is the stiffness presented by the
bearing pad and is given by equation (5), and Kxs is the
stiffness provided by the strands.

It can be shown that Kxs is given by the following
equation:

Kxs �
2EsAs

L
, (12)

where Es and As are the elastic modulus and the cross-
sectional area of the strands, respectively.

'e stiffness of the rotational springs at the HCB ends
was calculated with equation (6). 'en, the strains were
estimated bymodifying equation (10) to account for the axial
force in the beam:

εij �
Mj yj −yij 

IjEw
+

Nj

AjEw
, (13)

where Nj is the axial force at section j and Aj is the
transformed cross-sectional area of the composite section at
j.

'e proposed modifications were applied only to the
second and third stages. In the first stage (the HCB, without
compression reinforcement), the ENA is at the same loca-
tion along the beam length. Consequently, the beam was
modeled as a straight beam without any modification to the
existing methodology.

8. Results Discussion

Figures 5 and 6 display the measured and estimated normal
strains in the different elements of the HCB2 that resulted
from the three stops loads (stage 3) and casting the concrete
arch (stage 1), respectively. Figure 7 illustrates only the
estimated strains in the HCB2 that were produced by the
second stage loads and the total loading of the three stages.
'e total loads from the three stages were obtained by
adding stop 2 loads to the first and the second stage loads.
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'e results clarify that the field-measured strains agree with
the strains estimated by the FEM during the first and third
stages.

'e results clarify that the FEM predicted higher strains
in the concrete arch than the measured strains under the
three stops loads. Because the mix design of the concrete
arches in B0410 contained fly ash, the arch may have gained
strength higher than that was used in the FEM. Various
studies [20, 21] have found that the fly-ash concrete achieves
a significant increase in the strength after 28 days, and this
increase in strength continues at the long-term due to the
pozzolanic reaction. In general, the differences between the

FEM predictions and the measured strains are within the
expected range of errors for full-scale bridge testing. Con-
sequently, the FEM was used here to analyze the flexural
behavior of the HCB. It was also used as a reference to
evaluate the performance of both the current and the
modified methodologies in estimating the strains due to the
second stage and total loading.

In the three stops, the maximum compressive stresses in
the concrete arch were found to be very close to the junction
of the arch with the chimney. Figures 5(a), 5(c), and 5(e)
illustrate that the VWSG (C6), instrumented at this location,
captured the maximum normal compressive strains due to
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Figure 5: Strain values due to the three stops (stage 3). (a) Concrete VWSGs (stop 1). (b) FRP and steel gauges (stop 1). (c) Concrete VWSGs
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all the truck stops. Figure 8 illustrates that the same behavior
was predicted by the FEM. According to the existing design
model, C6 is located below the ENA in all of the stops and
the bending moment is small at this location. Consequently,
the current model always predicted very small tensile strains
at C6. Figures 5(b) and 5(d) illustrate that the FRP strain
gauge F3 captured compressive strains during stops 1 and 2.
'ese results indicate that the HCBwas subjected to negative
bending moment at the support locations due to the

restrained moments at the beam-pad interface. 'e negative
moment may be combined with an axial compressive force
along the beam length due to the parabolic profile of the
compression reinforcement.

In general, the comparison between the field strains and
the current design procedure strains shows that the
methodology is accurate in predicting the strains in the first
stage (where the HCB is prismatic along its length). 'e
comparison also clarifies that the model is unable to predict
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Figure 7: Strain values due to the deck pour (stage 2) and total loads of the three stages. (a) Concrete VWSGs (stage 2). (b) FRP and steel
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the maximum compressive stresses in the concrete arch
and significantly conservative when predicting the tensile
stresses in the FRP shell and strands in the third stage. 'e
same trend was observed in the second stage, based on the
FEM predictions. 'is behavior can be attributed to
neglecting the negative moment at the beam end and the
axial force through the beam. When the noncomposite
HCB of B0410 was modeled with a pin support at one end
and a roller support at the other end, the maximum
compressive stress in the concrete arch was found at the
same location and negative bending was observed at the
end of the beam.

In a previous study, the writers attributed the negative
moment at the beam end of the simply supported HCB to
partial fixation provided by the chimney to the beam end [3].
'e maximum compressive stress at this location may result
from the negative moment combined with compressive axial
force in the arch. Since the bearing stiffness has been
documented to affect the bridge girders’ behavior [15, 22], it
is assumed here that the bearing stiffness is the primary
cause of the negative moment at the HCB’s end. Conse-
quently, no definite conclusion regarding the chimney
stiffness effect can be drawn from the experimental results
collected in this study.

Figures 5(b), 5(d), and 5(f) illustrate that the measured
strains at the strands midspan (S1A and S1B) are signifi-
cantly lower than the bottom flange strains at the same
location (F1). In the FEM, the strands were separated from
the lower flange by 2.54 cm (1–in.) of foam; a perfect bond
was assumed to exist between all of the superstructure’s
components. If the HCB has perfect beam behavior, the
strains in the strands and the bottom flange should be very
close to each other. However, similar differences as to what
was measured experimentally, was detected by the FEM.
'ese differences indicated that some of the design as-
sumptions may be invalid. 'us, the FEM results were used
to develop strain profiles throughout the thickness of the
composite and noncomposite HCBs to verify the design
assumptions.

'e strain profiles at section (A-A), due to stop 1, and
section (D-D), due to stop 3, are presented in Figure 9(a) and
10(a), respectively, while the strain profile of the non-
composite HCB at section (C-C) is displayed in Figure 10(b).
Figures 9 and 10 also display the strain profiles obtained by
the modified methodology (which is based on the same

assumptions the current methodology is based on). In these
figures, the FEM strains in the concrete arch and web, the
strands, the FRP shell, and the concrete of the deck are
denoted by CM, SM, FM, and DM, respectively. 'e strain
profiles show that the assumption “the strain of different
constituents at the same level is equal” is invalid. Reference
[8] also noticed a strain incompatibility between the con-
crete arch and the GFRP shell, a finding that agrees with the
FEM results presented in this study. 'e strain in-
compatibility between the HCB components can be at-
tributed to the low shear moduli of the polyiso foam. 'is
foam behaves as a flexible shear connection allowing dif-
ferential vertical and horizontal displacements between the
HCB elements.

Figure 9(b) illustrates the displacement in X-dir. of the
composite HCB elements, at themidspan of the beam, due to
stop 1. Vertical differential movements between the HCB
components were also detected by the FEM. Mascaro and
Moen [7] recorded relative vertical movements between the
concrete arch and the FRP shell using two experimental
methods: close-range photogrammetry and LVDT mea-
surements. 'eir experimental investigations also agree with
the current FEM results. Due to the relative movements
between the HCB elements, the strain distribution
throughout the deck, concrete arch, and concrete web is
linear (because of the rigid connection between them) and
the strain distribution through the GFRP shell components
is linear but with different slope, while the strain in the
strands is independent. 'e effect of the flexible shear
connections on the strain throughout girders’ depth has
been documented by many researchers among them [23].

'e FEM results demonstrated that the stress was not
constant along the strands’ length. Hillman [5] noticed the
same behavior while testing the first HCB prototype. He
concluded that theHCB behaves like a beam rather than a tied
arch. In the current study, the strands, however, were found to
be continuously subjected to tensile stresses, even where the
FRP lower shell had compressive stresses. 'is indicates that
the strands are subjected to an axial force at the HCB’s end.
Consequently, they work as a tie for the concrete arch while, at
the same time, contributing to the beam’s flexural rigidity.
When Snape and Lindyberg [9] loaded a HCB up to failure,
the failure occurred when the anchoring of the tension re-
inforcement broke free at end of the beam. 'is behavior
supports the conclusion that the strands are subjected to an

Max. compressive 
stress

Figure 8: Normal stresses in concrete arches of HCB2 due to stop 1.
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axial force at the beam’s end, restraining the horizontal
movement of the arch as assumed by equation (11).

Figure 9(a) illustrates a difference between the strains at
the bottom flange and the web (FM1 and FM2). Similar
differences were noticed at other sections and can be at-
tributed to the differential movement between the strands
and the bottom flange. Because of this displacement, shear
stresses are induced at both the strand-foam and flange-
foam interfaces, producing axial forces along the length of
the strands and the bottom flange. In practice, these axial
forces are expected to transfer between the strands and the
bottom flange through the layer of resin that separates the
two elements.

Including all of the aforementioned factors in the
mathematical model seem challenging and would compli-
cate the design process for several reasons, among them, the
differential displacement between the HCB elements does
not follow specific pattern at some sections as it is clarified by
Figure 9(b). Even if the differential displacement is assumed
to follow linear pattern to simplify driving an equation that
relates the slippage to the distance in X-dir., the fact that the
geometric properties are functions of the distance in X-dir.,
leads to complex differential equation that has no explicit

solution. Consequently, no closed form solution can be
obtained to identify the relative displacements between the
different elements of the HCB. Consequently, the modified
methodology considers only the bearing effects and the
HCB’s curved shape to simplify the design process.

Figure 5 demonstrates that the modified methodology
achieved some enhancement in estimating the normal strain
in the different HCB elements. However, this figure also il-
lustrates that the methodology is unconservative in identifying
the maximum compressive stress in the concrete arch, and it
cannot accurately identify the strains in some of the arch
locations. 'e same trend was observed in the second stage, as
illustrated in Figure 7(a), suggesting that the axial compressive
force induced in the arch may be higher than that predicted by
the modified methodology especially close to the beam end.
Due to the partial composite action between the HCB con-
stituents, the arch may have axial compressive force that is not
proportioned to the axial forces of the other elements through
their extensional stiffnesses as suggested by equation (13).

Figures 7(c), 7(d), 9, and 10 illustrate that although the
strain incompatibility between the different HCB elements
was ignored, the design methodology, proposed in the
current study, achieved an acceptable accuracy when
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identifying the normal strains in the HCB elements under
the service loads. 'e results obtained by this methodology
are comparable to the results estimated by very complex and
time-consuming FEM. Moreover, the modified methodol-
ogy is as simple as the current one and suits the daily design.
However, it is clear that this methodology is applicable only
to the service loads; its applicability to the ultimate strength
design of the HCB needs to be verified experimentally.

'e results of this study suggest that during the flexural
design of the HCB, it is important to study the stresses at two
sections, the midspan and the end of the beam, rather than
the midspan only. 'ey suggest also the need to include the
bearing stiffness effects during the design of the HCB in
bridge applications. Since the bearing stiffness is time-
temperature dependent, it may be advisable to design two
cases that include two extreme values for the temperature
and aging parameter (C in equations (5) and (6)) that are
expected to take place during the lifetime of the bridge (for
example 1 and 50 based on [18].'e lower C value will create
maximum stresses at the midspan while the larger value will
create the maximum stresses at the beam’s end.

9. Conclusions

A new HCB was recently used to construct three bridges in
Missouri, USA. Due to the novelty of the HCB and its
unclear behavior, this paper sought to examine its current
flexural design methodology and assumptions, provide
better understanding for the HCB’s flexural behavior, and
propose modifications to the current design model. 'e
linear FEA was found accurate in predicting the normal
stresses of the HCB under the service loads. 'e FEM
clarified that the polyiso foam works as a flexible shear
connection. In doing so, this foam achieves partial com-
posite action between the different HCB elements producing
differential displacement between them. Consequently, the
different components at the same level have different strains.
'e current design methodology was found unable to
predict the maximum compressive stress in the concrete
arch because the procedure ignores both the restrained
moments at the beam-pads interface and the curved shape of
the beam.'e findings of this study suggest that the HCB has
no perfect beam behavior. 'e tied arch, including the
chimneys, affects its flexural behavior. A modified pro-
cedure, based on the same assumptions as the existing one,
was proposed. 'e proposed algorithm accounted for the
effect of the tied arch by modeling the HCB as curved beam
rather than straight one. Moreover, it simulated the effect of
the tie on the beam behavior by applying translational
springs at the beam-ends. 'e stiffness of these springs was
derived based on the extensional stiffness of the tying re-
inforcement. 'e proposed methodology achieved signifi-
cant enhancement in predicting the normal strains in the
different HCB elements. 'e results obtained by this
modified procedure suggest that it is acceptable, during the
flexural design of the HCB, to ignore the relative movements
between the HCB components assuming strain compati-
bility between them. 'is proposed methodology was ex-
amined using service loads only. Future work should

investigate the applicability proposed within to the design of
the ultimate flexural strength of the member.
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