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ABSTRACT

The shrinkage curve is widely used to characterize soil deformation during drying.

Over the years, several methods have been developed to measure soil shrinkage

curves. However, these methods suffered from several limitations and were rarely

used because of difficulties in accurate soil volume measurement during drying.

In this study, a simple method is proposed to measure soil shrinkage curves.

The soil volume is measured using a photogrammetric technique from which a

three-dimensional (3D) model of the soil specimen during drying can be

accurately reconstructed. The soil volume is calculated based on the reconstructed

3D model. Meanwhile, a digital balance is used to record the soil weight for the

back-calculation of soil water content, which will be used for the shrinkage curve

construction. The overall volume measurement error was evaluated to be 0.35 %

and 0.43 % through tests on aluminum cylinders and a saturated soil, respectively.

With the proposed method, a series of tests were performed to measure the

shrinkage curves of a soil mixture (i.e., Fairbanks silt and Kaolin at a ratio of 1:1).

Results from these shrinkage tests indicate that the proposed method is cost-

effective, accurate, and reliable for soil shrinkage curve measurements.

Keywords

shrinkage curve, volume change, photogrammetry, three-dimensional reconstruction

Introduction

The shrinkage curve, which defines the relationship of soil volume and moisture content

during drying, is widely used to evaluate the shrinkage, crack development, and swelling

potentials of earthwork, especially when cohesive soils are involved. As stated in Fredlund
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and Houston (2013), Fredlund and Zhang (2013), and Cornelis et al. (2006), the shrinkage

curve also played an important role in the interpretation of soil water retention curve data,

and shrinkage curve measurement should be used in combination with the soil water re-

tention curve. To characterize the soil shrinkage behavior, simultaneous measurements of

soil volume and water content are required. The soil water content can be simply measured

using a balance. However, measuring the soil shrinkage curve is still a great challenge for

engineers, because of the difficulties in accurate soil volume measurement during testing.

To date, there is no American Society for Testing and Materials (ASTM) standard

available for soil shrinkage curve measurement. ASTM D4943, Standard Test Method for

Shrinkage Factors of Soils by the Wax Method, and ASTM D427, Standard Test Method

for Shrinkage Factors of Soils by the Mercury Method, can only be used to determine the soil

shrinkage limit (SL). Also, both methods suffer from safety concerns due to the use of wax

and mercury for volume measurement. To accurately predict the soil volume at different

water contents, a complete shrinkage curve is usually required instead of the SL.

Many research efforts have been dedicated to accurately measure the soil shrinkage

curves (Brasher et al. 1966; Schafer and Singer 1976; Berndt and Coughlan 1977; Reeve,

Hall, and Bullock 1980; McGarry and Daniells 1987; Sibley and Williams 1989; Kim et al.

1992; Tariq and Durnford 1993; Crescimanno and Provenzano 1999; Braudeau et al. 1999;

Krosley, Likos, and Lu 2003; Cornelis et al. 2006; Boivin 2007; Sander and Gerke 2007;

Huang, Shao, and Tan 2011; Stewart et al. 2012; Bensallam et al. 2012; Lu and Kaya 2013;

Hobbs et al. 2014; and Jain, Wang, and Fredlund 2015). The volume change measurement

can be broadly classified into the contact and noncontact methods.

CONTACT METHODS

The simplest method to measure the volume of a soil cylinder is performed through direct

sample height and diameter measurements, as presented in Schafer and Singer (1976),

Berndt and Coughlan (1977), Huang, Shao, and Tan (2011), and Fredlund and

Houston (2013). However, this method can only be applied on regular specimens prepared

by molding, lathing, slicing, or coring. The measurement accuracy can also be low, espe-

cially when the soil regularity is lost as drying proceeds. In Boivin (2007) and Bensallam

et al. (2012), the deformation of soil cylinders during wetting and drying was monitored

using a displacement transducer. To calculate the soil volume change, the diameter of the

soil cylinder was assumed to be constant, which might not be consistent with the real soil

deformation.

Besides the direct height and diameter measurement method, Archimedes’ law was

also reported to be used to measure the soil volume during the shrinkage test, as presented

in Brasher et al. (1966), Reeve, Hall, and Bullock (1980), Sibley and Williams (1989),

Bronswijk (1990), and Krosley, Likos, and Lu (2003). In these studies, different materials,

such as saran resin and glue, or displaced fluid such as toluene, were adopted to coat the

soil for volume measurement. The major advantage of this method was its applicability to

soil clods with random shapes. However, it was found that the coating material did not

properly make contact with the soil clod. This method was also subjected to errors from

water penetration and the presence of air bubbles.

In Tariq and Durnford (1993) and Cornelis et al. (2006), soil volume change during

drying was measured using a balloon method. The soil to be tested was oven-dried, pulv-

erized, and then mixed with water in a rubber balloon. Soil volume change was also mea-

sured based on Archimedes’ law. Since the soil is required to be oven-dried and sieved

before testing, this method is not applicable to in situ soil samples.
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NONCONTACT METHODS

Noncontact methods are more attractive than contact methods, since they are nondestruc-

tive to the soil samples. In Braudeau et al. (1999), a retractometer was used for continuous

sample height and diameter measurements during a shrinkage test with the help of several

laser sensors. A similar test apparatus was also reported to be used as presented in Hobbs

et al. (2014). With the increasing availability of inexpensive digital cameras, image-based

methods are getting popular for soil shrinkage curve measurement (e.g. Puppala, Katha,

and Hoyos 2004; Sander and Gerke 2007; Stewart et al. 2012; Puppala, Manosuthikij, and

Chittoori 2013; Lu and Kaya 2013; and Jain, Wang, and Fredlund 2015).

Puppala, Katha, and Hoyos (2004) and Puppala, Manosuthikij, and Chittoori (2013)

proposed digital imaging technology to measure the volumetric strain of expansive soils

subjected to a drying process. To measure the volumetric strain of a compacted cylindrical

specimen, several images were captured for the top, bottom, and side surfaces before

(i.e., initial state) and after (i.e., final state) the drying process. The obtained images were

processed to determine the cross-section and side surface (with consideration of the

cracks) areas of the specimen in pixels. The ratios (i.e., final/initial) of the cross-section

and side surface were then used to calculate the overall soil volumetric strain. In this

method, the volumetric strain calculation with consideration of the cracks was problem-

atic, since the crack width could vary with depth in the soil. As a result, this method

provided consistently higher volumetric strains than the manual measurement using a

caliper.

In Sander and Gerke (2007), a three-dimensional (3D) optical scanning device that

consisted of a black-and-white camera and a white-light projector was used to assess the

geometry of soil clods during drying. The clod was mounted on a tripod to facilitate

the volume measurement. Coded light on the soil clod from the projector was captured

by the camera at different times. A point cloud, which represented the soil clod surface,

was then reconstructed based on the captured images and triangulated for volume calcu-

lation. The measurement result was in agreement with the coating method. However, for

this method, so it could be mounted on a tripod for 3D scanning, the soil was required to

be strong enough to hold itself on the tripod during drying. As a result, the obtained

shrinkage curve was usually incomplete, because of the missing part of the curve when

the soil was saturated or close to saturation. To reconstruct the 3D model of the soil clod,

some erratic points, which were inevitably created during surface reconstruction, must be

removed. The removal of these erratic points is subjective and could influence the volume

measurement accuracy.

Besides these, Stewart et al. (2012) proposed a “Clodometer” method using a digital

camera and a series of free software for data processing. The volume calculation was sim-

ilar to the method presented in Sander and Gerke (2007). However, for this “Clodometer”

method, to obtain the volume of the soil clod, a reference object with a known volume was

required for each measurement to determine the calibration coefficient. According to the

results presented in Stewart et al. (2012), the volume measurement error was evaluated to

range from 0.4 % to 1.6 %.

A particle image velocity (PIV) technique, originally proposed in fluid mechanics for

capturing particle movement in a planar pattern (Adrian 1991), was proposed to measure

soil deformation by White, Take, and Bolton (2003) and Lu and Kaya (2013). The soil

volume/deformation measurement was made based on a time-sequence displacement field

that was extracted using an image correlation technique. For the PIV method, in order to

be used for soil volume change measurement during drying or wetting, the camera has to
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be calibrated to eliminate either pincushion or barrel distortion caused by the camera lens

(Zhang et al. 2015). Failure to do so would cause measurement error even though the

measurements were made in the same plane, as pointed out by White, Take, and

Bolton (2003). The soil surface was also required to be perfectly planar since the PIV

method can only make two-dimensional (2D) measurements, as stated in Lu and Kaya

(2013). In order to measure soil volume change based on 2D deformation, it is required

to assume the soil deformation is uniform in all directions, which was very difficult to

satisfy, as demonstrated in Lu and Kaya (2013). In addition, since the PIV method is

2D, it cannot be used to measure the volume of soil with cracks, according to Lu and

Kaya (2013).

In Jain, Wang, and Fredlund (2015), a camera in conjunction with two lasers was used

to measure the volume change of a soil cylinder on a turntable during continuous drying.

The deformation of the cylinder side surface was measured through triangulation. The

deformation of the cylinder top surface was assumed to be uniform during drying.

The measurement error was evaluated to be 1 % through tests on a dummy sample.

However, to apply this method, a sophisticated calibration is required before any mea-

surement. It is also questionable to assume a uniform soil deformation, since natural soils

are usually anisotropic because of the difference in vertical and lateral pressures during

consolidation. As a result, the volume measurement error could be worse than 1 % when

applied to soil deformation measurement during testing.

As addressed above, there is still a great need to accurately measure the soil shrinkage

curves. In this study, a new method is proposed, in which the soil volume during the

shrinkage test is measured using a photogrammetric technique and the soil water content

is measured using a digital balance, respectively. The accuracy of the photogrammetric

volume measurement was evaluated through tests on aluminum cylinders and a saturated

soil specimen. In addition, to demonstrate the performance of the proposed method, a

series of shrinkage tests were conducted on a soil mixture with different pre-consolidation

stress levels.

A Photogrammetric Volume Measurement
Method

Photogrammetry is the science of making measurements from images. It has been suc-

cessfully used in both laboratory and field deformation measurements (e.g. Li and Zhang

2015a, 2015b; Zhang et al. 2015; Li et al. 2016; White, Take, and Bolton 2003; Merel and

Farres 1998) in the engineering field. A brief introduction on the principle of photogram-

metry is presented as follows.

The principle of photogrammetry is based on triangulation using images captured by

ideal pinhole cameras, typically as seen in Fig. 1. In the pinhole camera model, the small

pinhole and the image plane correspond to the perspective center of the lens and the image

sensor of a digital camera. For a 3D object, when an image is taken using this pinhole

camera, a 2D image is obtained, and the depth of the object is lost as shown on the image

captured at Camera Station 1 in Fig. 1. For the same object, its geometry appears to be

different on an image captured from a different camera position (i.e., Camera Station 2)

due to perspective, as shown in Fig. 1. If the perspective center (i.e., pinhole) of the left

camera S1 is set as the origin of an arbitrary coordinate system, there are six unknowns for

the right camera orientation, as shown in Fig. 1, which are 3D coordinates of the
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perspective center S2 (Xs, Ys, Zs) and three directional angles (κ, ω, φ). The distance be-

tween any two of the five points can be measured according to the real world scale, which

reduces the number of the unknowns to five. Then, five equations can be established by

identifying five pairs of corresponding points on two images, based on the coplanarity of

these light ray pairs. The orientation of Camera Station 2 can be determined using these

equations.

Once the camera orientations are determined, for any point of interest on the object,

light rays can be constructed from the corresponding perspective centers of the camera

stations to the image planes. The intersection of two rays determines the 3D coordinates of

the point, which is known as “triangulation” in photogrammetry. In other words, the ori-

entation of the camera from where the images are captured is calculated using the pixel

positions of the corresponding points on different images based on the pinhole camera

model and principle of photogrammetry. These camera orientations, together with the

images, can then be used to reconstruct the 3D geometry of the object through triangu-

lation. The detailed principle of photogrammetry can be found in Mikhail, Bethel, and

McGlone (2001).

ACCURACY EVALUATION OF THE VOLUME MEASUREMENT METHOD

In this study, a digital camera with a fixed focal length lens (in this case, a Nikon D7000

with AF-S Micro Nikkor 40 mm 1:2.8 G, Nikon, Minato, Japan) was used to capture the

images for the photogrammetric volume measurement. As addressed in Zhang et al.

(2015), the images captured by commercial digital cameras suffer from either pincushion

or barrel distortion. However, the principle of photogrammetry is based upon the ideal

pinhole camera model, which does not cause any distortion in the captured images.

Therefore, the used camera set is required to be calibrated to determine the internal char-

acteristics, such as the focal length of the camera lens, perspective center location, image

sensor resolution, and radial and decentering distortion parameters, before it is used for

any photogrammetric measurement. With these internal characteristics, the camera can

then be idealized to a pinhole camera. Since the 1950s, several techniques have been

FIG. 1

Principle of photogrammetry

based on pinhole camera

model.
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developed for camera calibration. The most popular approach is the well-established self-

calibrating bundle adjustment, as presented in Triggs et al. (2000).

The camera calibration can be easily performed using several software packages, as

addressed in Zhang et al. (2015). In this study, a software package (i.e., PhotoModeler

Scanner from EOS Systems Inc., Vancouver, Canada) was adopted for the camera cali-

bration. The calibration was performed by capturing 12 images of a calibration sheet,

as shown in Fig. 2, from different view angles. With the software, the internal character-

istics were then extracted based on the captured images. The calibration result is presented

in Table 1. With the calibration results, the camera can then be idealized to a pinhole

camera, as shown in Table 1. For this pinhole camera, all distortion parameters are equal

to zero, and the principal point is located exactly at the center of the image sensor.

FIG. 2

Calibration sheet.

TABLE 1
Camera calibration results.

Parameters Symbol Before Idealization After Idealization

Focal Length f (mm) 41.2388 41.2388

Pixel Number M (pixel) 4,928 4,928

N (pixel) 3,264 3,264

Image Sensor Size Fx (mm) 23.9949 24.1539

Fy (mm) 15.8961 15.9964

Principal Point Coordinate Px (mm) 12.0860 12.0770

Py (mm) 7.9286 7.9982

Radial Lens Distortion K1 (10
−6) 3.836 0

K2 (10
−8) −6.372 0

Decentering Lens Distortion P1 (10
−6) −6.681 0

P2 (10
−5) −1.403 0
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Accuracy Evaluation Using Aluminum Cylinders

Before being used for soil volume measurement during the shrinkage test, the accuracy of

the photogrammetric technique was evaluated through a test on aluminum cylinders, as

shown in Fig. 3a. Table 2 summarizes the target diameter, height, and volumes of six

aluminum cylinders. The machining accuracy was 0.025 mm, which corresponded to dif-

ferent cylinder volume ranges for six cylinders, as presented in Table 2. It should be noted

that the size of the cylinders was purposely designed to be comparable to that of the soil

samples for a one-dimensional consolidation test. A digital caliper was used to measure the

cylinder volumes (referred to as “Vc” in Table 2). The measured volumes were within or

very close to the corresponding volume ranges. To facilitate the image capturing from

different view angles, as shown in Fig. 3b, the cylinder was placed on a cylindrical pedestal

which rested on a turntable. Besides this, for cylinder volume calculation, a coordinate

system was built using targets located on the side of the pedestal.

To accurately measure the cylinder volume, a dense point cloud which represents the

cylinder surface is preferred for volume measurement. In this study, this surface

reconstruction was achieved using the photogrammetric technique, with the help of tex-

ture matching between image pairs with overlaps. The texture matching, also referred as

“image correlation,” is typically used to measure displacements across an object surface

based upon the assumption that all surfaces have their own unique textures in the form of

FIG. 3

Test on aluminum cylinders:

(a) aluminum cylinders and

(b) setup for volume

measurement.

TABLE 2
Accuracy evaluation test on aluminum cylinders.

Cylinder

Target/Caliper Measured

Diameter, mm

Target/Caliper Measured

Height, mm Volume Range, mm3 Vc, mm3 Vp, mm3 Error, %

1 63.5/63.50 25.4/25.42 80,297–80,582 80,503 80,557 0.07

2 63.0/63.00 24.2/24.23 75,300–75,575 75,531 75,995 0.61

3 62.5/62.51 23.0/23.04 70,430–70,696 70,709 71,222 0.73

4 62.0/62.00 21.8/21.80 65,687–65,944 65,816 65,619 −0.30
5 61.5/61.50 20.6/20.63 61,070–61,318 61,283 61,132 −0.25
6 61.0/61.00 19.4/19.44 56,576–56,816 56,813 56,896 0.15

Mean absolute measurement error 0.35
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different-colored grains and the light and shadow formed between adjacent grains when

illuminated (e.g. Lu and Kaya 2013; Bhandari, Powrie, and Harkness 2012; Sachan and

Penumadu 2007; Rechenmacher and Medina-Cetina 2007; Lin and Penumadu 2006;

Sutton et al. 2000; and Helm, McNeill, and Sutton 1996). With this technique, the corre-

lation between images captured for the same object before and after deforming was iden-

tified, from which the soil deformation could be extracted.

To facilitate the texture matching, the surfaces of the cylinders were textured through

spraying paint, as shown in Fig. 3b. The cylinder to be tested was then placed on a turn-

table. Before the image capturing, the turntable was turned on to rotate at a speed of

1 r/min. The images were then captured for the cylinder side surface at a fixed camera

station for the soil side surface reconstruction. To obtain the volume of the cylinder, a

detailed top surface was also required. This top surface reconstruction was achieved by

capturing several images at camera stations above the cylinder.

The obtained images were processed using the software package PhotoModeler from

EOS Systems Inc. After texture matching between image pairs, the camera stations where

the images were captured were determined, as typically shown in Fig. 4, using the prin-

ciple of photogrammetry. In this case, 46 images and 11 images were captured for the

reconstructions of the side and top surfaces of the cylinder, respectively. A 3D coordinate

system was built using the targets on the pedestal. In this coordinate system, the origin was

set at the center of the pedestal top surface. The x-y plane was located at the top surface of

the pedestal, which was also the bottom surface of the aluminum cylinder, as shown in

Fig. 4. With the help of the texture matching technique, a point cloud that represented the

top and side surfaces of the aluminum cylinder was obtained, as typically shown in Fig. 4,

based on the principle of photogrammetry.

To calculate the cylinder volume, similar to the volume measurement presented in

Li et al. (2016), an enclosed triangular mesh was required to be built based on the obtained

point cloud. It is known that the MATLAB (MathWorks, Inc., Natick, MA) function

“DelaunayTri” can be used to build triangular meshes based on points located on the same

plane. However, this function was not applicable to a 3D point cloud. As a result, to facili-

tate the meshing, the 3D point cloud (e.g., Fig. 5a) was transformed to 2D (e.g., Fig. 5b).

The transformations for the top and side surfaces were performed separately.

FIG. 4

Camera stations for image

capturing.
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FIG. 5

Mesh generation: (a) obtained

point cloud in 3D space,

(b) transformed mesh on x-y

plane, and (c) triangular mesh in

3D space.
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The following equations provided an example of this transformation for the points on the

top and side surfaces, respectively.

Top surface∶
�
x2D = x3D
y2D = y3D

(1)

Side surface∶

8><
>:

x2D =
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x23D + y23D
p

+ ðH − z3DÞ
��

x3Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23D + y23D

p
�

y2D =
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x23D + y23D
p

+ ðH − z3DÞ
��

y3Dffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x23D + y23D

p
� (2)

where:

x2D and y2D= 2D coordinates on the x-y plane,

x3D, y3D, and z3D= 3D coordinates in the coordinate system, and

H= cylinder height.

The top surface was directly projected onto the x-y plane, as shown in Eq 1. For the

side surface, this transformation was achieved through moving the corresponding point

outward in its radial direction with a distance equal to that between the point and the top

surface. After this 2D transformation, a 2D triangular mesh could be easily generated using

the MATLAB function (i.e., “DelaunayTri (x2D, y2D)”), as typically shown in Fig. 5b.

Using the same triangular mesh, the mesh for the aluminum cylinder in the 3D coordinate

system was then constructed using the original 3D coordinates of the point cloud, as

shown in Fig. 5c. To calculate the cylinder volume, a random point (e.g., the origin

of the coordinate system) on the bottom surface was selected. A series of tetrahedrons

were then generated by connecting this point to all the points on the cylinder surface.

The volume of each tetrahedron was calculated based on the 3D coordinates of four nodes.

The total volume of the cylinder was the summation of all tetrahedron volumes.

The photogrammetric measurement was performed on all six aluminum cylinders.

The measured volumes “Vp” are also summarized in Table 2. Similar to the caliper mea-

surement results, the measured volumes using the proposed method are within or very

close to the corresponding volume ranges, which indicates that the accuracy of the pro-

posed method is comparable to that of the digital caliper method. Compared to the target

cylinder volumes, the mean absolute measurement error was calculated to be 0.35 %. Since

the cylinder size is comparable to the size of the soil specimens typically used for shrinkage

curve measurement, this measurement error is considered to be representative of the error

of the proposed method when applied to shrinkage curve measurement.

Accuracy Evaluation Using a Saturated Soil

In addition to the test on the aluminum cylinders, an evaluation test on a saturated soil was

also performed in this study. It is known that the volume change of a saturated soil is equal

to the corresponding water volume/weight change. To evaluate the volume measurement

accuracy of the photogrammetric method, a saturated soil specimen was prepared using a

mixture of Kaolin and Bentonite at a ratio of 4:1. The soil mixture was mixed with water, as

shown in Fig. 6a. To ensure saturation, the soil mixture was placed on a vibration table for

a certain time to release the air bubbles in the soil slurry introduced during mixing. A

plastic measurement target sheet, which was used to build a coordinate system, was glued

to a piece of glass. The soil mixture was poured out to the target sheet. Since a textured

surface was required for image matching, the soil surface was then partially covered with

silt particles, as shown in Fig. 6b.
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The photogrammetric method was performed to measure the initial volume of the

saturated soil after this. The obtained soil surface from the photogrammetric measurement

is presented in Fig. 6c. Fig. 6d shows the generated triangular mesh based on the obtained

point cloud. After the initial volume measurement, the total weight of the soil was mea-

sured using a digital balance. The soil was then exposed to the atmosphere for a certain

time to facilitate water evaporation. Subsequently, the soil volume was measured again,

using the photogrammetric method. The drying and measuring processes were repeated

until the desaturation of the soil. The soil weight and volume changes are presented in

Fig. 7. The mean absolute measurement error of the proposed photogrammetric method

was determined to be 0.43 %, which was close to the 0.35 % from the evaluation test on the

aluminum cylinders.

Shrinkage Test

The photogrammetric method is proposed to measure the soil volume changes during the

shrinkage test. To further evaluate the performance of the photogrammetric method for

shrinkage curve measurement, a series of shrinkage tests on a soil mixture were also

performed. The tested material was a mixture of Fairbanks silt and Kaolin at a ratio

FIG. 6

Test on a saturated soil:

(a) saturated soil mixture,

(b) soil mixture covered

with a thin layer of silt,

(c) reconstructed soil surface,

and (d) triangular mesh for

volume calculation.
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of 1:1. The liquid limit, plastic limit, and specific gravity of the soil mixture are 25.8 %,

20.0 %, and 2.75, respectively.

SPECIMEN PREPARATION

The soil mixture was oven-dried and mixed with water to the desired moisture content of

40 %, at which the soil behaved like a thick paste. The soil was then poured into a con-

solidation ring (25.4 mm in height and 63.5 mm in inside diameter) in an oedometer cell.

Similar to the test on the saturated soil, the vibration table was also used to release the air

trapped in the soil. However, in this case, it was found that it is rather difficult to release all

the air in the soil, since the soil was thicker than that used for the evaluation test. As a

result, the prepared soil specimens might not be fully saturated, which was later confirmed

by the measurement results. Filter papers were placed at the bottom and top surfaces of

the soil. The top cap of the consolidation ring was installed after this, and the oedometer

cell was then filled up with water. The soil specimens were consolidated to different

vertical stress levels (i.e., 12.5, 25, 50, 100, 200, and 400 kPa) using the conventional one-

dimensional consolidation test apparatus. The applied vertical stress was released after the

consolidation process. The soil specimens were then carefully disassembled from the oed-

ometer cell, as shown in Fig. 8. The heights of the soil cylinders were slightly less than

FIG. 7

Result from the test

on a saturated soil.

FIG. 8

Shrinkage tests on saturated

soils.
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25.4 mm, which was the height of the consolidation ring, due to consolidation. After de-

molding from the consolidation ring, similar to the test on the aluminum cylinders, the soil

specimens were sprayed with paint to facilitate the texture matching for soil surface

reconstruction. The specimens were then ready for the shrinkage test.

SHRINKAGE TESTS

The shrinkage test was performed by exposing the soil to the atmosphere for drying. The

system setup, as shown in Fig. 8b, was similar to the evaluation test on the aluminum

cylinders. In this case, the soil weight variation during drying was measured using a digital

balance. The images were then captured at different times, when soil weight was checked.

To reconstruct the soil surface, the image capturing was the same as that for the aluminum

cylinders, as shown in Fig. 4. The same mesh generation and volume calculation tech-

niques presented in the tests on the aluminum cylinders, typically as shown in Fig. 5, were

also applied to six soil specimens.

EXPERIMENTAL RESULTS

With the measurement results from the balance and the photogrammetric technique, the

soil initial degree of saturation, water content and void ratio during the shrinkage test, and

corresponding saturation line of the soil were determined and plotted in Fig. 9. Before

drying, all soil specimens were either saturated (e.g., the soils consolidated to 100 and

400 kPa) or nearly saturated (i.e., the soils consolidated to 12.5, 25, 50, and 200 kPa).

Generally, the initial void ratio of the soils decreased with increasing pre-consolidation

stresses, and the initial degree of saturation of the soils increased with increasing pre-

consolidation stress, which was reasonable. It should be noted that the degree of saturation

of the soils consolidated to 100 and 400 kPa were slightly above 100 %, which was due to

the error in soil volume measurement. As shown in Fig. 9, during drying, the soil volume

continuously decreased with decreasing water content and then gradually stabilized when

it reached the SL. With the obtained shrinkage curves, the corresponding SL of the tested

soils were also obtained and presented in Fig. 9. It is interesting to find that the SLs of the

tested soils with high pre-consolidation stress are slightly higher than those with low pre-

consolidation stress. The void ratio of the tested soil mixtures during drying varied from

FIG. 9

Shrinkage test results plotted

on the w-e plane.
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0.4 to 0.9, as shown in Fig. 9. For the tested soil mixture, with the volume measurement

accuracy of 0.35 % obtained from the evaluation test on the aluminum cylinders, the cor-

responding accuracy of the void ratio measurement was determined to be 0.0049 to 0.0067,

which is considered acceptable for shrinkage curve measurement. For a specific soil speci-

men, each volume measurement using the photogrammetric method was independent

from the other measurements. As a result, the smoothness of the shrinkage curves, as

shown in Fig. 9, indicated that the measurement accuracy of the photogrammetric method

is reliable for soil shrinkage curve measurement.

Discussions

For a shrinkage test, the soil specimen is considered a representative soil element. In order

to be considered an element, the soil deformation during drying is supposed to be uniform.

As a result, a soil specimen with cracks cannot be considered a soil element because it is not

a representative soil element, because of the nonuniform deformation history. However,

for cohesive soils, especially expansive soils, the soil usually cracks during continuous dry-

ing, because of nonuniform deformation. For the proposed method, to avoid cracking

during drying, a container/cap could be used to cover the soil specimen after being exposed

to the atmosphere for a certain time (e.g., 15 minutes) to slow down the drying process and

allow water redistribution in the soil. In this way, the moisture in the soil was more evenly

distributed when compared to the soils during continuous drying. This crack control tech-

nique was previously verified in Zhang (2004). As a result, the cracking problem is not a

concern for the proposed shrinkage curve measurement method.

Even though the proposed method aims at measuring the shrinkage curves of soil

samples without cracks, when there is a need, the proposed method can definitely be used

to measure the soil volume through reconstructing the cracked soil surface. A typical ex-

ample is presented in Fig. 10 to demonstrate the performance of the proposed volume

measurement method for the surface reconstruction of a soil specimen with a purposely

made crack, as shown in Fig. 10a. With the proposed method, the 3D soil surface was

reconstructed. Fig. 10b shows the soil surface colored from the height of the specimen,

from which the crack, as shown in Fig. 10a, could be easily identified. This crack is also

clearly shown on the reconstructed surfaces, shown in Fig. 10c and d, viewed at different

angles. As a result, with this constructed soil surface, this crack in the soil could be taken

into consideration when measuring the soil volume.

As previously discussed, for the shrinkage curve measurement method proposed by

Sander and Gerke (2007), to reconstruct the 3D model of the soil clod, some erratic points

must be removed. The removal of erratic points was subjective. When compared to the

method proposed in this article, these erratic points could be easily removed through a

comparison between the picture, typically as shown in Fig. 10a, and the reconstructed soil

surface, typically as shown in Fig. 10c.

Similar to the other shrinkage curve measurement methods, the proposed method

cannot be used to measure the shrinkage curve of soils under loading condition either.

However, this does not necessarily mean that the shrinkage curve of soils under loading

condition cannot be measured. The following two options can potentially be utilized to

achieve this purpose: (1) modifying the conventional one-dimensional consolidation

cell by adopting the axis-translation technique to control soil suction during drying.

A change in soil suction corresponds to a soil water content change. During the drying
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process, the soil water content and volume during loading can be measured by mon-

itoring the amount of water out of the soil and a linear variable differential transformer

mounted at the top of the soil, respectively. (2) Using the suction-controlled triaxial test

apparatus (e.g., Bishop and Donald 1961) or modifying the conventional triaxial cell by

adopting the axis-translation technique to control the soil suction and the newly devel-

oped photogrammetry-based method (Zhang et al. 2015; Li et al. 2016; and Li and Zhang

2015a) to measure the soil volume change during testing. In this method, the soil water

content change is also obtained through monitoring the water expelled out of the soil

during the suction control process. For these methods, the soils are tested under the K0

and triaxial loading conditions, respectively.

The volume measurement accuracy is critical for an accurate shrinkage curve mea-

surement. It is worth noting that the soils used in the previous evaluation tests are a mix-

ture of Fairbanks silt and Kaolin at a ratio of 1:1. Kaolin itself is a low plasticity soil. When

mixed with Fairbanks silt at a ratio of 1:1, the plasticity index of the soil mixture is 5.8,

which indicates that its swelling/shrinking potential is even lower. Fig. 9 demonstrates that

the accuracy of the proposed method is high enough to obtain reasonable results even for

soils with low swelling/shrinking potential. In addition, larger samples are recommended

for soils with extremely low shrinking potential.

FIG. 10

Reconstructed soil surface with

a purposely made crack.
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Conclusions

This study proposed a new method to measure soil shrinkage curves. The soil water

content and volume change during drying were measured using a digital balance and

a photogrammetric technique, respectively. Using the photogrammetric technique, a point

cloud that represented the detailed 3D soil surface could be reconstructed. With the

obtained 3D point cloud, a triangular mesh was then generated for accurate soil volume

calculation. The nonuniform soil deformation during drying could be taken into consid-

eration when measuring the soil volume. The error of the volume measurement method

was evaluated to be 0.35 % and 0.43 % through tests on aluminum cylinders and a

saturated soil, respectively. A series of shrinkage tests were also conducted on a soil

mixture. Test results indicated that the proposed method was reliable and efficient for

shrinkage curve measurement when compared to the other methods.
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