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Dynamic Plasticity in Pile-Soil Interaction Problems 
Somnath Bandyopadhyay, Yudhbir and Madhira R. Madhav 

Department of Civil Engineering, Indian Institute of Technology, Kanpur, India 

SYNO:PSIS 1'he dynamic soil-pile interaction proble1a is solved by the method of cnaracteri-
stics. 'l'he nonlinear, non-homogeneous problem was idealised as a piecewise li :.ear problem. The 
nl.llllerical instability of semi-inf'ini te soil column model has been reported, a1 J a stable model, 
wherein t!te soil column belo1., the pile tip is replaced by a sin&le sprin6 and ;. dashpot, has 
also been presented. The resu.l ts obtained from t.ae method of Cllaracteristics ;.::.ve been compared 
with those obtained by explicit 1'ini te differeace scheme. 'J.'he convergence ant stability ,.,ere 
studied numerically. 

HiT.d.O])JU'l'lON 

Tne interaction between the soil and the pile 
is a complex phenomenon especially when the 
loading is dynamic. i.J:ost of the current 
methods of analysis ol.' the interaction pro
blems can be divided into either spring-dash
pot-mass model or the one dimensional wave 
equation approacil. 'l:he latter in particular 
is adopted .for the prediction of the static 
load carrying capacity of the pile. Sroi th 
(196u, 1962) has solved the wave equation 
wi tn the help of finite difference expansion 
along the length o.f the pile and over time as 
an initial value problem. .l!ixcellent reviews 
( (!oyle et al., 1973, l''orehand et al., 1964) 
and applications ( 'l'i.10mpson, 1980) of wave 
equation approach are available. A number 
of solution proo0dures viz. 0APWAP, WEAP, FDA 
etc., have been developed and fairly close 
agreement (within .± 20 percent) between :t'ield 
observed and the predicted value have been 
shown (Appendino, 1980, and Thompson and 
'l'hompson, 19'19 ), It is generally aGreed that 
correct assessment of soil properties, e.g. 
quake factor, viscosity coefficient,c.listri
bution of load alon~ pile etc., is extremely 
important for better .f>rediction ol· tne load 
carryinc capacity. 

'l'he method of characteristics is a very 
powerful tool aud au ele~ant met11od for 
solvin~ hyperbolic partial diff'e1·ential 
equations. Usin_:; thi~ approach Hakhmatulin 
(1966) and Jristescu ~1967) present many 
solutions, and Freiburger (1952) studied the 
enlar5ement of a hole under dynamic loading 
for an elastic perfectlv plastic material. 
Ginsburg (1964) applied this method for 
finding the soil res_flonse to blast in the 
air, and Streeter et al (1974) analysed the 
dynamic behaviour of saturated and unsatura
ted media. In this paper, the pile vibra
tion problem has been formulated as a one 
dimensional wave p.~.·ojlll~ation problem in a 
non-homogeneous medilll.l, the pile it :3 elf res
ting on a soil column. 
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:b'ig.l shows a pile of leng' 1 L, diameter d, 
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.t'ig.l. Definition ::iketch 

and with modulus of elasticity B • The pile . p 
material can take compressive or tensile 
forces but does not possess either viscous 
or plastic properties. The pile rests on a 
semi-infinite soil column whose deformation 
modulus is Es. The soil takes only compre-

ssive forces and possesses plastic yielding 
and viscous resistance. The uile and soil 
columns are supported by th<.. surrounding soil 



medium as a shear spring-dashpot system with 
plastic resistance. 

FORMULATl0N 

The formulation is based on Lagrangian co
ordinate system. Considering an element of 
length d a with cross sectional area A and 
p~rimenter P, the kinematic relationship is 
written as 

ov 6 -ra-- 6u . 
'"'Ot) = 0~ 

(1) 

where €. = ~ ~ - the engineering strain, 

t - time, u - the axial displacement, a -
length variable, and v- velocity. The con
servation of momentum relationship is deri
ved as 

a2 
S mAv da =A a(a

2
)- A a(a1 )

al 

a2 

S -.Pda 
al 

( 2) 

where m the mass density of the pile 
material, a1 and a 2 distances to bottom and 

top of element (Fig.lb), a- normal stresses, 
and ~ - shear resistance offered by the 
shear layer. Eq. (2) can be simplified to 

6v 
m ""'t ...2..L 

6a 
p 
A (3) 

Neglectinti heat energy losses stress-strain 
relation can be written as 

= f (a, £ ) + g (a,£ 

where f (a, e ) and g (a, £ ) are given 
functions. 

(4) 

When an impact is given to the top of the 
pile, a 'shock wave' taKes place because of 
the abrupt change in the dependent variabl
es, and their derivatives become infinite 
at the shock f·ront. The jump in the values 
of dependent variables is denoted by [ ]. 
~'ig. l(c) depicts the propagation of shoe~ 
front at time t. Denoting the magnitude 
of the dependent variables just above and 

300 

and just below the shock front by + and -· 
respectivel~, the conservation of momentum 
relation is written as: 

a(t) 

(mv ~) + dt s b ( mv ) da - ( mv _ddta ) + -or 
al 

(5) 

wi1ere a(t) is the location of the shock 
front. Neglectinc; the shock jump in the 
soil shear resistance, :r.: q. ( 5) simplifies 
to: 

o, 

or, - m 
da 
crt (6) [ v J [a] 

Since the entire system of the al.J ove 
equations has to be solved simultaneously, 
an equation is formed as : 

l-11 ( mv t - a a +.e ) + 1.1. 2 ( £ t - v a ) + 

( 7) 

-
i! where .C' A \ k. U + i;lj v), k and Sj -

snear sti1'fness ahd viscous coef'f'icients of 
soil, 1.1. 1 ,j.l 2 and 1J. 

3 
are arbitrary parame-

ters selected to choose some direction at 

such t11at the dependent variables are most 
simply related in that directions, the 
subscript t or a denotes derivative with 
resnect to t or a. Separating the 
variables of Eq. (7 ), one gets 

.ai = ~i ~~ = ~-DL_ (a> 
da jJ.l 1.1.2 0 

These equalities :viel d 3 possible solutions, 
viz. 

... 1 = 1.1. 2 = o, jJ.3 is arbitra-ry (9a) 



J.L2 - J.L3' 

J.L 2 = J.L 3' 

J.Ll 

f - f.l. l(-

2 ' m 

~q.9(a) through (c) yield da U, and 

l9b) 

(9 c) 

da l ~ l 
dt = ± v fm = ± { m = .± c where, 1!,; = f 
is the tangent modulus and c is the wave 
propagation velocity of tr1e medium. 'l'hese 
are the desired characteristic directions. 
The corresponding characteristic equations 
are 

along da u, E t - f at - g u 

llong da -c, ( l vt - v ) 
dt c a 

+ _;).,_ cl at - a a) + gl = 0 
me c 

Along da 
dt = c, _ ( 1. v +v ) + 

c t a 

+rtcC* 
where g1 = ( ;; 

0
- .l! + 5) and 

. l 
g2= - lmc .f - g) 

(10) 

For mathematical simplicity, a coordinate 
transformation from a - t plane to cp-11 
coordinate systems has been defined as: 

+ 
6 TJ 

6 
6a-

and 

(ll) 

The above transformation changes Eq. (lU) to 

along da u, e: t - fat - g = 0 

along dT) = o, vcp +..L me a + gl 0 
cp 

dcp u,- l 
O"T) + "" u (l2) along = v +mc- 02 "r) 

Each of tnese equations is related to one 
independent variable on+Y· For the incre
mental analysis ~q. (l2J become 

d £ - f. dO' = gdt 

d v + -& do = - g1 dcp 
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-dv + 
__ l_ dO" 

m c = (13) 

1.i:he solution proceeds fr0111 ;mown initial 
condi t,ions alones some non-characteristic 
line. In case of pile subjected to an impact, 
the solution proceeds from the pile head to 
its tip and then to soil column below. The 
slope of the cp - 11 characteristics for the 
pile lenb~h will be ± c for all values of t. 
The velocity of impact is assumed to be known 
and the stress rise :is found out from the 
shock conditions (a=- mcv). Though this 
rise is instantaneous in nature, it is assu
med to increase over a small time increment. 
The velocity and stress increase linearly 
from U at t = 0, to v = vimpact' and 

cr = 0 impact at t = trise· For t ) trise 
th'"' pile head has a stress free condition. 
]'or t £.. t . both a and v are known along , r~se 

a non-characteristic a = 0, while for 
t ) t . only a is known on a = u. 

r~se 

To evaluate the dependent variables in the 
a - t plane, the characteristic equations 
are expanded in their finite dii"ference form 
alont;; taeir correspondin.£ cnaracteristic 
directions. .l:'ie;. 2 (a) snows a scnero.atic 

1 2 4 7 11 t 1 1------- d t ----1 t 

: t 
I 

.------;'R 

B 1------fS 

~chematic ~e~resentation 

representation of the hybrid scheme refering 
to ~i6.2(a), 12 is a typical node on line 
ll-15 on which tlle dependent variables are un
known. cp

1 
- cp 2 is the 11 characteristic 

drawn from 12 which meets 8-9 at cp~ and 

nl - 112 is the cp characteristic drawn from 

12 which meets 7-8 at nr Expanding Eq. (~3) 



with the aid of Taylor's series, over steps 
of lengths h and s along ~ and ~ onarac
teristics respectively, 

v (~2) +m~ a (~2) = v(~l) + m~ a(~l) 
pC 

L. 
n=O (2.- + g) 

me 

p 
(--- g) 

me (14) 

the summation terms appearing from Taylor's 
series expansions. However, v (~ 2 ) = v (~ 2 ) 

and a (<p
2

) = a (1') 2 ) and Eq. (14) can be 

solved simultaneously for velocity and 
stresses at each node. 

The stress-strain behaviour of the soil 
column is considered as bilinearly elastic 
during compressive loadinci and for compre
ssive part of the unloading it is elastic, 
with higner tangent modulus than the previous 
loading, :from the point of velocity reversal. 
1'hus it allows plastic deformation of 1;ne 
soil oolumn. Durin~ tne propagation of wave 
in soil, whenever stress falls below zero, 
a very small value o1· elastic ILlOdulus is 
considered for t.tle soil. 1'his is a crude 
approximation to the real soil behaviour 
because soil cannot take tension and separa
tion may take place under tensile stress 
conditions. A numerical experimentation 
carried out on tne basis of the above assum
ptions indicated unstable conditions, the 
instability being initiated the instant the 
stress wave enters the soil column. The 
sudden change in the value of the soil modu
lus from compressive loading to tensile 
unloadin~ caused a discontinuity on the wave 
front. 

The colwan of soil was replaced by a spring 
dashpot s;rstem as is done in the conventional 
approaches. If ti<e higher order terms are 
neglected, Eq. (14) simplifies to 

v(<p2) + m~ a(p2) = v (pl) + rrl~-- a(pl) 

__::_::5_!~}_ 
m c 
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V(l'} ) - ___J..__ a(lj
2

) 2 m c = 

s }' ( T]l) 

me (15) 

TMSJ:lu O'ig. 2 b) is a typical grid. 1'he 
dependent variables v and l!' are known at T, 
u, and b. ~ is the point on t

2 
where the 

dependent variable are to be :found out. CE 
and DE which represent p and ~ charact eri
stics respectively through E are at slope 
.:t c and they intersect t

1 
line at C and D 

respectively. The increment on the space 
axis is d L i.e. TO=OB = d L and the incre-
ment on time axis is dt. 

d t implies h = s 

OC = CD = c d t (16) 

The interpolated values of the dependent 
variables at G :from the known values of depen
dent variables at 1' and 0 are 

a (pl) ao + 
aT-au 

c d t dL-

v ( rpl) vu + 
v'l:..:.vu 

c d t a .L . 

.II' lcpl) J!' + 
~·:.~.·-.J:u 

c dt etc. ll'l) ---o:-L- . u .L 

.i!.q. (1::>) and \1'/) combine to give 

_vci_ 
2 + 

-~!L (vc-vD) + ~-; a]L- h Fo~ _:1? 

(18) 

m c 

h 

+(a 
0 

+ 

c d t ) 

aT- 2ao+0 B 
+ -----.cd t ) 

2d :L 

(19) 

1'he dependen"t ...-ariables at C and D are 
evaluated by use of linear interpolation. The 
in:L"luence of "tne values of dependent variables 
at :r, .b and v in :r;q. (17) depends on tne ratio 
c d t I d L. By decreasing the space interval 
d L, or increasing the time interval d t, 



points C and D might shift toward T and B 
and the error due to internolation reduced. 
However, reduction in d L will increase 
the amount of computation and error due to 
rounding off, On the other hand, increase 
in d t might reduce thP- number of compu
tations but will increase the error of 
truncation of Taylor's series u.sed in the 
finite difference ex •)c.nslon. i'ioreover, the 
nonlinear behaviouJ: of soil shear resistance, 
whicn has been idealized as ste},)wise linear, 
does not permit a hign value of t:Une 
interval. 

Numerical experimentation was conducted with 
this program to find the effect of time-step, 
length of the Ei.ement of tae pile and the 
effect of spring stiffness which introduces 
the nonlinearity in the wave equation throueh 
the shear resistance term. A concrete pile 
of 12'' 1/ (30.48 em) and of length 80 ft. 
( 24. 4. m) with a capblock and a ram was 
chosen for this experimentation. The

3
stiff

ness of soil was selected as 40 lb /in • 

(1.1 kg/cm3), It is observed that the time 
displacement curve for the method oi' cil8.rac
teristic always lies much above the explicit 
finite difference scheme (Smith's approach), 
l!'or a time increment of u. 00025 sec and 
elemental length of lU ft. (3, 05 m) each, 
the maximum penetration in the explicit 
finite difference scheme was 1.38 in. (3.5 
em) and that for characteristic scheme was 
0. 96 in. ( 2. 44 c ·) and the rebound was 0. 3 in 
in (7,6 em) and 0.48 in (1.22 em) respecti
vely, for tne assumed quake factor of U,l in. 
( u. 2:i em). Values of time step (U. uuul, 
u.UUU25 and u.uuu5U sec) do not cha.n~e the 
time-displacement pattern appreciably, as 
also the length of the pile element consi
dered lU :ft. (3. v5 m) and 5 ft (1. 52 m). 
But, when the element length is increased 
to 2U ft. (6.1 m) the time-displacement 
curves cll8.nge signific1:1ntly. It clearly 
indicates that d t < d iJ fcp cannot be the 

only criterion for conver.:;ence • .l!'ig.3(c) 
and (d) compare the time-displacement 
curves from both the metnods for shear 
resistance of 120 lb/in 3 (3. 3 kg/cm 3

) and 

2UU lb/in3 (5.5 kg/cQ3): Higher shear 
resistance introduces strong nonlinearities 
through the shear force term but it is 
observed tiJ.at \·rith time interval of u, 00025 
sec and elemental length of lu ft (3.05 m), 
a stable solution can be achieved. 

Fig, 4 shows the distribution of displace
ment along the length at 2 selected elapsed 
times 0,01 sec. and 0.02 sec. The same 
12 1 ' V (30.48 em) concrete pile of 80ft 
(24.4 m) length and soil stiffness of 

200 lb/in3 (5. 5 kg/cm3) was selected for 
this study. It is observed that the length
displacement variations are smooth at the 
observed instants. Further study is 
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needed to improve this method. 
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CONCLUSIONS 

The response of a pile to dynamic loadin_s 
can be analyce0 b~r the met.!wd of c.i:.~aracteri
stics. A f'ormulation is presented for a pile 
subjected to an impact. i'ne efrect ot· shock 
front arising out of abrupt chances i.t. 
dependent variai.Jles, is incorporated in 1.nc 
analysis. A nwnerical scheme to solve the 
equations is developed. 1'he resu..l ts obtained 
±'rom this method are compared wi tn those 
obtained from ~mith's appl·oach. 
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