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ABSTRACT 

 
Dynamic behavior of pile-foundations during earthquakes is important for the performance of many foundations. To 

clarify the mechanism of the soil-pile interaction, we have conducted a series of numerical analysis of a single pile 
foundation in the different types of a two-layer ground. Upper layer of the ground is composed of dense sand, reclaimed 
soils, medium dense sand or loose sand, and the lower layer of the ground is composed of clayey soils. In the liquefaction 
analysis, we have used a fully coupled effective stress analysis method with the cyclic elasto-plastic and elasto-viscoplastic 
constitutive models for sandy soils and clays. In the FEM, u-p(solid phase displacement-pore water pressure) formulation 
is adopted. From the numerical results, effect of liquefaction on the single pile-soil interaction has been clarified. 

 
 

INTRODUCTION 

 
Many structures were damaged during the 1995 
Hyogoken-Nambu Earthquake. It was found from the field 
investigations after the earthquake that not only the pile 
heads, but also the lower parts of the piles had cracked or 
failed. This phenomenon indicates that both the inertia 
force from the upper structure and the kinematic 
interaction between the piles and the ground play 
important roles in the mechanical behavior of piles. In 
particular, when the ground surrounding a structure 
liquefies due to seismic excitations, the behavior of the 
piles is more complicated. Damage related to liquefaction 
may involve cases in which the pile foundation is 
damaged due to the lateral flow of liquefied soils, and/or 
the piles fail at the boundary between two different soil 
layers, of which one liquefies while the other does not. In 
this study, we conducted a series of numerical simulations 
to study the dynamic behavior of a single-pile foundation 
constructed in a two-layer ground, whose upper layer is 
filled with sandy soils which are dense sand, reclaimed 
soils, medium dense sand or loose sand, respectively and 
the lower layer is filled with clayey soils employing a 
three dimensional liquefaction analysis method 
(LIQCA3D) to clarify the mechanism of the interactions 
among the soil-pile-structure. 
 
 
MODELS FOR SOILS AND PILES 
 
The two-layer ground is typical at near shore of the major 
Japanese urban cities such as Kobe. In order to study the 
influence of soil characteristics, four different sandy 
materials are considered for upper sandy ground, that is, 

dense sand, medium dense sand, loose sand, and 
reclaimed soil. Table 1 shows the constitutive parameters 
in the soil constitutive models for different soils. On the 
other hand, an axial force dependent (AFD) model (Zhang 
et al., 2002) is used to describe the dynamic behavior of 
the pile which is 1.5 m in diameter. The parameters are 
shown in Table 2. 

In the finite element analysis, a cyclic elasto-plastic 
model is used for sandy soils which has been developed 
by Oka et al. (1999). The model has been formulated 
based on: 1. infinitesimal strain theory, 2.elasto-plastic 
theory, 3.non-associated flow rule, 4.overconsolidated 
boundary surface, 5. non-linear kinematical hardening 
rule. The flow rule is a generalized one as: 
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where p
ijdε  is an plastic strain increment tensor, pf   

is a plastic potential function and  ijklH  is a fourth 
order isotropic tensor of hardening modulus. 

In the model, two yield surfaces are used: one is for 
the change of stress ratio and the other is for the change 
of mean effective stress. The yield surface for the change 
of stress ratio is as: 
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where ijS  is the deviatoric stress tensor and m'σ  is the 
mean effective stress, and ijx  is a kinematic hardening 
parameter whose evolutional law is given by 
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where p
ijde  is the plastic deviatoric strain increment, A* 

and B* are material constants. 
For clay layer of base ground, an elasto-viscoplastic 

model (Oka, 1992)was used. 
 
 
NUMERICAL SIMULATION METHODS 
 
The governing equations for the coupling problems 
between soil skeleton and pore water pressure are obtained 
based on the two-phase mixture theory (Biot, 1962). Using 
a u-p (displacement of the solid phase-pore water 
pressure) formulation (Zienkiewicz, 1982), the 
liquefaction analysis is formulated. The side boundaries of 
the simulated system are assumed to be 
equal-displacement boundaries, the bottom of the system 
is fixed and boundaries except surface of the ground are 
impermeable. In this dynamic analysis, a 
stiffness-matrix-dependent type of Rayleigh damping is 
adopted and the direct integration method of 
Newmark- β is used in this dynamic analysis with a time 
interval 0.01 sec. Ground water table is at 1.5m beneath 
the ground surface. The mass of the superstructure is 
80,000 Kg and the height of pier is 8m. Figure 1 shows the 
configuration of the single pile system and the seismic 
wave used in this study. 
 
 
RESULTS AND DISCUSSIONS  
 
Figure 5 shows the history of effective stress decrease 
ratio (ESDR) of soil in the middle of different type of 
sandy layers. Liquefaction occurs when ESDR equals to 1. 
It can be seen that loose sand easily liquefies entirely and 
medium sand and reclaimed soil almost liquefy at the end 
of the major seismic event (t=10sec), while the effective 
stress of dense sand does not decrease much at all. Figure 
6 shows the histories of bending moment at pile head and 

in the pile segment at the boundary between soil layers.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Since dense sand layer does not liquefy at all, the 
earthquake wave motion does not deamplify and the 
largest bending moment occurs at the pile head among the 
cases. On the other hand, the larger bending moments 
occur in the pile at the boundary between layers at t=4sec 
and t=7sec for loose sand, and medium dense sand and 
reclaimed soils, respectively, when the effective stress of 
the sand layers decreases significantly.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
   
 
        Table 1 
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Fig. 1.  Stress-strain relations of steel and concrete 

Fig.2. Input wave 
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Figure 7 shows the distribution of bending moment 
when the maximum bending moment takes place in each 
case and Figure 8 shows the distribution of bending 
moment at the end of the seismic event. 

They show the although maximum bending moment 
takes place at pile head (b15) in every case, the 
development of the bending moment in the ground varies 
due to the features of soil.  

The large bending moment takes place in lower pile 
segment (b7) in the cases of liquefiable soils but at upper 
pile segment (b15) in the case of dense sand at the end of 
the seismic event. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
CONCLUSIONS 
 
The following conclusions are obtained from the present 
study: 
 
(a) The maximum bending moment at pile head in 
non-liquefied ground is larger than those in liquefiable 
ground; (b) liquefaction process may greatly increase the 
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(b) At the segment at the boundary 
Fig.6.  Bending moment time profile 
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bending moment and shear force of the pile at the 
boundary between two different layers; (c) the responses 
in the cases of medium dense sand and reclaimed soils are 
similar to the case of dense sand at the beginning; and (d) 
after the effective stress decreases significantly in the 
cases of medium dense sand and reclaimed soils, the 
response becomes similarly to that of loose sand. 
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 Dense Sand Medium Dense Sand Loose Sand Reclaimed Soil Soft Clay 

Density ρ (t/m3) 2.0 2.0 2.0 2.0 1.7 
Void Ratio e0 0.6 0.8 0.8 0.420 1.4 
Coefficient of permeability k (m/s) 1.5x10-5 3.0 x 10-5 3.0 x 10-5 2.0 x 10-4 1.0x10-9 

Compression Index λ 0.020 0.03 0.03 0.01 0.100 
Swelling index κ 0.002 0.002 0.003 0.001 0.020 
Stress Ratio of Failure State M*

f 1.10 1.00 0.80 1.19 1.31 
Stress Ratio at Maximum Compression M*

m 0.85 0.80 0.70 0.91 1.28 
Normalized Shear Modulus G0 /σ’

m0  1980.0 1060.0 500.0 2140.0 300.0 
Hardening Parameter B0

*, B1
*, Cf  for sand 

                   B0
*, Bs

*, Bt
*  for clay 

8500, 85, 0 4000, 400, 0 2500, 25, 0 5500, 55, 0 500, 50, 0 

Shear Wave Velocity Vs (m/s) 
180 

(σ’
0=102 KN/m2) 

134 
(σ’

0=102 KN/m2) 
92 

(σ’
0=102 KN/m2) 

190 
(σ’

0=102 KN/m2) 
127 

 (σ’
0=138 KN/m2) 

Sand  
Control parameter of anisotropy Cd 2000 2000 2000 2000 - 
Parameter of Dilatancy D0, n 1.0, 2.5 1.0, 2.0 1.0, 1.0 1.0, 4.0 - 
Reference Value of Plastic Strain γP

r  0.008 0.003 0.001 0.002 - 
Reference Value of Elastic Strain γE

r  0.09 0.035 0.005 0.01 - 
Clay  

Viscoplastic Parameter C01 (1/s) - - - - 5.5x10-6 
Viscoplastic Parameter C02 (1/s) - - - - 7.8x10-7 
Viscoplastic Parameter m0

’ - - - - 14 

Table 1 Material parameters for Soils 

 
Young’s Modulus of concrete Ec (kN/m2) 2.5E7 
Diameter of pile D (m)  1.5 
Compressive strength of concrete fc (kN/m2) 36000.00 
Tensile strength of concrete ft (kN/m2) 3000.00 
Degrading parameter of concrete βc 0.20690 
Young’s Modulus of steel E (kN/m2) 2.1E8 
Diameter of reinforcement d (m) 0.029 
Number of reinforcement N 24 
Yielding strength of steel Ys (kN/m2) 3.8E5 

Table 2  Material Parameters for Pile 
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