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Analysis of Dynamic Shear Strain Distributed in 
Three Dimensional Earthdam Models 
T. Ohmachi 

Associate Professor of Environmental Engineering, Tokyo Institute of Technology, JAPAN 

SYNOPSIS Dynamic shear strain distributi~~s have been evaluated and illustrated for three dimension­
al earthdam models. The analysis method applied here is a simplified finite element method, which 
has proved to give vibration modes of an earthdam to a satisfactory level of accuracy by involving 
a smaller number of degrees of freedom. Mass and stiffness matrices of a darnhavebeen formulated for 
two types of the shear modulus distribution, one uniform and the other linearly increasing with 
depth below the crest. Both magnitude and location of the maximum shear strain have been discussed 
in relation to topography of darn sites. 

INTRODUCTION 

Dynamic analysis for earth structures has been 
usually performed by two dimensional methods 
related to vertical transverse cross sections 
of the structures. This kind of analysis, when 
applied to embankment darns, will employ such 
idealizations as plane strain conditions under 
which the earthquake response of a darn is free 
from restraint of both abutments on right and 
left. However, this idealization is not always 
available in actual cases where the width to 
height ratio of the darn is not large enough for 
the restraint effects to be negligible. 

Three dimensional finite element analysis may 
be ideal for analysing performance of a darn 
excited by earthquake motions. But even for 
linear elastic problems, the ordinary method 
formulated by direct application of three di­
mensional elastic theory involves such a large 
number of degrees of freedom that it takes too 
much computational job and tedious work. Recent 
studies on dynamic behaviors of embankment darns 
during earthquakes have revealed that the lowest 
few modes of vibration are generally predominant 
in the earthquake response. This will imply that 
higher modes of vibration are less significant, 
and thus an adequate method involving a smaller 
number of degrees of freedom could be developed 
for the practical purposes. 

From this point of view, the author has recent­
ly proposed a simplified procedure to evaluate 
three dimensional vibration modes of an earth­
dam. This paper describes dynamic shear strain 
distributions for earthdarn models predicted by 
the procedure as well as the outlines of the 
formulation and the solution accuracy details 
of which can be seen in references 1) and 2). 
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FORMULATION OF THE PROCEDURE 

Basic Equations 

The stress at a point in an earthdarn subjected 
to earthquake excitation could be conveniently 
expressed as the sum of the static stress plus 
the additional dynamic stress induced by the 
dynamic forces. The first step to evaluate the 
three dimensional dynamic stress is to derive 
the equations of motion of the darn during the 
undamped free vibration. 

Let us take x coordinate parallel to the darn 
axis, y coordinate in the upstream-downstream 
direction and z vertically downward. Displace­
ment components in each direction will be ex­
pressed by u, v and w, respectively. To simplify 
the formulation, we introduce an assumption that 
the shear stress distribution is uniform in y 
direction. Hence, the displacements u and w 
should be 

au 
Cly 

Clw 
ay 0 (1) 

Consider an infinitely small fiber element with 
a rectangular cross section (dx x dz) directing 
transversely to the darn axis, as shown in Fig.l. 
Stress components acting on the element surface 
is listed in TABLE I, in which o denotes normal 
stress and 1 shear stress. By d'Alernbert's 
principle,dynamic equilibrium in each direction 
can be expressed in the form 

a 2u 1 1 dT Clo 

at£ --(-1 + __ zx + __ x) (2a) 
p Z ZX az az 

Cl 2v 1 1 dT d1 

at£ --(-1 + __ zy + __ xy) (2b) 
p z zy Clz Clx 

Cl2w 1 1 dO d1 z + __ xz) (2c) at£ --(-0 + az p z z ox 



r___.~x __________________ L _____________________ ~ 
z X dx 

z 

H dz 

bz 

b(z+dz) 

Fig. 1. Stresses on a Rectangular Fiber Element 

TABLE I. Stresses in Each Direction 

Id. 
Area Stress Components in each direction 

No. X y z 

l bz·dx T T a zx zy z 

dT dT a a 
2 b(z+dz)dx -(T +~dz) 

ZX dZ 
-(T +-Edz) 

zy az 
-(a +~dz) 

Z dZ 

3 
dz 

b(z+z-)dz a T T X xy xz 

dz a a dT dT 
4 -(a X -(T +~dx) xz b(z+z-)dz X +3xdx) xy ax - (T xz + a;z-cix) 

In Eqs.(2), t denotes time and p mass density 
of the darn material. 

As for dynamic stability of an embankment darn, 
horizontal motion in the upstream-downstream 
direction will be most important. This paper is 
to illustrate the strain induced by this motion. 
From the first assumption in Eq.(l), the shear 
stresses in Eqs.(2) becomes 

Txy Gyxy 

Tyz Gyyz 

Gav 
ax 

Gav 
az 

(3a) 

(3b) 
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in which G denotes shear modulus. Substituting 
Eqs.(3) into Eq.(2b) leads 

in which 

C =/G/p (shear wave velocity) 
s 

( 4) 

(5) 

Hatanaka3)solved the differential equation for 
the simplest case where the darn is modeled by 
a uniform shear wedge beam as shown in Fig.2. 
The solution satisfying the boundary conditions, 
i.e., v=O at x=O, v=O at x=L, v=O at z=H, and 
dv/dz=O at z=O, is written in the form 

v(x,z,t) ='fA exp(ipt)g(x,z) 
n n 

(6a) 

z z 
( ) . nnx ( m ) g x,z = slnr:-Jo ~ (6b) 

in which i represents imaginary unit, J
0 

Bessel 

function of first kind and order zero, and zm 

the zero value of the frequency equation 

J 0 (pH/Cs)=O having a fixed value for each mode 

in the x-z plane as listed in TABLE II. The 
natural circular frequency pin Eq.(6a) is given 
in dimensionless form when multirlied by the 
heiv,ht and devided ~y the shear wave velocity 

(8) 

in which n represents the number of the mode in 
the x-y plane. 

It should be noted that the solution in Eqs. (6) 
is well separated with respect to each variable 
and that the modal shape function g(x,z) is 
represented as the product of each appropriate 
function of x and z. This is a simple statement 
of the basic concepts employed in the following 
formulation and analyses. 

Fig. 2. Earthdarn Model in a Rectangular Canyon 



Application of Finite Element Technique 

The finite element analysis technique4 )has been 
used to formulate such dynamic properties as 
mass and stiffness matrices of an earthdarn. 
Consider a prismatic finite element which is 
obtained by deviding a darn model with vertical 
transverse planes, as shown in Fig.3. To express 
the modal shape function of v(x,z,t), newly 
defined notation v(x,z) will be used in the 
following. When a linear interpolation function 
is introduced to express the translational dis­
placement along the crest, the displacement on 
the crest of the element v(x,O) will be 

v(x,O) = SCV (9) 

in which 
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In Eq. (14b), H denotes the sectional height of 
the element. x 

Shear strains related to v(x,z) are,frorn Eqs. (3) 
and (9)- (13) 

y y ]T = BCV 
xy yz 

in which 

f(x,z)+xfx(x,z) 

xfz(x,z) 

f (x,z)=af/ax, f (x,z)=af/az 
X Z 

(15) 

(16) 

(17) 

Thus, the stiffness matrix of the element can be 
s = [ 1 X J (10) evaluated by the following volume integration 

c = [ 
1 1 

1/£ 1/£ (11) 

v = [ vi vj JT (12) 

In the above equations, £ is the element length 
along the crest, V denotes the nodal crest dis­
placement vector, and T means the transpose. 
From the assumption written by Eq.(4), the dis­
placement at any point of the element will be 
~iven by 

v(x,z) =v(x,O)f(x,z) (13) 

in which the vibrating shape function in the 
x-z plane f(x,z) should be 

f(x,O)=l (14a) 

f (x, H ) = 0 
X 

(14b) 

where 

H 
X 

(14c) 

(a) 

(b) 

Fig. 3. Finite Element Idealization 

(18) 

D (19) 

The matrix product in Eq. (18) can be expanded to 

N = [ 0 1 ( 21)' 

Substituting Eq.(20) into Eq. (18) and integrat­
ing terrnwise will serve to express the stiffness 
matrix as the sum of four subrnatrices 

(22) 

The mass matrix of the element can be similarly 
evaluated by 

(23) 

TABLE II Examples of Shape Function 

Shear Modulus 
Distribution 

Shaoe Function 
in x-z Plane 

f(x,z) 

Z values 
rn 

and Shaues 

of f(x,z)=O 

G=G(const.) 

where 

2.405 

5.520 

8.654 

2nd 
model' 

I , 
\ 
\ 

\ 

/ 

crest 14.68 crest 

49.22 .,...,/ 
... 

103.5Q/ 



Mass and Stiffness Matrices 

Introducing an appropriate function for f(x,z) 
and conducting integration given by Eqs. (18) and 
(23) provide concrete forms of stiffness and 
mass matrices. The matrices are exemplified for 
two types of earthdam models shown in TABLE II, 
in which the shape function can be found in the 
second row. The function in terms of Bessel 
function of order zero is for a model having 
a uniform shear modulus, and that of order one 
is for a model having a shear modulus linearly 
increasing with depth below the crest. 

a) For a model with G=G (const.) and p = p (const.) 

k1= Gn(H~+H~+H.H.)/~ 2 [ 2 

~ J ~ J -2 

k = 
2 

[

2/ 3 
k

3
= Gn(4+z 2

) (H.-H.) 2 /~ 2 

m J ~ 1/3 

(24) 

1/3] 
2/3 

(26) 

(27) 

[
(6H~+H:+3H.H.)/5 (3H:+3H:+4H.H.)/10] 

m = Pn ~ J ~ J ~ J ~ J 

(3H:+3H~+4H.H.)/10 (H:+6H~+3H.H.)/5 
~ J ~J ~ J ~J 

(28) 
in which 

n = bU~ (zm) /12 (29) 

b) For a model with G=G
0

z and p=p (const.) 

k =20G n(H:+H:H.+H.H:+H:) [ l 
1 0 ~ ~ J ~ J J -1 

(30) 

[
3H:+H~+2H.H. -(H:-H:) ] 

k =20G n (H - H ) ~ J ~ J ~ J 
2 0 1 

j -(H~-H~) -(H~+3H~+2H.H.) 
~ J ~ J ~ J 

[ ] 

(31) 
3H.+H. H.+H. 

k
3

=G
0

n(z +16)(H.-H.) 2 ~ J ~ J ( 32 ) 
m ~ J H +H H.+3H. 

i j ~ J 

[

3H. +H . H. +H . ] 
k =5G n~ 2 z ~ J ~ J 

4 0 m H.+H. H.+3H. 
~ J ~ J 

(33) 

3H:+3H:+4H.H. ] 
~ J ~ J 

2(H:+6H~+3H.H.) 
~ J ~ J 

(34) 

in which 

n = bJ
0
2 (1Z )/60~z 

m m 
(35) 

The matrices for the complete structure made up 
of these element matrices have a tridiagonal 
form. 
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Comparison of ~oluti:_ons 

To examin~ the accuracy of the urocedure formu­
lated above, comparison is mad.:=. to the undamped 
natural frequencies of homogeneous earthdam 
models in a rectangular canyon. 

Frazier 5 )ev&luated vibration modes of the models 
by the ordinary three dimensional finite element 
method. He used tetrahedral elements ha~ing 
movable nodes located at the third points along 
the length as shown in Fig.2. The number of 
degrees of freedom involved in his analysis is 
90, and side slopes of the models being sym­
metric with respect to the axis are 1:1.5 and 
1:3.0. 

The values in the lowest row in each column of 
TABLE III are solutions of the eigenproblem 
which consists of mass and stiffness matrices 
given by Eqs.(22)-(29), computed by involving 
19 degrees of freedom. The modal shapes and the 
location of movable nodes are shown in the upper 
part of Fig.4. 

TABLE III Computed Natural Circular Frequencies 
Represented in Dimensionless Form pH/C

5 

Mode Camp. Length to .~eight Ratio 
Descr~ L H v"')'ck·k 

m n 
Proc. >~'fc 1 2 5 10 00 

1 1 3-D{l:l.5 3.80 2.81 2.47 2.42 (2.33) .45 
1:3.0 3.68 2.65 2.28 2.22 (2.15) ,, 

S-W{Rigor. 3.96 2.87 2.49 2.43 2.40 
F.E.M. 3.96 2.87 2.49 2.43 2.40 

1 2 3-D{l:l.5 5.67 3.57 2.74 2.60 (2.33) .45 
1:3.0 5.57 3.40 2.48 2.33 (2 .15) ,, 

S-W{Rigor. 6.73 3.96 2. 71 2.49 2.40 
F.E.M. 6.75 3.97 2. 72 2.49 2.40 

2 1 3-D{ 1:1. 5 6.85 6.41 5.69 5.10 (5.79) .45 
1:3.0 5.32 4. 72 4.60 4.56 (4.73) ,, 

S-W{Rigor. 6.35 5.74 5.56 5.53 5.52 
F.E.M. 6.35 5.74 5.56 5.53 5.52 

m and n represent the number of modes along 
the height and length, respectively. 

>'de The computing procedures include Three­
Dimensional F.E.M.(3-D) together with Plane­
Strain Solution in parenthesis, and Shear­
Wedge Solution given by Eq.(8)(S-W.Rigor.) 
and that given by Eqs.(22)-(29) (S-W.F.E.M.). 

>'<>'<>'<Poisson 1 s ratio used in Frazier 1 s analysis. 

From TABLE III, it could be pointed out that 
this numerical procedure provides vibration 
modes accurate enough for the practical purposes 
by involving a smaller number of degrees of 
freedom. Besides being simple, this procedure 
gives such a smooth mode shape along the length 
that it can serve to evaluate continuous strain 
distribution in the model. 

The natural frequencies for a model in a V­
shaped canyon are shown at the right side of 
Figs.5 and 6 in the same manner as in TABLE III. 
It is evident that these frequencies are almost 
two times as high as those for a model in a rec­
tangular canyon, due to the stronger restraint 
of the canyon wall. 
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(c) yxy in (1,2) mode 
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(f) yyz in (2,1) mode 

Dynamic Shear Strain of a Dam 
with a Uniform Shear Modulus 
in a Rectangular Canyon(L/H=2) 

L/H = 2 

pH/C = 4.30 for (1,1) mode 
8 6.25 for (1,2) mode 

Slone of Canyon Wall 

1:1.0 (right bank) 

1:1.0 (left bank) 

Dynamic Shear Strain of a Dam 
with a Uniform Shear Modulus 
in a Symmetric V-shaped Canyon 

L/H = 2 

pH/C = 4.32 for (1,1) mode 
-

8 6.29 for (1,2) mode 

Slope of Canyon Wall 

1:1.2 (right bank) 

1:0.8 (left bank) 

Dynamic Shear Strain of a Dam 
with a Uniform Shear Modulus in 
an Asymmetric V-shaped Canyon 
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Fig.7 Dynamic Shear Strain of a Darn with G=G
0

z in a Rectangular Canyon 

DYNAHIC SHEAR STRAIN CONCLUDING REMARKS 

For the lowest two or three modes of vibration, 
shear strain distributions are shown in Figs.4-
7, in which all the maximum modal displacements 
are normalized to be 1 % of the darn height. 

When a shear modulus is uniformly distributed in 
a darn, the maximum of y developes along the 

XV 
crest surface, while the. maximum of y developes 

yz 
deep inside the darn. As far as the lowest mode 
for L/H=2 is concerned, these maximum values are 
roughly equal each other, despite of variation 
in the canyon shape. But the location of high 
value of y approaches the midspan of the crest 

xy 
as the canyon slope becomes gentler. 

The (1,2) mode of vibration will hardly appear 
in a symmetric darn with a rigid foundation. But 
in an asymmetric darn, this mode will readily 
appear and induce a larger strain than can be 
estimated by conventional two-dimensional analy­
ses. Another effect of asymmetry in canyon shape 
lies in the fact that the additional high strain 
area of y developes around the deepest section 

xy 
where the vibrating shape changes abruptly, as 
shown in Fig.6(a). 

For a shear modulus increasing with depth below 
the crest, the distribution of y is quite 

yz 
different from that for a uniform shear modulus 
while the difference is less with respect to y . xy 
That is, a large value of y developes also 

yz 
along the crest surface, and the maximum of y yz 
is evidently larger than that of y . It should xy 
be noted that multiplying the shear strain shown 
in Fig.7 by G0 z results in the maximum shear 

strf'SS developing a.t the rnidheight of the darn. 

In a word, the procedure described here is an 
extension of the shear-wedge theory with the 
application of the finte element method. This 
procedure enables to obtain vibration modes of 
a three dimensional earthdarn by involving such 
a small number of degrees of freedom that the 
natural frequencies and vibration mode shapes 
could be evaluated by hand calculation. 

Little attention has been paid to the dynamic 
shear strain induced by the difference in 
vibration displacement along the length of an 
earthdarn. But this kind of strain mainly 
developes along the crest surface, and in usual 
cases the magnitude will be of significant level 
to the stability of the darn. Especially for a 
darn in an asymmetric canyon, the stress relating 
to the strain is likely to become of great 
importance. 
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