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ABSTRACT

Mesenchymal Stem Cells (MSCs) are of interest in the clinic because of their immunomodulation ca-
pabilities, capacity to act upstream of inflammation, and ability to sense metabolic environments. In
standard physiologic conditions, they play a role in maintaining the homeostasis of tissues and organs;
however, there is evidence that they can contribute to some autoimmune diseases. Gaining a deeper
understanding of the factors that transition MSCs from their physiological function to a pathological role
in their native environment, and elucidating mechanisms that reduce their therapeutic relevance in
regenerative medicine, is essential. We conducted a Systematic Review and Meta-Analysis of human
MSCs in preclinical studies of autoimmune disease, evaluating 60 studies that included 845 patient
samples and 571 control samples. MSCs from any tissue source were included, and the study was limited
to four autoimmune diseases: multiple sclerosis, rheumatoid arthritis, systemic sclerosis, and lupus. We
developed a novel Risk of Bias tool to determine study quality for in vitro studies. Using the International
Society for Cell & Gene Therapy's criteria to define an MSC, most studies reported no difference in
morphology, adhesion, cell surface markers, or differentiation into bone, fat, or cartilage when comparing
control and autoimmune MSCs. However, there were reported differences in proliferation. Additionally,
308 biomolecules were differentially expressed, and the abilities to migrate, invade, and form capillaries
were decreased. The findings from this study could help to explain the pathogenic mechanisms of

autoimmune disease and potentially lead to improved MSC-based therapeutic applications.
© 2024 Elsevier B.V. and Société Francaise de Biochimie et Biologie Moléculaire (SFBBM). All rights
reserved.

1. Introduction

1.1. Mesenchymal stem cells

an absence (<2 %) of surface markers CD34, CD45, CD11b or CD14,
CD79¢. or CD 19, and HLA Class II molecules [5,6].

Mesenchymal stem cells, also known as marrow stromal cells or
medicinal signaling cells, are commonly denoted by the term MSCs
[1—4]. Over 50 years ago, MSCs were initially isolated from the
adherent portion of the bone marrow aspirate. Currently, the In-
ternational Society for Cell and Gene Therapy (ISCT) recommends
that MSCs meet minimum criteria, including: adherence to plastic;
ability to self-replicate; present a spindle-shaped/fibroblast
appearance; differentiate into bone, fat, and cartilage cells; and
express (>95 %) surface markers CD73, CD90, and CD105, and have

* Corresponding author. 400 W 11th St., Rolla, MO, USA.
E-mail address: semonja@mst.edu (J.A. Semon).

https://doi.org/10.1016/j.biochi.2024.04.009

1.1.1. Sources of MSCs

Initially identified in bone marrow, MSCs are now sourced from
additional tissues, including peripheral blood, dental pulp, umbil-
ical cord tissue and blood, dermal tissue, adipose tissue, and sy-
novial fluid [7—10]. Despite the source, MSCs have been shown to
be therapeutic, migrate to damaged tissue, stimulate angiogenesis,
engraft into target tissue, and regulate immune responses [8,11,12].
MSCs can secrete factors that help dampen inflammation associ-
ated with autoimmune diseases, creating an environment that
supports immune regulation and tissue repair [13—15]. However, it
is unclear if the source of MSC impacts this immunomodulatory
effect, as well as the differentiation potential and therapeutic effi-
cacy [16—19]. The inconsistency of these results in the literature

0300-9084/© 2024 Elsevier B.V. and Société Francaise de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
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Abbreviations

AD Autoimmune disease

AD-MSCs Autoimmune disease-derived mesenchymal stem
cells

ASCs Adipose-derived mesenchymal stem cells

BMSCs Bone marrow-derived mesenchymal stem cells

d-MSCs  Dermal-derived mesenchymal stem cells

CLIP Clinical Indication Prediction

DNR Did not report

HC-MSCs Healthy control-derived mesenchymal stem cells

IFATS International Federation of Adipose Therapeutics
and Sciences

ISCT International Society for Cell Therapy

IVAT In vitro assessment tool

MS Multiple sclerosis

ND No difference

RA Rheumatoid arthritis

s-MSCs  Synovial-derived mesenchymal stem cells

SLE Systemic lupus erythematosus

SSc Systemic sclerosis

PPMS Primary progressive multiple sclerosis

RRMS Relapsing remittance multiple sclerosis

SPMS Secondary progressive multiple sclerosis

could be due to variations in MSC gene expression patterns or the
microenvironment of the tissue of origin.

1.1.1.1. Bone marrow-derived MSCs. Bone marrow-derived MSCs
(BMSCs), still the most common source of MSCs used in clinical
trials, are typically isolated from the iliac crest or other bones by
aspiration and separation with a ficoll gradient [20—22]. This is an
invasive harvest, which can carry more risk for patients with
chronic health disorders, advanced age, or obesity [23]. The yield of
MSCs from bone marrow can be relatively low, requiring in vitro
expansion to obtain sufficient cell numbers [24]. Furthermore,
compared to other sources, BMSCs are considered to have a mod-
erate proliferation rate, taking longer to expand in culture than
MSCs from other sources [25]. However, they have been shown to
have robust osteogenic, chondrogenic, and adipogenic differentia-
tion capabilities. Additionally, they have been extensively studied
for their immunomodulatory capabilities. They can suppress
excessive immune responses by inhibiting the proliferation and
function of immune cells, such as T cells, B cells, and macrophages
[26,27]. This immunosuppressive effect makes them potentially
beneficial for autoimmune diseases where immune system
dysfunction plays a role. BMSCs have been extensively investigated
in clinical trials for various conditions, including bone and cartilage
defects, hematological disorders, and autoimmune diseases
[7,28—31].

1.1.1.2. Adipose derived MSCs. Adipose-derived MSCs (ASCs) are
extracted from subcutaneous fat, which is more accessible than
bone marrow, even in patients with chronic health disorders or
advanced age [32,33]. The liposuction or surgical resection of adi-
pose tissue is processed, and ASCs are isolated from the stromal
vascular fraction. This less-invasive harvest typically provides a
more significant number of cells than the harvest of BMSCs
[34—36]. Additionally, ASCs have a higher proliferative capacity,
reducing the time and need for in vitro expansion. Like BMSCs, they
express CD73, CD90, and CD105 but may exhibit a higher expres-
sion of CD36 and CD44 [32]. ASCs possess osteogenic and
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chondrogenic differentiation capacity, but they demonstrate a
higher adipogenic potential than other sources, making them
particularly suitable for studies related to adipose tissue engi-
neering. ASCs also possess immunomodulatory properties,
although they may exhibit differences in their immune response
compared to BMSCs. ASCs, for instance, have been reported to
secrete higher levels of anti-inflammatory and angiogenic factors
than BMSCs [16,37]. Overall, ASCs have a similar therapeutic effect
to BMSCs and have applications in tissue engineering, wound
healing, osteoarthritis, cardiovascular disease, and cosmetic
procedures.

1.1.1.3. Synovial derived MSCs. Synovial-derived MSCs (s-MSCs) are
collected from the synovial fluid of hip or knee joints, the synovial
tissue, or they can be incidentally harvested from popliteal cyst
medical waste [38—40]. In most cases, this is typically considered a
minimally invasive procedure and is done with arthrocentesis,
which involves aspirating synovial fluid from the joint space with a
needle [41]. The quantity of MSCs in synovial fluid is generally
lower than in bone marrow or adipose tissue. However, s-MSCs
have been reported to be able to be expanded in vitro for prolonged
periods with limited cell senescence. Regardless of donor age or
serial passage, they can also be consistently induced into multi-
lineage differentiation pathways [24,42,43]. This may be due to a
lack of telomerase activity [24,43]. Their surface marker expression
profile is less well-defined compared to BMSCs or ASCs. They
commonly express CD73, CD90, and CD105, but the presence of
other markers may vary [38,44,45]. Compared to BMSCs, s-MSCs
have been shown to have increased chondrogenic and osteogenic
potential; however, their adipogenic potential appears to be lower
[38,44,46]. They may exhibit a unique secretome, potentially
influencing the immunomodulatory and regenerative properties
specific to the joint microenvironment [47]. The immunomodula-
tory characteristics of s-MSCs have been less extensively studied
than those of BMSCs or ASCs. Their clinical applications are still
being explored, particularly in joint-related disorders, autoimmune
diseases affecting the joints, and cartilage regeneration [48].

1.1.1.4. Dermal derived MSCs. Another source of MSCs is the dermis
(d-MSCs), usually from a skin biopsy or discarded foreskin [49—51].
The quantity of MSCs in dermal tissue is generally lower than in
adipose tissue, and they typically have a lower proliferative ca-
pacity [17,52]. Expression markers of d-MSCs include CD90, CD73,
CD29, and CD26 but vary depending on the isolation and culture
methods used [53]. Like other sources of MSCs, d-MSCs have been
reported to promote anti-inflammatory effects, possess wound-
healing properties, and can differentiate into both neural and
mesodermal cells [54]. They particularly have a high propensity to
differentiate into cells related to the skin, such as fibroblasts.
Consequently, d-MSCs have been studied for their role in promot-
ing wound healing, skin regeneration, and treating disorders such
as ulcers and cutaneous fibrosis [51,55].

1.1.2. Therapeutic efficacy

MSCs were initially of clinical interest because of their ability to
self-renew and replace damaged or diseased tissue by differenti-
ating into multiple lineages, such as osteocytes, chondrocytes, and
adipocytes [6,22,23]. The paradigm has shifted, and MSCs are now
considered helpful in clinical applications because of their non-
immunogenic and immune-modulatory properties and their
secretome, which can activate and support endogenous cells
[10,39—43]. Because of these therapeutic attributes, MSCs have
been studied in over 950 clinical trials worldwide and have
exhibited excellent safety in patients [7,56,57].

Despite the therapeutic potential MSCs have for many diseases
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and injuries, clinical trial outcomes have been inconsistent or
subdued compared to results in vitro or with preclinical animal
models [58—63]. Although many factors may contribute to these
suboptimal outcomes, increased attention has been given to the
quality of MSC donors. For example, MSCs harvested from people
with autoimmune disease (AD) can expand in vitro, can differen-
tiate, and have been shown to have the expected cell surface
phenotype [64—67]. However, there are discrepancies in the liter-
ature on if they can proliferate and differentiate at the same
magnitude as MSCs from healthy persons [14,15,68]. Additionally,
MSCs from AD patients have been shown to be less therapeutic,
causing some groups to pre-treat autologous cells from AD patients
to increase their therapeutic efficacy [69].

The local niche in AD may influence MSCs, resulting in intrinsic
differences related to donor selection [56]. Furthermore, the dis-
ease duration and severity variation between patients of the same
AD may give rise to the broad quality disparity with donor-to-donor
variation. This could cause a problem when using autologous cells
for stem-cell treatments that have been exposed to disease mi-
croenvironments found in the MSC niche of AD patients [70].
Although clinical trials show an increasing use of allogeneic MSCs,
most of those trials are investigating the safety of autologous vs
allogeneic MSCs [15]. There is still a need to examine the efficacy of
autologous vs. allogeneic MSC treatment in AD. Though preclinical
studies show that both autologous and allogeneic sources can
produce large numbers of MSCs, studies evaluating the molecular
and phenotypic differences between MSCs from AD patients and
healthy persons are conflicting and remain a gap of knowledge in
the field [7,70]. Understanding the effects of AD on MSC quality
could give valuable insight into result disparities and donor selec-
tion in stem cell treatment.

1.2. Autoimmune disease

An AD is typically a chronic illness that can be systemic or organ
specific. Difficult to treat, approximately 8—10 % of the global
population suffers from one of over 80 identified autoimmune
diseases [14,71,72]. The severity and the pathophysiological mani-
festations of these disorders depend on the immune system and the
type of immune response (innate, humoral, or cellular) involved.
Having phenotypic variability, AD presents with variable symptoms
and severity from patient to patient [73—75]. Current treatment
options for AD are limited, with some patients not responding well
to existing treatments. MSCs are being investigated as a treatment
option for multiple ADs, including multiple sclerosis (MS), rheu-
matoid arthritis (RA), systemic lupus erythematosus (SLE), and
systemic sclerosis (SSc) [14,63,68,76].

1.2.1. Multiple sclerosis

MS is a chronic, neuroinflammatory, autoimmune disease
affecting approximately 2.3 million people worldwide [65,66].
Most cases present between the ages of 20 and 40, with women
being affected 2.5 times more often than men [77,78]. Symptoms
include limb paralysis, partial or complete loss of central vision,
fatigue, dizziness, and depression [78,79]. MS is categorized into
different phenotypes including primary progressives (PPMS),
relapsing-remitting (RRMS), and secondary progressive (SPMS)
[28,80]. The progressive phase is characterized by continuous and
irreversible neurodegeneration and axon damage [81]. PPMS is
characterized by worsening neurological function without early
relapses or remissions. RRMS is the most common type of MS. It
involves paroxysmal relapses with worsened symptoms, followed
by a plateau of symptoms that is worse than before the relapse.
Each relapse can potentially be more intense than previous relapses
[77]. SPMS is a stage that comes after relapsing-remitting MS for
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many people. This type of MS gets steadily worse with little to no
relapses.

The primary target of immune cells in MS are the myelin sheaths
in the white matter of the central nervous system. Auto-reactive
myelin-specific CD4" T helper (Th) cells, stimulated by either
self-reactive or cross-reactive antigens and macrophages, infiltrate
the central nervous system and propagate an autoimmune
response against oligodendrocytes, which form the myelin sheath
[82,83]. This results in the formation of CNS plaques composed of
inflammatory cells and their products, demyelination, and trans-
ected axons, resulting in axonal loss, astrogliosis in both white and
grey matter, and eventual damage of CNS signals [78,82—84].

MSCs have been shown to improve preclinical outcomes of
murine models of MS with reduced inflammatory cell infiltration
and reduced demyelination in the spinal cord [85,86]. Clinical trials
in treating MS with MSCs have included MSCs from different
sources, autologous and allogenic transplants, cell products and
direct cell treatment, different injection routes, differing number of
treatments, and multiple phenotypes of MS. The results of these
trials vary, but overall, they have shown safety and some efficacy in
phase I and II trials [87—95].

1.2.2. Rheumatoid arthritis

Rheumatoid arthritis (RA) is a widespread chronic autoimmune
disease that affects joints and other connective tissue [96]. It is the
most common inflammatory arthritis and is a consequential cause
of morbidity and mortality in the U.S [14]. The pathologies of RA are
diverse, with patients suffering from inflammation, joint stiffness,
swelling, pain, loss of mobility, and co-morbidities with vascular,
metabolic, and skeletal systems [73].

The primary target of autoimmunity in RA is the synovium
membrane. The onset of RA is related to unbalanced immune ho-
meostasis, most considerably between Th17 and Tregs cells [14].
This leads to the activation of autoreactive immune cells, which
attack collagen-rich joint regions. With dysfunction in adaptive and
innate immune responses, autoantibodies, most notably rheuma-
toid factors, are produced [97]. Additionally, the cytokine network
becomes dysregulated, resulting in inflammation, which progres-
sively destroys the synovial tissue of joints, cartilage, and bone and,
less frequently, of extra-articular sites [97—102].

In animal models of RA, MSCs have been shown to ameliorate
the severity of symptoms, including bone loss [102]. Clinical trials
of MSCs for RA have mainly focused on the safety of MSC trans-
plantation, with most Phase I/II trials showing no serious side ef-
fects or adverse effects with moderate intensity [103—105]. MSC
treatment was shown to reduce the number of Th17 cells, increase
the number of regulatory T cells, and decrease inflammatory cy-
tokines in serum [104,106,107]. Disease activity was reduced in
most clinical trials, but results were transient [103,104,106]. Though
preclinical studies showed that allogeneic MSCs were more bene-
ficial than autologous MSCs, autologous MSC treatment did reduce
disease activity in a clinical trial reported by Ghoryani et al.
[28,102,106,108].

1.2.3. Systemic sclerosis

Systemic Sclerosis (SSc), also known as scleroderma, is a com-
plex and heterogeneous autoimmune disease characterized by
progressive organ fibrosis, especially in the skin. The pathology of
SSc is complex and involves the interplay of immune system
dysfunction, vascular abnormalities, inflammation, fibrosis, and
damage to various organ systems. SSc is associated with significant
morbidity and mortality, primarily due to complications related to
internal organ involvement, such as lung disease and cardiac issues
[109]. Mortality rates vary depending on disease severity and organ
involvement. There are two main types of SSc with various clinical
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subtypes [110,111]. Limited Cutaneous SSc (IcSSc) primarily affects
the skin of the face, hands, and feet. It often presents with distinct
features such as Raynaud's phenomenon (cold-induced color
changes in the fingers and toes), skin thickening, and the presence
of specific autoantibodies like anticentromere antibodies. Diffuse
Cutaneous SSc (dcSSc) has more widespread skin involvement,
including the trunk and limbs. It is associated with a higher risk of
internal organ involvement and may progress more rapidly.

While the precise origins of SSc remain unclear, it is widely
believed that a combination of genetic markers and environmental
factors are linked to a heightened susceptibility in the development
of the condition [109,111]. SSc can impact people of all age groups,
although it is typically identified more frequently in individuals
aged 30 to 60 [111,112]. It predominantly affects women and is more
common in specific populations, including individuals of African
American and Native American descent [110,113—115]. SSc is
associated with various co-morbidities, including pulmonary hy-
pertension, interstitial lung disease, and gastrointestinal disease
[114,116]. The prevalence of these co-morbidities can also vary
among SSc patients.

The primary target of the immune system in SSc is the con-
nective tissues in the skin and internal organs, especially the lungs,
heart, kidneys, and gastrointestinal tract. SSc often begins with
abnormalities in the small blood vessels, causing ischemia in distal
tissues [114,115]. Dysfunctional endothelial cells in the microvas-
culature then contribute to the release of pro-inflammatory and
pro-fibrotic factors. Fibroblasts are a principal etiologic agent in SSc
and produce excessive collagen and other extracellular matrix
proteins, resulting in fibrosis, which is the thickening and hard-
ening of connective tissue. Keratinocytes and myofibroblasts are
also affected in SSc and may produce pro-inflammatory and pro-
fibrotic cytokines. The prominent factor contributing to the path-
ogenesis of SSc is an aberrant immune response [117]. Monocytes,
macrophages, dendritic cells, mast cells, and T-cells accumulate in
the skin [118]. B-cells become activated and produce autoanti-
bodies, including antinuclear antibodies (ANA), anticentromere
antibodies, and anti-Scl-70 antibodies. T cells and macrophages
also exhibit an activated phenotype, indicating their critical role.

MSCs from different sources have been investigated in several
animal models of SSc and showed that MSC treatment can reduce
inflammation, skin fibrosis, and lung fibrosis [109]. For mecha-
nisms, MSCs were shown to impede the infiltration of macrophages
and neutrophils, but results on T-cell infiltration were conflicting
[118]. In the clinic, autologous MSCs have been shown to be safe but
have had conflicting results on improving symptoms and slowing
down disease progression [109]. Allogenic MSC treatment resulted
in regression of skin fibrosis, reduced skin ulcers, increased circu-
lation in the extremities, and improved lung function [109].

1.2.4. Systemic lupus erythematosus

Systemic lupus erythematosus (SLE), commonly referred to as
lupus, is a chronic autoimmune disease that affects almost every
organ system. The specific tissues and organs targeted in SLE vary
from person to person but typically include skin, joints, kidneys, the
cardiovascular system, and the central nervous system [119].
Because of this considerable variation in affected tissues, the pa-
thology of SLE is complex and varies between patients, even at
different times in the same patient [120,121]. The wide range of
symptoms includes fatigue, joint pain and swelling, skin rashes,
fever, Raynaud's phenomenon, hair loss, chest pain, kidney
dysfunction, photosensitivity, neurological symptoms (headaches,
seizures, and cognitive difficulties), and gastrointestinal symptoms
(abdominal pain, nausea, vomiting, and diarrhea). It is also asso-
ciated with various co-morbidities, including kidney disease (lupus
nephritis), cardiovascular disease, and an increased risk of
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infections [122,123]. SLE is more common in specific populations,
including individuals of African, Asian, Hispanic, and Native
American descent [124,125]. SLE disproportionally affects women
and is more frequently diagnosed in women of childbearing age,
particularly those between 15 and 45 years old [126,127]. However,
it can also occur in children, older adults, and males.

The exact cause of SLE is not fully understood, with the preva-
lence and incidence influenced by genetic, environmental, and
socioeconomic factors. Like all autoimmune diseases, the immune
system plays a central role in the pathogenesis of SLE, and multiple
types of immune cells are implicated in the disease process. B cells
produce autoantibodies that target a wide range of self-antigens,
including antinuclear antibodies (ANA), anti-dsDNA antibodies,
anti-smith antibodies, anti-phospholipid antibodies, or anti-
ribosomal P antibodies [128—130]. Tregs are impaired, the differ-
entiation of CD4™ T cells is dysregulated, and there is an imbalance
between Th1/Th2 and Th17/Tregs subsets with a skewing towards
Th1 and Th17 [73,131]. Dendritic cells, macrophages, neutrophils,
NK cells, and plasma cells are additional immune cells implicated in
developing SLE.

Several SLE preclinical studies have studied the beneficial effects
of MSC treatment [73,132,133]. MSCs were shown to release anti-
inflammatory factors that dampen the immune response, poten-
tially reducing tissue inflammation. MSCs were also shown to
suppress the activity of immune cells, including autoreactive T cells
and B cells that play a role in SLE pathogenesis [134]. Furthermore,
MSCs helped to reduce the production of autoantibodies [123].
Additionally, some studies showed that MSCs offered protection
against common co-morbidities, including atherosclerosis and
lupus nephritis, a common complication involving kidney inflam-
mation [122,132]. A limited number of clinical trials have investi-
gated using MSCs in SLE treatment. These trials have primarily
focused on refractory or severe cases of SLE that do not respond
well to conventional therapies [123,135]. Results have shown that
MSC therapy for SLE is generally considered safe, with no signifi-
cant safety concerns reported [136,137]. Outcomes, however, have
been mixed. While some trials have reported positive outcomes,
including decreased disease activity and improved clinical symp-
toms, others have reported more modest advantages [138,139]. The
outcome variation may be due to differences in patient populations,
treatment protocols, and the source of MSCs.

1.3. Present study

Many studies have shown no difference between MSCs from AD
patients and healthy donors [65,67,140,141]. However, we hypoth-
esize that MSCs derived from AD patients are not as therapeutic as
MSCs from normal, healthy individuals, partially giving rise to the
discrepancies in clinical trials. Over 34 % of clinical trials using MSCs
target autoimmune diseases, making it essential to determine if
autologous MSCs exposed to disease microenvironments from AD
patients are less therapeutic [22]. To test our hypothesis, we did a
Systematic Review and Meta-Analysis of the current literature
involving MSCs in AD. We included MSCs from any tissue and
focused on four chronic ADs with dysregulation of innate and
adaptive immune responses: MS, SLE, RA, and SSc.

2. Materials and methods
2.1. Search strategy

This study followed the Preferred Reporting Items for System-
atic Reviews and Meta-Analyses (PRISMA; Registration #

CRD42022345083) guidelines [142]. It is based on the approach
developed by Arksey and O'Malley that includes five essential
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steps: 1) identification of the research question; 2) identification of
appropriate studies; 3) selection of studies; 4) tracking of data; and
5) collection, summarization, and reporting of results [143]. This
systematic literature search was performed by three independent
investigators using Scopus and PubMed from inception until sub-
mission. The following search terms were utilized in each database:
(“mesenchymal stem cell” OR “mesenchymal stromal cell” OR
“MSCs” OR “ASCs”) AND (“Scleroderma” OR “Multiple sclerosis” OR
“Systemic sclerosis” OR “Rheumatoid arthritis” OR “SLE”). Weekly
updates were provided from Google Scholar, PubMed, and Scopus
for any newly published studies that matched the search terms. We
also manually reviewed the references cited within the included
articles.

2.2. Eligible criteria

Eligibility criteria were determined prior to beginning the
searches and applied to studies during abstract and title screening
and during the full-text assessment. Studies were included if: 1)
there was a comparison between MSCs that were isolated from
healthy individuals and MSCs isolated from individuals with one of
the four AD listed in the search terms; 2) studies were published
and accessible in English; 3) studies included MSCs from any tissue
source; and 4) studies were peer-reviewed. Studies were excluded
if: 1) MSCs were derived from non-human species; 2) MSCs were
treated with any pharmaceutical agent or biomaterial; or 3) the
article was a review, conference proceeding, or retracted study.

2.3. Study selection

Three independent investigators recorded the number of results
produced by each search term. Duplicates between the results of
each search were removed. Results between the databases (Scopus
and PubMed) were then combined, and duplicates between the
databases were also removed. Investigators independently
screened titles and abstracts for eligible studies utilizing the pre-
determined inclusion and exclusion criteria. Eligible studies were
then forwarded to a fourth investigator who removed duplicates
between investigators. Eligible studies were subjected to a full-text
assessment utilizing the same exclusion criteria used during the
titles and abstract screening. Two investigators completed a full-
text assessment, and any discrepancies were discussed.

2.4. Quality assessment

We developed the In Vitro Assessment Tool (IVAT) method to
determine each study's quality and Risk of Bias (Supp Table 1).
Parameters of IVAT include 1) selection bias, 2) performance bias, 3)
detection bias, and 4) reporting bias. Questions were applied to
each study, and responses were recorded in a standardized
spreadsheet (Supp Table 2). Once all studies were assessed, points
were totaled, and studies were assigned a Risk of Bias category
based on their score falling into a predetermined range. Scores of
21-30 demonstrated a low risk of bias, scores of 11—20 showed a
moderate risk of bias, and scores of 0—10 were classified as a high
risk of bias.

2.5. Data extraction

Two investigators extracted relevant data using a standardized
collection form, which consisted of (1) donor demographics
(number of patients/controls, age, BMI, disease duration, race, and
gender); (2) cell demographics (cell source, isolation location, and
passage); (3) proliferation (type of proliferation assay, duration of
experiment, and results); (4) differentiation (type of differentiation
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assay, duration of experiment, and results); (5) surface antigens
(positive markers, negative markers, and thresholds); (6) cell
morphology and plastic adherence; and (7) other assays evaluated
in the study (Supp Table 3). Once data was extracted from all
included studies, a third investigator combined both Excel files and
compared data. Any discrepancies were discussed. For missing or
unclear data, an attempt was made to contact the authors for
clarification.

2.6. Primary outcomes

The group identified the research question and determined the
research strategy at the initial meeting. The research question was:
“Are there differences between HC-MSCs and AD-MSCs, and, if so,
are those differences similar between ADs?”. The primary study
outcomes included differentiation, proliferation, morphology, dif-
ferential expression of biomarkers, and variation in phenotype.

2.7. Differentiation analysis

Image]/Fiji was used to quantify differentiation images obtained
as JPGs from included studies [144]. The percent area that showed
differentiation was calculated for each image and recorded in an
Excel spreadsheet with other relevant data, including the magni-
fication of images, the stain used, the cell source, and the assay
duration. The index was calculated by setting the HC-MSC image for
each study to “1” and dividing that by the results from the AD-MSC
image. The indexes for each image were then averaged and graphed
based on differentiation lineage, cell source, and disease.

2.8. Statistics analysis

All statistical analyses were performed using Minitab® Statis-
tical Software (State College, Pennsylvania). The data were reported
as the mean + standard deviation. The statistical differences among
two or more groups were determined by ANOVA, followed by
Tukey's post hoc test. The statistical significance was set at P < 0.05.

3. Results
3.1. Study selection

The primary literature searches produced 26,939 potential
studies (Fig. 1). With these studies, 7033 studied MS, 8445
reviewed SLE, 7286 studied RA, and 4175 studied SSc. Duplicates
between search terms and search engines were removed, resulting
in 14,097 studies subjected to abstract and title screening. There
were 13,428 studies excluded due to the screening, resulting in 669
studies sent to the primary investigator. Duplicates between in-
dependent investigators were removed, resulting in 228 studies
again screened against inclusion/exclusion criteria. This resulted in
168 studies being excluded (98 did not compare HC-ASCs to AD-
MSCS, seven were treated with a pharmaceutical or biomaterial,
52 were review articles, conference proceedings, or retracted, and
11 were not in English), and 60 studies that met the inclusion
criteria for further qualitative analysis.

3.2. Study quality

The IVAT was used to determine the quality of studies and any
Risk of Bias (Supp Table 2). Most studies produced a moderate to
high-quality score, with 52 studies classified as high quality (scores
21-30) and eight studies classified as moderate (scores 11—20;
Fig. 2A). All bias categories had low percentages of poor-quality
studies (Fig. 2B). Selection, detection, and reporting biases all had
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Fig. 1. Study Selection Flow Chart: Schematic of study search and selection protocol. A total of 60 studies met inclusion criteria.

high percentages of good quality (87.6 %, 98.9 %, 100 %, respec-
tively). Performance bias had a slightly lower percentage of good
quality and a higher percentage of unknowns (78.0 % and 20.9 %,
respectively). This lower score was mainly due to not recording if
experiments were performed in triplicate, which 49.2 % of studies
did not report. However, in many of these cases, researchers con-
ducted a microarray or other assay commonly performed with a
single replicate due to cost and time. Half of the individual ques-
tions on the IVAT demonstrated some levels of poor quality
(Fig. 2C), but these percentages of poor quality were relatively low.
Because all studies received a score in the moderate (IVAT score
11—-20) to low (IVAT score 21—30) risk of bias, no studies were
removed following the quality assessment.

3.3. Study demographics

About 1/3 of the included studies analyzed MSCs from SSc pa-
tients; another 1/3 came from SLE patients; the rest were divided
between RA and MS patients (Fig. 3A). Four studies examined MSCs
from both SLE and SSc patients concurrently. All studies were
published between 2000 and 2022, with most published in 2013 or
later (Fig. 3B). The age and gender of patients were commonly re-
ported throughout studies (93 % and 88 %, respectively), but only a
small percentage of studies (<7 %) reported the BMI or race of their
patients (Fig. 3C).

Over 71 % of patient samples were acquired from female pa-
tients (Fig. 3D), while less than 50 % of control cells were reported
from females. Many studies did not report the gender of controls or
listed them as “sex matched.” To keep our study rigorous, we
included “sex-matched” with “did not report,” as there may have
been some variation in matching and not precisely the same ratio of
males to females. SLE studies isolated their samples predominantly
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from female patients, except for one study (Supp Table 3) [134]. The
other three diseases were isolated from both males and females.

Of the few studies that did report BMI, they each studied ASCs.
The average BMI of the samples was 24.8, and the controls were
25.9. Of those who reported race, 22 samples were isolated from
Caucasians, four from African American/West Indies Black, and one
who identified as Middle Eastern. One study reported controls as
race matched to Caucasians, but no other study reported the race of
controls [135].

3.4. Sample characteristics

Across all included studies, 845 patient samples were analyzed
and compared to 571 control samples. Samples were mostly (98 %)
obtained internally (Fig. 4A), with 2 % obtained as gifts from other
labs. Controls were also primarily obtained internally (82 %) but
also came from vendors (11 %), with Lonza being the most common.
Approximately 5 % of studies did not report where controls came
from, and like patient samples, 2 % were received as gifts from other
labs.

Most patient samples and control cells were derived from bone
marrow (68 % and 71 %, respectively; Fig. 4B). BMSCs were most
commonly isolated from the iliac crest, followed by not reporting
the location, then the femur, then the sternum, and then trabecular
bone chips (Fig. 4E). Adipose tissue was the next most common
source of MSCs, representing 23 % of the patient samples and 16 %
of the control cells. ASCs were predominantly isolated from the
abdomen, with four coming from the medial knee, and the rest
were not reported. Synovial MSCs accounted for 8 % of samples and
10 % of control cells. About an equal number of cells came from the
suprapatellar pouch as from an unreported location. The knee
accounted for ~17 % of s-MSCs samples. Only one study evaluated d-
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MSCs, with all the samples and controls isolated from the forearm. BMSCs were the only MSC source to be evaluated in all four dis-

Studies investigating MS solely evaluated BMSCs (Fig. 4C), RA eases, ASCs were assessed in two diseases, d-MSCs were evaluated
and SLE evaluated two sources of MSCs, and SSc evaluated three. only in SSc, and s-MSCs were assessed only in RA (Fig. 4D).
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3.5. Reporting of ISCT criteria

As our study aims to compare AD-MSCs to HC-MSCs, it is
essential to verify the identity of all samples as MSCs. The ISCT
states that for an MSC to be considered an MSC, it must meet five
criteria: adhere to plastic, have a fibroblast-like appearance, self-
replicate, have appropriate surface antigens, and differentiate into
bone, fat, and cartilage [5]. Therefore, the first step in our analysis
was to verify each study against the ISCT criteria.

Only 6.7 % of studies reported all five ISCT criteria (Fig. 5A), while
23 % of studies did not report against any criteria. In some cases, the
study referenced an earlier study from the same group. However,
when following cited papers, we could only sometimes find the five
ISCT criteria analyzed or be assured they were the same donors per
study. Therefore, we recorded them as not reporting ISCT criteria,
even though they could have evaluated their donors in an earlier
study.

Of the ISCT criteria, surface antigens were the most reported,
while plastic adherence was the least (71 % and 7 %, respectively;
Fig. 5B). However, adhesion to plastic was inherent among assays in
each study, so this ISCT criterion was met by default even though it
was not reported. The ISCT criteria of tri-lineage differentiation into
bone, fat, and cartilage was reported in 18 % of studies (Fig. 5B). An
additional 23 % of studies evaluated differentiation into at least two
lineages, most commonly adipocytes and osteocytes.

ISCT guidance says MSCs must be positive for CD105, CD73, and
CD90 and negative for CD45, CD34, CD14/CD11b, CD794/CD19, and
HLA-DR [5]. While only 8 % of our included studies reported on each
of these surface antigens, an additional 63 % of studies reported
some of those antigens (Fig. 5B—D). Approximately 62 % of studies
reported at least five or more of the ISCT recommended surface
antigens (Fig. 5D). The most common surface antigens reported was
CD45, but over half of the studies reported CD90, CD105, and CD34
(Fig. 5C). The least reported surface antigen was CD19/CD79q (15 %
of studies), which are biomarkers for B-cell differentiation. They are
expressed from the earliest stages of B cell development until
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plasma cell terminal differentiation when expression is lost
[145,146]. The ISCT also sets criteria for negative and positive cut-
offs of surface antigens, with positive being >95 % and negative
<2 %. However, in our evaluated studies, cutoffs varied markedly
between studies. Negative cutoffs ranged from <0.1 % to <9 % and
positive cutoffs ranged from >10 % to >95 %, with many studies not
mentioning their cutoff values.

Some of the variation in surface antigen reporting may be due to
the source of MSCs. For example, the International Federation of
Adipose Therapeutics and Sciences (IFATS) issued a joint statement
with ISCT for guidelines on defining an ASC [36]. In addition to
being positive for CD73, CD90, and CD105, they must also show
positivity for CD13, CD29, and CD44. Negative markers include
CD31, CD45, and CD235a. Many of these markers were reported in
the included studies, potentially instead of the ISCT criteria.

3.6. Cell morphology

Cell morphology was reported in 45 % of the studies. Within
those reports, 74 % of studies said there were no differences in
appearance between AD-MSCs and HC-MSCs (Fig. 5E), with both
populations presenting a fibroblast-like morphology. The passage
evaluated may have contributed to the discrepancies in results
between studies. One study noted that P3 MS-MSCs looked as se-
nescent as P8 HC-MSCs [147].

Of the studies that reported abnormal morphologies in AD-
MSCs, the cells were larger, appeared flatter, had visible stress fi-
bers, and had longer podia. Some studies further evaluated
morphological differences by examining the cell structure and
cytoskeleton [148—150]. AD- MSCs were shown to have disorga-
nized cell structure with dilated and distorted ER, swollen mito-
chondria, condensation of chromatin, increased protein aggregates
in the ER, apoptotic features, and irregular actin distribution, which
was disorganized and condensed on the edge of the cytoplasm
[148—150]. Unsurprisingly, abnormal morphology was associated
with senescence, increased cell size, and cytoplasmic granularity
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with increased passages of P5—P7 [151,152]. methods and time courses (Fig. 6A and B). Most studies (54.3 %)
measured cell growth, mainly evaluated by population doublings
and trypan blue. Other assays included colony-forming units (CFUs)
3.7. Proliferation and enzymatic assays (MTT and CCK-8 kits). If reported, the most
common duration of these experiments was 12—15 days, with 18+

The 37 % of studies that reported proliferation utilized various
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days occurring the least (Fig. 6B).

Of those that did report proliferation, most studies (60.6 %)
showed that AD-MSCs had a decreased proliferative ability, while
the rest said there was no difference. The source of MSC had no
significant effect on results, with all sources of MSCs reported in
both categories (Fig. 6C). However, there were differences between
types of AD (Fig. 6D). Interestingly, all SLE studies reported a
decrease in proliferation rate, and RA reported a greater decrease
than no difference. However, both MS and SSc reported more no
difference than decreased. Even when accounting for the donor's
age and the passage number of cell cultures using a Tukey post hoc
test, there was an independent effect of the presence of an AD niche
on the ability of MSCs to proliferate (not shown). Redondo et al.
stated that the proliferation of AD-MSCs was influenced by the
duration of progressive MS [152].

In addition to the proliferation assays, senescence was evalu-
ated, typically with -galactosidase staining. While Velier et al.
reported no difference between AD-MSCs and HC-MSCs, ten other
studies reported that AD-MSCs experienced an accelerated or
increased senescence in vitro [151—162)]. Furthermore, multiple
studies from SLE demonstrated that AD-MSCs were restricted in the
G1 phase of the cell cycle [158—161]. Some studies also evaluated
apoptosis, with increased apoptosis in AD-MSCs cultures
[67,149,157].

There were also discrepancies in other assays measuring cellular
health and division. Though Nie et al. reported that AD-MSCs have
telomerase activity, others showed that AD-MSCs had an inactive
telomerase and shortened telomeres [67,151—153,156,163]. While
Sun et al., 2007 showed that AD- MSCs had a normal karyotype,
others showed that AD- MSCs had more DNA double-stranded
breaks and a more significant percentage of DNA damage in the
DNA tail compared to HC-MSCs [164—166]. Studies also found that
AD-MSCs presented dysfunctional mitochondria and altered
cellular bioenergetics [157,167].
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3.8. Differentiation

Approximately 41 % of included studies compared differentia-
tion abilities of AD-MSCs to HC-MSCs (Supp Table 3). Tri-lineage
differentiation was evaluated in 18 % of studies, while the other
23 % evaluated one or two lineages, with osteogenesis being the
most common. Similar to proliferation assays, there were variations
in the assay type and the length of the assay. Regardless of the
lineage being examined, the most used timeframe was 3—4 weeks
(Fig. 7A). Twelve studies used multiple methods to evaluate dif-
ferentiation along the same lineage (i.e., alkaline phosphatase and
Alizarin Red; Supp Table 3).

Across the three lineages evaluated, most studies indicated no
statistical difference between AD-MSCs and HC-MSCs (Fig. 7B).
However, for many studies, the results were qualitative with no
quantification. The authors reported “no difference” if AD-MSCs
could differentiate in any capacity. Therefore, a result of “no dif-
ference” does not always indicate that AD-MSCs and HC-MSCs
differentiated at the same magnitude.

For adipogenesis, 82.6 % of studies used Oil Red O, which all
reported no difference. Interestingly, of the two studies that re-
ported a decreased ability of AD-MSCs to differentiate into adipo-
cytes, they both evaluated FABP4 expression. These two studies
used different time points (10 and 21 days), evaluated different
diseases (SSc and RA), and examined different sources of MSCs (s-
MSCs and ASCs). Chondrogenesis had more variation in detection
methods, with eight studies using alacian blue, two using toluidine
blue, and two evaluating collagen II expression. Like adipogenesis,
two outliers showed a reduced differentiation, while all others
reported no difference. The outliers evaluated their samples at 21
days but used different detection methods and tissue sources for
their MSCs. Osteogenesis also had variations in detection methods,
with 16 studies using alizarin red, eight studies using alkaline
phosphates, and 3 using Von Kassa. One study that evaluated



Table 1

Molecules differentially expressed in AD-MSCs. Twenty two differentially expressed molecules were evaluated in two more diseases. MS: multiple sclerosis; SSc: systemic
sclerosis; RA: rheumatoid arthritis; SLE: systemic sclerosis; MSCs: mesenchymal stem cells; ASCs: adipose derived MSCs; BMSCs: bone marrow derived MSCs; s-MSCs: sy-

novial derived MSCs, d-MSCs: dermal derived MSCs; ND: no difference.
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AD Type MSC Source Assay Used Citation Citation
RA s-MSCs RT-PCR 212 Houetal. 2016
RA BMSCs PCR 211 Feng et al. 2018
ms BMSCs microarray 140 De Oliveira et al. 2015
SSc BMSCs RT-PCR/ELISA 225  Cipriani et al. 2013
SLE BMSCs RT-PCR/WB 234 Geng et al. 2020
SLE BMSCs ELISA 158 Gaoetal. 2017
SLE BMSCs RT-PCR 157 Sun et al. 2007
RA BMSCs microarray 55 Kastrinaki et al. 2008
Ssc BMSCs WwB 223 Cipriana et al. 2014
SSc BMSCs RT-PCR/ELISA 225  Cipriani et al. 2013
SSc ASCs RT-PCR 148  Velier et al. 2019
SSc BMSCs RT-PCR 223 Cipriana et al. 2014
ms BMSCs microarray 140 De Oliveira et al. 2015
SLE BMSCs ELISA 158 Gaoetal. 2017
SLE BMSCs ELISA 154 Gu et al. 2012
RA BMSCs WB 216 Sunetal. 2015
SSc BMSCs WB 225  Cipriani et al. 2013
SLE BMSCs RT-PCR 152 Guetal. 2013
SLE BMSCs wB 153 Guetal. 2014
SSc BMSCs RT-PCR 223 Cipriana et al. 2014
SSc BMSCs RT-PCR/ELISA 227 Guiducci et al. 2011
SSc BMSCs ELISA 223 Cipriana et al. 2014
SSc ASCs RT-PCR 148  Velier et al. 2019
RA BMSCs RT-PCR 216 Sunetal. 2015
MS BMSCs microarray 140 De Oliveira et al. 2015
SSc ASCs RT-PCR 148  Velier et al. 2019
RA BMSCs RT-PCR 216 Sun et al. 2015
SLE BMSCs WB 232 Cheetal. 2014
SLE BMSCs WB 142 Guoetal. 2015
RA 5-MSCs PCR 149 Leeetal. 2021
RA 5-MSCs PCR 149 Leeetal. 2021
SLE BMSCs RT-PCR 150, 142 'é':; :{':l_o;é .
RA BMSCs wB 142 Guoetal 2015
RA s-MSCs RT-PCR 212 Hou et al. 2016
SSc BMSCs RT-PCR/ELISA 227 Guiducci et al. 2011
SLE BMSCs RT-PCR/ELISA 141 Tangetal. 2012
RA BMSCs microarray 55  Kastrinaki et al. 2008
SLE ASCs ELISA 219 Kuca-Warnawin et al. 2019
SSc ASCs ELISA 220  Kuca-Warnawin et al. 2020
SSc ASCs RT-PCR 143 Virzietal. 2017
SLE BMSCs ELISA 158 Gaoetal. 2017
SLE ASCs ELISA 219 Kuca-Warnawin et al. 2019
SSc ASCs ELISA 220 Kuca-Warnawin et al. 2020
SSc d-MSCs RT-PCR 137 Orciani et al. 2013
RA $-MSCs PCR 149 Lee et al. 2021
RA s-MSCs PCR 149 Leeetal. 2021
SLE BMCs RT-PCR/WB 237  Tangetal. 2013
SSc BMCs WB 223  Cipriana et al. 2014
SSc BMCs RT-PCR 225  Cipriani et al. 2013
RA s-MSCs RT-PCR 212 Houetal. 2016
SSc BMCs RT-PCR 223  Cipriana et al. 2014
SSc d-MSCs RT-PCR 137 Orciani et al. 2013
RA s-MSCs PCR 149 Leeetal. 2021
SLE ASCs ELISA 219 Kuca-Warnawin et al. 2019
SSc ASCs ELISA 220  Kuca-Warnawin et al. 2020
SLE ASCs ELISA 219 Kuca-Warnawin et al. 2019
SSc ASCs ELISA 220 Kuca-Warnawin et al. 2020
SSc d-MSCs RT-PCR 137 Orciani et al. 2013
RA $s-MSCs PCR 149 Lee etal. 2021
RA BMSCs microarray 55  Kastrinaki et al. 2008
SSc BMSCs RT-PCR 231 Vanneaux et al. 2013
RA s-MSC PCR 149 Leeetal. 2021
SLE BMSCs RT-PCR/ WB 237 Tangetal. 2013
SSc d-MSC RT-PCR 137 Orciani et al. 2013
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BMSCs in SLE reported a decreased osteogenic ability, while all
other studies reported no differences, regardless of different
methods, time courses, and cell sources.

Despite some differentiation images appearing different to us,
our analysis of 13 published images also confirmed no significant
differences (Fig. 7C). However, we did detect differences when
stratifying based on cell source and disease type. MS and SSc had
decreased differentiation, while RA had mixed results (Fig. 7D).
Similarly, ASCs and BMSCs had reduced differentiation, while s-
MSCs had mixed results (Fig. 7E). The mixed results of RA and s-
MSCs may indicate that the cell source or disease state is associated
with intrinsic differences in their MSCs, affecting their use in the
clinic. The difference between our analysis and what was reported
may be due to the limitation of only having one representative
picture per study for us to analyze or investigators reporting on the
ability to differentiate at any capacity and not comparing AD-MSCs
quantitively to HC-MSCs.

3.9. Other phenomenon

Compared to healthy controls, AD-MSCs exhibited a decreased
ability for migration and invasion as well as a decreased ability to
form capillaries [155,165,168,169]. Regarding clinical efficacy, only
one study made an in vivo comparison between AD-MSCs and HC-
MSCs. This study, conducted using a murine model of RA, found
that human AD-MSCs did not provide any therapeutic advantage,
especially compared to human MSCs from healthy persons. In fact,
symptoms worsened after human AD-MSC administration [156].

3.10. Biomolecules

AD-MSCs were found to have 308 differentially expressed
molecules that consisted of genes, proteins, and miRNAs. Of those,
22 were evaluated in two or more diseases (Table 1). Two molecules
were assessed in all four diseases, IL-6 and TGF- B. IL-6, a pro-
inflammatory cytokine that plays a role in chronic inflammation
and autoimmunity, was found to be upregulated in AD-MSCs in six
studies while downregulated in one study. One of these studies
evaluated s-MSCs, while all others examined BMSCs, and multiple
detection methods were used. TGF-B, which regulates cell prolif-
eration and differentiation, was also examined across all four dis-
eases in ten studies. However, the results were mixed. One
molecule, p21, which regulates cell cycle progression, was unani-
mously verified as upregulated in AD-MSCs in all four studies that
examined it across three different diseases. All these cells were
BMSCs, and their TGF- B levels were evaluated by RT-PCR or
Western blot. Of the other 19 molecules found in at least two dis-
eases, four were consistently reported as upregulated (TSG-6, IL-
1Ra, SDF-1 (CXCL12), and GM-CSF), five were consistently re-
ported as downregulated (BCL-2, Galectin-3, OCN, Kynurenine, and
ColL2), and 10 had mixed results.

4. Discussion

Much of the scientific literature on MSCs is directed towards
their potential for treating AD and inflammation. In clinical trials of
AD, they have been demonstrated to be safe, but they have shown
underwhelming therapeutic outcomes [170]. A Systematic Review
and Meta-Analysis of MSCs in AD was necessary. Our study
analyzed 845 patient samples from 60 studies, showing many
disparities between results. In addition to the variables we recor-
ded and analyzed, other techniques were highly variable or not
reported among labs, including media used, initial and working
cell-plating densities, and cell confluency at the time of assays. The
variability in assays and reporting was a limitation in our analysis.
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Given the considerable variability, it is essential to compare AD-
MSCs to HC-MSCs in parallel with different disease models and
assays, to quantify both in vivo and in vitro results, and to submit
raw data to repositories and databases, such as Gene Expression
Omnibus (GEO) Database [171].

After being proposed two decades ago, the minimalistic ISCT
criteria used to define an MSC are still being used [7]. Many groups
have tried to modify that criteria by identifying an MSC biomarker,
or a panel of biomarkers, that could be used to predict therapeutic
efficacy in the clinic [7,61]. Some have suggested a need for
phenotypical or functional studies, such as the Clinical Indication
Prediction (CLIP) scale [172]. Our results identified a handful of
biomolecules, and some functional assays that warrant further
investigation.

IL-6 was found to be upregulated in MSCs across all four diseases
evaluated. IL-6 has a diverse biological activity, contributing to
homeostasis, embryonic development, bone metabolism, and
acute-phase immune responses [173]. However, it is also critical to
pathogenesis during periods of excessive production and uncon-
trolled IL-6 receptor signaling. Within MSCs, IL-6 has been
observed to influence both proliferation and the immunosuppres-
sive capacity of these cells [27]. Due to IL-6's involvement in
numerous activities, it may pose challenges as a viable biomarker.
However, just as the CLIP scale utilizes TWIST1 levels to gauge
clinical effectiveness, correlating IL-6 levels to MSC pathogenesis
could be a potential avenue for exploration.

Three diseases showed an upregulation of p21, while its
expression in the fourth was not assessed. Also known as Cip1, p21
is upregulated by p53-dependent transcription and binds to and
inhibits the kinase activity of the cyclin-dependent kinases Cdk2
and Cdk1, inducing cell cycle arrest and other biological responses.
The upregulation of p21 has allowed cells to survive under
nutrient-stress conditions [ 174]. In pathogenesis, p21 contributes to
autoimmune disease, and in the context of MSCs specifically, p21
has been shown to contribute to MSC senescence in SLE [159,175].

TSG-6, IL-1Ra, SDF-1, and GM-CSF were upregulated in MSCs
from two diseases and not assessed in the other two. However, they
are found in the literature to be upregulated in other autoimmune
diseases [176—178]. All four molecules are currently associated
with playing a role in the pathogenesis of AD, especially the four
focused on in this study [179—187]. Each of these molecules plays a
different role in each autoimmune disease, making it more chal-
lenging to identify therapeutic targets [ 179,187]. For example, in the
serum of SSc patients, SDF-1 can be found upregulated, down-
regulated, and comparable to normal levels. However, it is consis-
tently upregulated in the skin and kidneys. Meanwhile, in RA, SDF-
1 is upregulated in joint tissues, which has a role in synovial
inflammation, bone erosion, cartilage degradation, and increased
bone turnover.

Despite these roles in the pathogenesis of AD, these four mol-
ecules are commonly associated with desired outcomes in MSC-
based therapies. SDF-1 and GM-CSF are required for MSC migra-
tion, resulting in many groups trying to enhance their expression
[188,189]. IL-Ra has a role in the immunomodulatory abilities of
MSCs and their ability to heal lung and eye injuries [190]. Within
MSCs, TSG-6 has roles in extracellular matrix remodeling, anti-
fibrotic effects, angiogenesis, immunomodulation, and anti-
inflammation [191].

Galectin-3, BCL-2, OCN, Kynurenine, and Col2 were down-
regulated in two diseases and not evaluated in the other two.
Kynurenine, a metabolite produced during the breakdown of
tryptophan, has been shown to reverse autoimmune disease
[192—194]. In the context of MSCs, kynurenine has been shown to
be a link between metabolism and immunomodulatory properties
[195,196]. The secretion of galectin-3 by MSCs is correlated with
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immunosuppressive potential and has been suggested as a possible
biomarker for their therapeutic efficiency [197]. Although our re-
sults show that galectin-3 is downregulated in MSCs from AD, other
studies have shown that it is elevated in autoimmune diseases
[198—201]. It has even been suggested as a biomarker for identi-
fying patients with high mortality risk in SSc [198—201]. It could be
tissue-specific, like SDF-1. Type II collagen is secreted by MSCs and
is the basis for hyaline cartilage. Similar to galectin-3, our results
showed a decrease in expression from MSCs of multiple AD's, while
the literature shows an increase in AD, particularly RA [202]. TGF-B
has pro-inflammatory, anti-inflammatory, and immunosuppressive
activities; it is also involved in numerous MSC functions, including
differentiation and immunomodulation. Like the others, it has also
contributed to the pathogenesis of AD [203—207].

Though most studies reported no difference in the morphology
of AD-MSCs, some did show irregular actin distribution [148—150].
Actin is a protein crucial in maintaining MSC shape, providing
structural support to the cell, and facilitating various cellular pro-
cesses, including movement, division, and intracellular transport
[208,209]. Actin remodeling has been suggested as a biomarker in
other disease pathologies, such as cancer [210].

Most studies showed a reduced proliferation in AD-MSCs, which
matches results from other physiological states, such as aging [211].
With a decreased ability to proliferate, AD-MSCs cannot self-
replicate or make daughter cells. Thus, they will have limited
replacement of damaged cells, significantly impairing their capacity
to regenerate and repair damaged tissue. Consequently, when using
autologous transplants in these cases, cells must be pre-treated
with cytokines or hypoxic conditions [212,213]. A comprehensive
evaluation of differentially expressed molecules associated with
MSC proliferation may provide novel insight for a therapeutic
biomarker.

Although overall differentiation into bone, fat, and cartilage
lineages was not statistically significant, differences were observed
once stratified by disease and MSC cell source. Due to the limitation
of a small sample size within each group, it is essential to explore
further the differences in the differentiation capabilities between
AD-MSCs and HC-MSCs. This exploration should encompass both
quantifiable methods and the quality of differentiation. The Bern
scoring system has been used to evaluate the quality of bone in
tissue-engineered constructs and may be suitable for cell culture
studies [214].

By developing a Risk of Bias assessment for in vitro studies, the
IVAT, this study was able to compare over 800 patient samples to
over 500 control samples with transparency and increased rigor.
However, this study was limited by inconsistency: MS only evalu-
ated BMCs, SSc was the only disease to evaluate d-MSCs, assays, and
molecules was not evaluated across all diseases, and variable
methods were used for every assay analyzed. With our methodol-
ogy, we were able to simultaneously assess multiple AD. This
enabled us to observe that AD-MSCs exhibited no variation from
HC-MSCs in terms of morphology, the presence of recommended
ISCT cell surface markers, or adherence to plastic. However, AD-
MSCs exhibited higher levels of IL-6, diminished migration and
invasion capabilities, and a reduced capacity for capillary forma-
tion. Overall, there were no differences in differentiation and pro-
liferation between AD-MSCs and HC-MSCs. Nevertheless, while
distinctions were noted between AD with differentiation and pro-
liferation, the limited sample size necessitates further investiga-
tion. Furthermore, our study successfully identified 22 molecules
for potential biomarker investigation in AD-MSCs.

5. Conclusion

MSCs can keep tissues and organs in homeostasis, or they can
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contribute to the development of different pathologies. This bal-
ance between the two outcomes needs to be explored further.
Identifying the molecular and cellular changes, their interactions,
and the pathways impacted could provide targets to mitigate MSC
dysfunction, their involvement in disease pathology and progres-
sion, their anticipated normal physiological function, and their
likely mechanisms of action.
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