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Correlated two-electron wave functions of any symmetry

C. Bottcher* and D. R. Schultz
Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 87881-6873

D. H. Madison
Department of Physics, University of Missouri Rol-la, Rolla, Missouri 66/01

(Received 29 September 1993)

Using a procedure originally due to Hylleraas, a convenient expansion in coupled spherical harmon-
ics which terminates in a very small number of terms is applied to the treatment of fully correlated
two-electron wave functions of any symmetry (total angular momentum, parity, and spin). Cou-
pled equations satis6ed by these wave functions are derived which are well adapted to computation
and which we discretize on a numerical lattice utilizing the basis-spline collocation method. Use
of this method which relies on very Qexible basis functions is intended to facilitate subsequently
the consideration of time-dependent rearrangements such as autoionization, photoionization, and
electron-impact excitation and ionization. Here, we describe the underlying theoretical and compu-
tational methods concerning our treatment of the two-electron problem, the lattice discretization,
and partial eigensolution by damped relaxation. Results of explicit calculations are given regarding
the ground state and two low-lying singly excited states of helium.

PACS uumber(s): 31.20.Di, 31.20.Tz, 31.50.+w

I. INTRODUCTION

Though much of present atomic physics is still con-
cerned and productively occupied with the investigation
of one-electron or pseudo-one-electron problems, and the
use of independent-electron approximations or model in-
teractions to simulate multielectron interactions, an ever
growing effort is being devoted to the description and
exploration of true fully correlated multielectron sys-
tems. However, either approximate or exact numerical
solution of the Schrodinger equation for helium, or ions
possessing only two electrons, in which the full electron-
electron interaction is included in three dimensions, in
itself presents a formidable challenge.

Through the present work, we seek to provide a con-
venient yet exact treatment of the fully correlated two-
electron problem, by developing an expansion of the to-
tal wave function in a series utilizing coupled spherical
harmonics which terminates in a very small number of
terms. We may accomplish this task by taking advan-

tage of a procedure originally due to Hylleraas to obtain
fully correlated two-electron wave functions for any total
angular momentum, spin, and parity. Using standard
angular-momentum algebra, coupled differential equa-
tions may then be derived variationally from the station-
ary Schrodinger equation which are satisfied by the coef6-
cients in the expansion. Since in subsequent applications
we wish to especially consider time-dependent and rear-
rangement processes, we choose to discretize the wave
function and the action of operators which result from
these procedures utilizing a Qexible finite element basis
and apply the principle of collocation. The derivation of

'Deceased.

the expansion and of the coupled equations is described
below in Secs. II and III, while Secs. IV and V are used
to illustrate the important properties of symmetry and
hermiticity satisfied by the wave function and Hamilto-
nian, respectively, and to summarize the discretization
scheme. The 6nal sections are used to demonstrate, for
the case of helium, the iterative eigensolution on the nu-

merical lattice which results in the ground (1sz S) state
and two low-lying excited (ls2s ~S and ls2p ~P) states,
and to draw conclusions. The demonstrations utilize such
lattice techniques as damped relaxation and numerical
quadrature to produce overlaps and expectation values.
Pictorial representations of the states considered are in-
cluded, illustrating the full radial and angular correlation
present in the wave functions. We tabulate the expecta-
tion value of the total energy for these states and compare
the results to previous accurate values.

Thus, in the present work we attempt to lay the foun-
dation for a number of subsequent investigations, uti-
lizing the procedures developed here, several of which
are in progress. For example, doubly excited, autoioniz-
ing states have been calculated by Feshbach's projection
method, implemented by imposing constraints at each it-
eration of the damped relaxation which require the state
be orthogonal to the ground state, thus preventing its
collapse (relaxation) to the ground state. Alternatively,
a wave-packet approach has been taken to test the Wan-
nier theory for the breakup (ionization) of atomic hy-
drogen by electron impact near threshold, and through
angular-momentum recoupling we may treat double pho-
toionization (and simultaneous ionization and excitation
or double excitation) by computing matrix elements of
the dipole operator. Numerous other applications are
also possible, including autoionization in external fields,
collisions involving fast electrons or ions, and the com-
putation of bound- and continuum-state transition prob-
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abilities.
The lattice-expansion technique we have chosen is ex-

tremely well adapted for time-propagation of these pro-
cesses since it Hexibly represents both bound and con-
tinuum states, and supports a ready evolution of the
wave function as a series of matrix-vector multiplica-
tions through such methods as a Taylor expansion of the
exponential propagator. In addition, techniques devel-

oped previously to facilitate the projection of lattice fi-

nal states, without explicitly creating a very large basis of
continuum states, provide useful adjuncts to the present
procedures. We emphasize that all of the foregoing pro-
cesses are inherently correlated, and their description de-
pends critically on the accurate treatment of the initial
fully correlated wave function and the subsequent evo-
lution of the system subject to the full electron-electron
interaction. Clearly, many applications in the realm of
single and multiple excitation and ionization remain to
be explored, and the present approach is intended to pro-
vide a useful and powerful tool for these explorations. We
note that a very brief description of the present method
and of its possible uses was made previously [1].

and (LM]l1m1l2m2) is a Clebsch-Gordan coefficient, &l

is a spherical harmonic, and we follow the notation and
sign conventions of Edmonds [2]. For the Hamiltonian

(2), the good quantum numbers are (i) the total orbital
angular moxnentum L2 = L(L+ 1), (ii) the projection of
this angular momentum on the z axis L, = M, and (iii)
the parity II = (—1)++ = (—1)l'+l', as well as the total
energy. For the moment, we defer all consideration of
spin and spatial symmetry to Sec. IV. The dependence
on the projection M is trivial, and reference to M is
usually omitted for simplicity. The parity is specified by
m = Q (1) for natural (unnatural) parity, respectively.

The expansion (4) consists of an infinite number of
terms for couplets (l1, l2) subject to the constraints im-

posed by the Clebsch-Gordan coeKcients and parity. For
a given L and tq, the Clebsch-Gordan coeScient restricts
the value of t2 according to the following sequence:

l2 ly L) ly L + 1) ) l] + L

Consequently,

lg+l2 ——2tg —I) 2tg —L+1, . . . ) 2tg+ L.

II. HY'LLERAAS EXPANSION

1 fl C C)
H = ——(V'1+ V'2) +

~

(r12 rl r2 )
(2)

The potential energy V is a function of only three quanti-
ties which constitute the "dynamical variables" (r1, r2, 8)
of the two-electron problem,

51 C ClV=V(r r182) =
i

(r12 rl r2)

where 0 is the angle between rq and r~, obeying the re-
lation v~2 ——rz + r2 —2rqr2cos8. Our goal is to reduce
the Hamiltonian to the space of these variables rather
than treat the problem in the full six-dimensional space
(rl l 1 4'1 r2 l 2 4'2) ~

The usual approach is to expand the total wave func-
tion, using the infinite expansion in terms of coupled
spherical harmonics,

To begin with, consider the stationary Schrodinger
equation for the wave function @(r1,r2) describing two
electrons, located by the vectors rq and r~, in the field of
an infinitely massive nucleus of charge C whose position
defines the origin of coordinates,

(E —H)@(r1,r2) = Q.

The Hamiltonian, H = 7 + V, is given in atomic units

by

For a state with natural parity, the minimun value of
lq + l2 will be L, and for a state with unnatural parity,
the minimum value will be L + 1. Thus, if we define a
new quantum number A = l1 + l2, the terms in (4) can
be ordered according to

A = L+m, L+ar+2, . . . .

We are now in a position to derive Hylleraas's theorem.
The recursion relations for coupled spherical harmonics
connect functions of A, A+2, A+4, etc. , and having coef-
ficients which depend upon 8. Thus, the last term of (4),
with the highest angular momentum, can be expressed as
a linear combination of harmonics of lower degrees and
coeKcients depending on 8. This process can be contin-
ued until A = L+m, at which point (4) has been replaced
by the finite sum

(6)

The terms in the sum range over all the coupled spherical
harmonics for which l1+ l2 ——L + m and, anticipating
the resulting simplification of the radial equations, the
factor of (r1r2) has been separated out as is usually done.
Owing to this relation, it will henceforth be convenient
to use the shorthand (l1, l2) = (l, L+m —l) and (l1, l2) =
(l', L+ m —l').

@L (r1 r2) = ) fl, l (r1 r2)Xl, l (r1 r2)

where

(4)
III. COUPLED EQUATIONS

By the familiar variational procedure, we combine (6)
and (1), and evaluate

) (IM~lrm1l2m2) Yl, , (r1)Yj, , (r2),
under variations in the expansion coefficients gl. It is
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convenient to introduce a distinct notation, using double
brackets to denote integrals over all orientations, with

(ri, r2) 8}fixed,

((ilW~ld)) =f d rrd lsd(cord —ir rs)

x p'(ri, rg) Wg( r I r2),

and where the metric in the space of the functions

Q (Ir I, r 2, 8) is given by

(. . ) = f dr, drsd(cord)

a factor rqr2 being incorporated in each radial wave func-
tion.

If we insert the expansion (6) into the Schrodinger
equation (1), multiply on the left by (l il21

(PI I
()"I)".2)1, and integrate over the elements d)"Idr2,

keeping the angle cos8 = dry dr2 fixed, we obtain a
set of coupled equations,

) ((l', l2 I
H —E

I
l I l2) )gI = 0,

where the sum over l is the sum over all pairs (li, l2) =
(l, L+ u) —l) and

((l', l', IH —E[l l )) =Z,",, '(7 +7 + V —E)b
g(~) g(2)

(1o)
2r] 2

We have written 27~ = 02/Br2 for—p = 1, 2, and the
coefficients in (10) are given by

ZI'I'(~) = ((lil21lil2))

l:... (8) = ((lil21li Ilil2)), (ii)
&I'I'(~) = ((li41l2'Ilil2))

The terms ZIi, I (6) are simple functions of 8 and can be
expanded in Legendre polynomials,

ZI, ,i(6) = ) Z~i~i, , , P~(cos6). (»)
K

The coefBcients in this expansion are expressible as in-

tegrals over all ()"I,r2} obtained by inverting (12) and

inserting ZI,
& (8) = ((lil21lil2)) from (11), and may be

evaluated by standard tensor algebra methods,

Z~iI I
= -(2&+ 1)(li12IPJc(cos e) Ilil2)KLl'l

= —(—1) +"+"(2K+ 1)[li, l2, li, l2]
2

) li l', K l I(l2 l2 K
)I

l i l', K
( 0 0 0 ) ( 0 0 0 ) l2 l2 L

where the last terms are Wigner 3-j and 6-j symbols, the
range of sums over K is determined by the usual triangle
relations, and we use the shorthand that

[l' l2 li. l.] = [(2l' + 1)(2 ' + 1)(2l. + 1)(2l. + 1)]

The other coefficients 8I,"I (8) are operators acting on
the total wave function and thus on the coupled spherical
harmonics multiplied by a function of 8, say f (cos 8). To
decompose all the operations, we require two principal

= —iri x

l, f = —r, 7',f
= —)ri X r2f',

= —sin 8f" + 2cos8f', (15)

where K is a constant and the primes denote diHerentia-
tion with respect to cos 8. We evaluate here the result for
the lq operators, &om which expressions for the l2 case
are readily deduced. Writing first and second derivatives
with respect to 6 as

1 0
sin6 88 '

(16)
1 1 |9 . 0

7y = —— . —SII18—,
2 sin688 08 '

and using (14) and (15), it may be shown that

l'I,
I (8) = ZI, I (8)[li(li + 1) + 27'] —2ZI, I (8)17y, (17)

where from (15), the coefficient ZI, &i(8) is given by

ZI'I'(~) = ((lil2I~I "Ilil2)) ~I = Iri «I (»)
We absorb the factor i into the spherical tensor so that
the matrix elements of 2 will be real. If Z&, I (8) is now
expanded analogously to (12), i.e.,

ZIrI (8):) Z rriPIrI(Icos 8) &

(~) - (~)

then the expansion coefBcients are given by

zIcL&, I
———(2K + 1)(lil21Pa-(cos 6)uri )"21lil2)KL l'l

= —) (-1)'+"+"(2&+ 1)[l'„12,ji, j2]
21 )22

(~ l', & l)j' 'K f1(')
(0 0 0) (0 0 0) l2 j2L

(o) (&)
+KLl'j ~Lj l

21 )22

where j is short for (j I,j2), and

~L I (jij2 I~I r2llil2)

(20)

The reduced matrix elements of 2 and r" are given by

(l + 2) gl + 1 ifj = l + 1

(l —1)+/ ifj = l —1

gl + 1 ifj = l + 1
Ql ifj = l —1.

(21)

relations. First, the action of l z on such products to its
right is given by

l [Pf(cos8)] = (l P)f + 2(l P) (l f) + (l2f)))),

(14)

where we abbreviate QI I (rir2) by simply p. Second,

the action of li and l I on f (cos 8) is found from e&emen-

tary, but rather lengthy, manipulations to yield
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)Zips (8)l hi+h2+hg+

where

(~) (2)

) - Zl 1 (&) + Zl 1 (~) ~ @ (2,)"2

A corresponding decomposition [Eqs. (14)—(21)] may

be found for the coefficients ZI, l (8) by replacing the op-

erator l z by /2, resulting in an exactly analogous expres-

sion for the coefficients Zl, l (8). Then, upon substituting
these terms into (10), we find that the functions «satisfy
the coupled equations

parity of S+m.
Next we consider the hermiticity of the efFective Hamil-

tonian in the space of the «wave functions. From (22),
this Hamiltonian can be written as

'R(l'I) = Zl, l (8) I
hi + h2 + hy +

[ 1 l'l ( )+ 2 l'l ( )] S & (28)

where v„=1/T„. From the hermiticity of the original
Hamiltonian (2), it must follow that

(4]Hi%) = (@IIIlc)

for a pair of wave functions

C li(li + 1)
1 — 1 +

2T1

C l2(/2 + 1)
h2 —— 2 ——+ 2.

(1
h, =l —,+ —, ir, .

(23)
@= ) gt31,L l(T1 T2) ~

l

Thus,

(~l I&(&'&)I«) = («I&(«') l~l ) (31)
Finally, it is convenient to solve (22) for

1
I

h, +h2+h++

To verify this relation, we pick out the terms in (28),
'R, which are not explicitly symmetric,

8'"'(&)] = [Z"(~)] '[Z'"'(~)l

for p = 1,2. Thus, the particularly simple form

(24)

by inverting the matrix [Z~ol(8)] in the space (l', l), and
defining a new coefficient, Z~&l(8), by

'R(l't) = -(vi+ v2)(1 —p )—Z... —I 1 (O)

2 dp, 8p

(i) (2)+("1Zi~i + "2Zl~l ) d8p

+—[11 (I1 + 1)vi + l2 (l2 + 1)v2] Zl, l,
1 (o)

(32)

L

E I«+ ) (M~tl +Ll~gl )« = 0(&) (2)

)

where we have written JLI = cos 8, and integrated by parts
the term in 7y. Grouping like terms, this becomes

is obtained, where the coupling terms are given by

g(p)
~(p) +s s ~

2rp

IV. SYMMETRY PROPERTIES AND
HERMITICITY

(2s)

(26)

'R(t'L) = (v A 'i + v A~ i)—+ (v, B~'i + v B~ i), (33)lp
where for p = 1, 2

A" (&'~) = ) .[-2'Z~" (1 —~')P2 (V) + Zx'P~(I )]
K

8~"l(l'l) = ) 2l~(l~+ 1)Z~ P~(P),
K

If the spatial wave function (6) is associated with a
spin eigenfunction of singlet (S = 0) or triplet (S = 1)
symmetry, the criterion of overall antisymmetry requires
that the dynamical wave functions «must satisfy

using the shorthand notations ZKL&, &

—— ZK and(p) (» )

de (IJ,)/dp = P~(p).
If we now take the matrix elements of (33) and inte-

grate by parts, (31) requires that

Wl (T2 i Tl, '8) = (—1) S™@L+mrl (Tl ) T2) 'il)~—(27)

It may be shown that if the functions «are laid out on
a line, the first and last pair, the second and next to last
pair, and so on, are related by symmetry. Also, if L+m
is even, indicating that there is an odd total number of
terms in the expansion (6), then the "middle" function

gl=(L+~)y2 is symmetric or antisymmetric following the

A~" (1'I) = —A~"l («'),
(3s)

—A (l'l) = B~~l (ll') —B~i'~ (/'l).
8p

These identities may be readily veri6ed for particular
cases of interest by expanding A~"~ and dA~ l/dp in Leg-
endre polynomials. In addition, we note that the coef-
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ficients Zlzz and Al l may be inferred &om symmetry
once Zl l and Al l have been computed, since

Z ' (lilz, lilz) = Z (lzli, lzli),

Al'l(/, 'l2, lilz) = Al ~(lzl'„l2li).

V. DISCRETIZATION ON A NUMERICAL
LATTICE

We choose to represent Eqs. (25) on a discrete lattice of
points in the space defined by the coordinates (ri, r2, 8)
by means of the basis-spline collocation method (BSCM).
This technique has been applied with success to the so-
lution of the Schrodinger [3, 4] and Dirac [5, 6] equations
in three Cartesian coordinates in the context of ion-atom
and relativistic ion-ion collisions, so its application to a
similar equation in another three-dimensional space is
straightforward. Experience has also been gained previ-
ously [7]—[9] in treatments of two-electron systems utiliz-

ing the traditional Gnite-element method and the time-
dependent wave-packet approach. Since the theory and
use of the BSCM has been described comprehensively in
several papers [10—12], for completeness in the present
discussion we only state the underlying postulates and
6nal working equations here.

If we consider a function of a single variable, say
z, then in a collocation method, an operator equation
O(F(z)) = 0 is discretized by expanding the continuous
function F(z) in a finite basis us(z), k = 1, 2, . . . , K, i.e. ,

and de6ne

[O]~ = B.„B"~
with a summation implied over the repeated index.

For example, a local operator, say I = V(z), becomes
a diagonal matrix

(44)

and the 6rst spatial derivative takes the form

[D]~ = B'i,B"~ (45)

where

(46)

The spline basis, and hence the matrix 0, incorporates
the boundary conditions which are usually linear re-
lations between F(z) and its derivatives. The result-

ing equations have the structure of 6nite difFerence al-

gorithms, but employ flexible interpolating functions.
We choose localized piecewise continuous polynomials,
known as basis salines, as the most suitable functions
with which to carry out these expansions, and hence the
name BSCM.

Applying this method to the problem at hand, the so-
lutions of (25) are thus expanded in products of splines,

Bi,p = Oug(z)i

Thus we may replace the operator 0 by a matrix 0 whose
elements are

F(z) = f(z) = ) uic~. (37) g((rl, T2, l9) = ) C gs(lC (Pl)lL '(T~2)'wg( i).i (47)

The coefBcients c" in this approximate solution are de-
termined by setting O(g& ui, c") = 0 at N so-called col-
location points (, o. = 1, 2, . . . , N. That is, we require
the residual, de6ned by

R(z) =O~ ) ui, (z)c"
i)

= ) (Oui(z))c", (38)

= ~~(( ),

to be zero at the set of points j( ) (see, e.g. , [12]). In
practice, each function is localized around a small sub-
set of these points, and the coefFicients are eliminated in
favor of the values of the solution at the points (, f (( )

To do this, we define a matrix B whose rows are the
vectors composed of the basis functions evaluated at the
collocation points,

u;(0) = 0, u', (0) g 0. (48)

Regarding the dependence on 8, we note that near 8 = 0,
the expansion Q a + b8 + . fits the two-body cusp

c(1+ zriz). Near 8 = z, the correct expansion
is g a'+ b'(7r —8) . These conditions are satisfied
if mi, (6) is a polynomial in the variable 8, as opposed to
cos8, such that

mg(0) y 0, mI, (0) g 0,

The same splines u; and collocation points f are used
for the dependence on rq and r2 since these coordinates
always stand on the same footing. However, difFerent

splines mI, and points g~ are required for the dependence
on 8. In addition, each set of splines is constructed so
as to incorporate appropriate boundary conditions. The
radial functions u, (r) r —Cr z as r -+ 0 and thus we

arrange that u; satis6es

and its inverse

B~" = [B i]

Then, we may solve for the coefFicients,

) ccBkf(( )

(4o)

(41)

wg(7r) g 0, mI, (z) = 0.

The collocation principle is applied as described to ob-
tain the equations satisfied by the vector of @ p~i
Q~(ri ——(~, rz ——$p, 8 = rI~) on the collocation lat-
tice. Operators become matrices in this space in ac-
cordance with (43). The potential energy, and indeed
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any local function of ri, r2, 8, is diagonal in the indices
a, P, p. Each term in the kinetic energy is a sparse block
matrix. For example, 7i has the structure t bpp b»i.
This extreme sparseness gives the collocation method an
advantage, particularly in three dimensions, over other
formulations, such as that of Galerkin. That is, in re-
gard to computer memory requirements, since we do not
wish to store its full matrix representation, it is prefer-
able that the Hamiltonian be sparse. Thus, all algorithms
are broken down into canonical operations of the form
"(matrix) x(vector):vector, " where the matrix need
only be represented implicitly by its nonzero blocks.

In order to derive and display the explicit representa-
tion of (27) in addition to the matrices BI, and B&, we

introduce the matrices

Bl'. = u"(4) D'. = ~'(~.)
(50)

tical need to reduce the density of interpolating functions
in the asymptotic regions. Another practical consequence
of the Hamiltonian not being self-adjoint is that both the
normal and adjoint solutions must be carried along to-
gether so that norms and inner products may be properly
defined.

To do this, we have opted to compute both these wave
functions, that is, to solve both

and

(H~ —z)e = o (54)

and expectation values of local operators are given by

so that the vectors 4' and 4 are biorthogonal. Therefore,

(e'ie) =1

(I) = (@'ILI+) (56)
where the primes denote derivatives with respect to the
argument. Then the required terms in (23) and (26) are
given by

[hi].p, i,.p, i
—Pi]..~p~r, p, i

C ti(ti + 1)+ p + g2 aPpl a'P'p'I'
Qn

2]aPpl, a'P'p'l' [+&)PP' a7& a 7'&'

C li(li + 1)+ ~ + r2 ap7l, a'p'7'I'

Though this procedure is implemented in our computer
codes, we are presently pursuing the use of a unitary
transformation technique which makes the problem self-
adjoint. This alternate method would have the great
practical benefit of eliminating the need to store the ad-
joint wave function and to solve both (53) and (54), re-
ducing the memory requirements by a factor of 2 and the
number of Boating-point operations similarly by a factor
of 2.

VI. PARTIAL LATTICE EIGENSOLUTION

[hy] p~i a,p, ~, i,
——(~a + (j ') [7S]» 6 p) a p )

~(i)
[&"].p, &,.p, i

= - (' l&sl» ~ ~, ~

~(2)
I+"'].p, &,.p, i

= —."'
[ «]» ~-~,-~

CP

where the kinetic-energy matrices are

Pil- =P~]- = ,B" B"---
[7,]», = D~~[D,",, + co—tg—,D'...], . (52)

2

We note that the collocation representation of the
Hamiltonian is not always self-adjoint (i.e. , the kinetic-
energy matrices are not symmetric), since the grid spac-
ing on the numerical lattice may be chosen to be nonuni-
form. Such nonuniform spacing is particularly useful for
situations like ionization, which, of necessity, involve the
long-ranged aspect of the Coulomb interaction. In these
cases, there is more than one natural length scale in the
problem, and we require the fidelity of representation
of the wave function and the forces over these varying
scales. However, this must be balanced against the prac- @;+,—0; —vD(H —Eo)4;, {57)

Even with the significant (typically one to two or-
ders of magnitude) reduction in the rank of the Hamil-
tonian made possible by using a basis spline approach
rather than the technique of finite differences, direct com-
plete eigensolution of the Hamiltonian matrix for realis-
tic three-dimensional problems is not presently tractable.
For low-lying bound states of helium, for example, where
we typically require 50 to 100 basis splines in each coor-
dinate, the rank of this matrix is typically on the order
of 10s to 10s (i.e., A = N„,N„,Ns). Consideration of
higher bound states or rearrangements such as photoion-
ization which result in the need to follow the evolution
of one or both of the electrons in the continuum, neces-
sitates larger spatial lattices and therefore presents ma-
tnces of even larger rank. Thus, traditional methods of
diagonalizing a matrix which require on the order of JV
storage locations and A operations are not feasible.

We circumvent this situation by performing a partial
eigensolution for particular states of interest, using the
damped relaxation method, the details of which have
been given previously [13], using the same underlying
basis-spline expansion. In this case, we replace diagonal-
ization with the repeated application of sparse matrix-
vector multiplications whose computational effort is on
the order of JV operations on each iteration. Specifically,
the ground-state eigenvector is found as the limit of the
iterates 4;, generated by
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where D is a damping operator and v a constant. As
described in Ref. [13], the basic form of D is a product
of terms, one for each spatial dimension, of the basic form

(58)

where p is another constant. Convergence of the pro-
cesses is judged by the approach to zero of the fluctuation
g, defined by

efI'ort may be made, and therefore the number of mesh
points could be doubled for the same computational cost
as in the present case. Finally, improved calculation of
the ground-state wave function or of other states can be
accelerated greatly by using the present result as the new

starting estimate.

VII. EXAMPLES: He(ls~ ~S, 1s2s ~S,
1s2p iP)

Typically, we require fluctuations to be at least as small
as 10 . Thus, our procedure consists of first determining
an appropriate trial state, usually a linear combination
of product hydrogenic states, then iteratively applying
the damping operator as in (57) until the fluctuation is
below a certain preset limit. At each iteration the sym-
metry described in Sec. IV is enforced. Excited states
may be computed by requiring orthogonality to previ-
ously determined lower-lying states.

For example, the expectation value of total energy for
the ground state of helium as a function of damped relax-
ation iteration is shown in Fig. 1. The trial state in this
case was a simple product of hydrogenic ground-state
wave functions in rq and r2. We see that the conver-
gence is roughly exponential in the iteration and that it
is towards the accurate value given by Pekeris [14]. The
spatial mesh extended &om 0 to 6 a.u. and 78, fifth-order
basis splines were used in rq, r2, and 8, the calculation
requiring approximately 100 min on a Cray-C90 com-
puter. We are presently investigating a number of ways
in which to improve the result further. For example, re-
cent work has shown [12] that the use of higher-order
splines can significantly improve the momentum spec-
trum on the lattice and therefore the representation of
the wave function, with no additional increase in com-
putational efFort. Further, as we briefly described above,
by eliminating the need to produce and carry the adjoint
solution, a savings of one-half the total computational

2
, =et ei s -=- —2 ~(' '&24 a ii

) o~otion =- . '= 0~2 0,)t'~, $~,

7 i, Lgg

To demonstrate the use of the present technique for
other cases, we have also computed two singly excited
states, He(ls2s~8) and He(ls2p~P). For each of these
states we have used somewhat fewer basis functions (i.e.,
58 x 58 x 58) and extended the lattice to 12 a.u. to accom-
modate the larger spatial extent of these wave functions.
Calculation of the 1828 state proceeds by orthogonaliz-
ing the trial function to the lattice ground-state wave
function at each iteration of the relaxation. For the 1s2p
state, since it is the lowest state of tP symmetry, there
are no states of like symmetry below it and there is no
need to orthogonalize. To judge the reliability of the
present method, we have compared in Table I the com-
puted expectation value of total energy for these three
states with well-known accurate values. One sees that
the present results are accurate to between 0.2% to 0.5%
relative error, while significant improvement should be
fairly readily obtainable.

Plots of the probability density for the three states are
shown in Figs. 2—4 and are instructive in that they illus-
trate some of the consequences of the correlation in these
wave functions. These probability densities have been
computed using the coefficients gt in (6), for simplicity,
and the full result would be obtained by first perform-
ing the sum including the appropriate coupled spheri-
cal harmonics. To do so would then necessitate a four-
dimensional plot to illustrate the result, and it suKces
here to illustrate the nature of the wave functions by dis-

playing only the coeKcients. For example, Fig. 2 shows
for the ground state that the electrons are most likely to
be found at equal radial distances, since the density is
mostly peaked along the line r~ ——r2, while the greatest
probability is for the electrons to have an angle between
their position vectors near vr, owing to their mutual re-
pulsion. In addition, for small values of 8, the density
peaks on either side of this line rq ——r2, indicating that
at small angular separations, one or the other electron

2. , l

7 o,

2 90
200 ~OO 600 BGO ' 000 l 200 t 400 t 600 1 600 2000

FIG. 1. The expectation value of total energy as a func-
tion of the iteration number for the relaxation of the trial wave
function to the ground state of helium. The legend indicates
the value obtained at the last iteration performed as well as
the exact value due to Pekeris [14], which is also illustrated
by the dashed horizontal line. The numerical mesh used to
obtain this result is described in the text.

State

He(ls ) S
He(1s2s) S
He(ls2p) P

—2.903 72
—2.145 9?
—2.123 84

(E)
—2.903 2
—2.144 8
—2.123 4

0.930
2.84
2.72

TABLE I. For each state of He considered here, the table
lists the computed expectation value of total energy along
with accurate reference values. The accurate values for the
ls, ls2s, and ls2p states are from Refs. [14], [15], and [16],
respectively, as quoted in Ref. [17]. The expectation value of
either radial coordinate is also tabulated. All quantities are
in atomic units.
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FIG. 4. The same as in Fig. 2 but for He(ls2p P) In this .case the expansion (6) has two terms, l = 0, 1.

rq ——r2 decreases with angular separation, as one would
expect.

Whereas both the 18 8 and 182s S wave functions
require only a single term in the expansion (6); the
Is2piP requires two terms. These are displayed in Fig.
4. By examining the structures in this figure, one can
see that along, say, ri the peak is narrow, while along
the other coordinate it is quite broad. This reQects the
relatively small spatial extent of the 18 part of the wave
function and the larger extent of the 2p portion. The sum
in coupled spherical harmonics then provides the proper
combination of these features to represent the ls2p P
wave function. All these simple observations are clearly
in accord with our intuitive picture of the consequences of
the electron-electron interaction on the low-lying states
of helium.

exactly for fully correlated two-electron wave functions of
any symmetry. This has been accomplished by deriving
an expansion in coupled spherical harmonics which ter-
minates quickly and the corresponding coupled equations
which determine the expansion coefBcients. In addition,
the discretization of the problem utilizing the basis-spline
collocation method has been described, as well as the re-
laxation technique used for partial eigensolution on the
lattice. The resulting three-dimensional representation
of the Hamiltonian is sparse, which makes tractable op-
erations such as this partial eigensolution and time prop-
agation, which require repeated action of this matrix on
wave functions. The accuracy of the procedure has been
demonstrated for the ground state and two singly ex-
cited states of helium, and several other applications are
presently in progress.
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