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Triple differential cross section measurements for the electron-impact ionization of the highest oc-
cupied molecular orbitals of tetrahydropyran and 1,4-dioxane are presented. For each molecule, ex-
perimental measurements were performed using the (e,2e) technique in asymmetric coplanar kine-
matics with an incident electron energy of 250 eV and an ejected electron energy of 20 eV. With
the scattered electrons being detected at −5◦, the angular distributions of the ejected electrons in
the binary and recoil regions were observed. These measurements are compared with calculations
performed within the molecular 3-body distorted wave model. Here, reasonable agreement was ob-
served between the theoretical model and the experimental measurements. These measurements are
compared with results from a recent study on tetrahydrofuran [D. B. Jones, J. D. Builth-Williams,
S. M. Bellm, L. Chiari, C. G. Ning, H. Chaluvadi, B. Lohmann, O. Ingolfsson, D. Madison, and
M. J. Brunger, Chem. Phys. Lett. 572, 32 (2013)] in order to evaluate the influence of structure on
the dynamics of the ionization process across this series of cyclic ethers. © 2013 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4813237]

I. INTRODUCTION

Electron-matter interactions play key roles in the pro-
cesses relating to terrestrial and atmospheric phenomena
and plasma processing.1 Recently, positron- and electron-
interactions in biological systems have attracted significant
attention2, 3 owing to the large number of secondary electrons
that are produced from a single ionizing particle.4 Here, the
low-energy secondary electrons can deposit energy through
ro-vibrational or electronic excitations or induce damage to
the system through ionization or dissociative electron attach-
ment processes.5 In particular, recent studies have revealed
that low-energy electron interactions with DNA can induce
single and double strand breakage.6, 7 This has created a press-
ing demand for electron-impact collision cross section data
with biological analogues that can be used for simulating
radiation-induced damage to biological media. Further, colli-
sion cross section data may also provide clues for understand-
ing radiation-induced phenomena in larger macro-molecular
environments.

The experimental difficulties in measuring collision cross
sections for many biological species have, however, limited

a)Authors to whom correspondence should be addressed.
Electronic addresses: darryl.jones@flinders.edu.au and
michael.brunger@flinders.edu.au.

the availability of data. This is particularly true for solid tar-
gets, such as the DNA bases. As such, it is imperative that
theoretical models be developed that can accurately simulate
data for species for which no experimental data are currently
available. In this respect, studies on electron-induced phe-
nomena on a series of chemically similar compounds serve
as a method for providing benchmark experimental cross sec-
tion data that can test and assess the limitations of the the-
oretical models. Such studies represent an important step in
understanding how the structure of a species can influence
the electron scattering phenomena. In this vein, we have re-
cently extended some of our earlier studies on individual
biomolecules8–14 to chemically similar compounds in an at-
tempt to further understand the role of structure and kinemat-
ics on the dynamics of electron-impact ionization.15

Building on that work, we present a dynamical (e,2e)
investigation to compare the electron-impact ionization pro-
cess across a series of cyclic ethers: tetrahydrofuran (THF,
C4H8O), tetrahydropyran (THP, C5H10O), and 1,4-dioxane
(C4H8O2). These species are shown schematically in Fig. 1.
Note that previous measurements of total cross sections for
electron16, 17 and positron scattering18 from series of struc-
turally related cyclic ethers have been useful in establish-
ing trends in their scattering phenomena. Further, they have
revealed the potential for constructing functional forms for
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FIG. 1. The structure of the cyclic ethers: (a) tetrahydrofuran, (b) tetrahy-
dropyran, and (c) 1,4-dioxane.

describing the total scattering cross section in both the elec-
tron and positron scattering cases. As such, a dynamical (e,2e)
investigation of these cyclic ethers may provide key insights
into the nature of ionization phenomena.

In this paper, we therefore supplement the existing data
for electron-impact dynamical ionization of THF12–15 with
the first dynamical (e,2e) measurements for THP and 1,4-
dioxane. Specifically, we present triple differential cross sec-
tion (TDCS) measurements for the ionization of the highest
occupied molecular orbital (HOMO) for each of these species.
For these cyclic ethers, the HOMOs are expected to be domi-
nated by the non-bonding out-of-plane lone-electron pair con-
tributions from the oxygen atom(s). With qualitatively similar
orbital structures for each target, the present results may thus
be expected to provide detailed information into the influence
that structure plays on the dynamics of the electron-impact
ionization process. For our TDCS measurements, we select
kinematical conditions that fall below the bound Bethe ridge
condition. In our previous work on large biomolecules, these
kinematical conditions exhibited the most sensitivity regard-
ing the observed binary to recoil peak ratios.

The paper is organized as follows. In Sec. II, we present
our experimental details and measurement techniques. This is
followed by a discussion of the theoretical methods employed
in Sec. III. We next provide a summary of the spectroscopy of
the cyclic ethers, and how it impacts on their electron scatter-
ing phenomena. Our results are then presented and discussed
in Sec. V. Following this, the conclusions drawn from this
investigation are summarized.

II. EXPERIMENTAL METHOD

Triple differential cross sections for the electron-impact
ionization of cyclic ethers have been measured under coplanar
asymmetric kinematical conditions using a (e,2e) coincidence
technique. These processes are described by

e−
0 (E0, p0) + T → T +(∈i , q) + e−

a (Ea, pa) + e−
b (Eb, pb),

(1)
where the target, T, is either THP or 1,4-dioxane. In Eq. (1),
Ej and pj (j = 0, a, or b) are the energies and momenta of the
incident, scattered, and ejected electrons, respectively. Here
the conservation of energy during the collision determines the
binding energy (∈ i) of the ionized orbital:

∈i= E0 − (Ea + Eb). (2)

Likewise, the recoil momentum of the target ion is determined
by the conservation of momentum:

q = p0 − ( pa + pb). (3)

In the present experiments, the incident electron and ejected
electron energies are fixed at E0 = 250 eV and Eb = 20 eV,
respectively. The scattered electron is detected at a fixed polar
angle, θa = −5◦, made with respect to the incident electron
beam direction. The momentum of the scattered electron de-
fines the momentum transferred to the target:

K = p0 − pa. (4)

Under the conditions where the ejected electron is in a direc-
tion close to that of the momentum transfer direction (+K),
all momentum transferred to the target is absorbed by the out-
going electron. This minimizes the recoil momentum magni-
tude, and the collisions are said to be binary. Similarly, when
the electron is directed in the direction opposite to that of the
momentum transfer (−K), the recoil momentum of the resid-
ual ion is at its maximum, and the collisions are said to be
recoil in nature.

The full details of our experimental apparatus and mea-
surement procedure have been described previously,13, 19 so
only a brief summary is repeated again here. An electron
beam of fixed energy, E0 = 250 eV, is generated through the
thermionic emission of a tungsten filament. The emitted elec-
trons are then accelerated, collimated, and focused into the in-
teraction region by a 5-element cylindrical lens stack. The en-
ergy resolution of the incident electron beam was of the order
of ∼0.5 eV (FWHM). The electrons now interact with a pure
beam of the target molecules (either THP or 1,4-dioxane) in-
troduced through a capillary. Here, high purity samples were
degassed by repeated freeze-pump-thaw cycles prior to be-
ing introduced into the system. During the measurements, the
vacuum chamber and sample gas lines were heated to ∼40 ◦C
in order to minimize any absorption onto their surfaces. Scat-
tered (fast) and ejected (slow) electrons, produced in ionizing
collisions with the target beam, were detected in separate an-
alyzers, mounted on independently rotatable turntables. Each
analyzer consisted of a 5-element electrostatic lens, hemi-
spherical energy selector, and channel electron multiplier. Us-
ing standard coincidence timing techniques, the arrival times
of the electrons detected in each analyzer were used to de-
termine if the electrons originated from the same ionization
event.

For each cyclic ether, we measured its binding energy
spectrum (BES, see later). These spectra are obtained at
E0 = 250 eV and Eb = 20 eV, while the scattered and ejected
electron angles are fixed at θa = −10◦ and θb = 75◦, re-
spectively. The BES for each target is obtained by measuring
the number of true coincident events, as the scattered elec-
tron energy is repeatedly scanned over a range of detection
energies. Here, the kinematics for the binding energy spec-
tra measurements are selected to approximate bound Bethe
ridge kinematics, where |K| ≈ | pb|, and we note that the typ-
ical coincidence binding energy resolution of the apparatus
is 1.1 eV (FWHM) as determined from measurements of the
Helium 1s binding energy peak. The kinematical conditions
for the BES measurements were chosen to facilitate compar-
isons with photoelectron spectroscopy and electron momen-
tum spectroscopy measurements by minimizing the influence
of any scattering dynamics.
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In the present work, TDCS measurements for a partic-
ular transition are obtained by fixing the scattered electron
analyzer at θa = −5◦ and by rotating the ejected electron an-
alyzer in the scattering plane. In this way, we obtain angular
distributions for the slow ejected electron. Here we again note
that the incident electron and ejected electron energies are
E0 = 250 eV and Eb = 20 eV, respectively. The selected kine-
matics for our TDCS study now correspond to those below the
bound Bethe-Ridge, and match those employed in our earlier
study on THF.15 Specifically, the magnitude of the momen-
tum transfer, |K| = 0.45 a.u., is much less than the momentum
of the ejected electron, | pb| = 1.21 a.u. As such, a substantial
linear momentum contribution to the outgoing electrons must
arise from the internal momentum of the particles within the
target. Under these conditions, below the bound Bethe-Ridge
condition, the magnitude of the momentum transfer and the
ejected electron’s momentum are comparable to the momen-
tum of the electrons bound to the target. Indeed, this kinemat-
ical condition has been most interesting in terms of our earlier
dynamical (e,2e) studies on large biomolecules.8–14

III. THEORETICAL DETAILS

The present experimental data are compared to theoreti-
cal calculations obtained within a M3DW (molecular 3-body
distorted wave) framework.20–22 These calculations have been
described elsewhere, so only a brief description is repeated
here. The TDCS for the M3DW is given by

dσ

d�ad�bdEb

= 1

(2π )5

kakb

ki

(|Tdir |2 + |Texc|2 + |Tdir − Texc|2
)
, (5)

where �ki , �ka , and �kb are the wave vectors for the initial, scat-
tered, and ejected electrons, respectively, Tdir is the direct
scattering amplitude, and Texc is the exchange amplitude. The
direct scattering amplitude is given by

Tdir = 〈
χ−

a (�ka, r1)χ−
b (�kb, r2)Cscat−eject

(
rave

12

)
× ∣∣V − Ui

∣∣φOA
DY (r2)χ+

i (�ki, r1)
〉
. (6)

Here r1 and r2 are the coordinates of the incident and the
bound electrons, χ i, χa, and χb are the distorted waves for
the incident, scattered, and ejected electrons, respectively, and
φOA

DY (r2) is the initial bound-state Dyson molecular orbital av-
eraged over all orientations. Under the frozen orbital approx-
imation, the Dyson orbital can be approximated using the ini-
tial bound Kohn-Sham orbital. The molecular wave functions
were calculated using density functional theory (DFT) along
with the standard hybrid B3LYP23 functional by means of the
ADF 2007 (Amsterdam Density Functional) program24 with
the TZ2P (triple-zeta with two polarization functions) Slater
type basis sets. The factor Cscat−eject (rave

12 ) is the Ward-Macek
average Coulomb-distortion factor between the two final state
electrons,25 V is the initial state interaction potential between
the incident electron and the neutral molecule, and Ui is a
spherically symmetric distorting potential which is used to
calculate the initial-state distorted wave for the incident elec-

tron χ+
i (�ki, r1). For the exchange amplitude Texc, particles 1

and 2 are interchanged in Eq. (6).
The Schrödinger equation for the incoming electron

wave-function is given by

(
T + Ui − k2

i

2

)
χ+

i (
−→
ki , r) = 0, (7)

where T is the kinetic energy operator and the “+” superscript
on χ+

i (�ki, r) indicates outgoing wave boundary conditions.
The initial state distorting potential contains three compo-
nents Ui = Us + UE + UCP, where Us contains the nuclear
contribution plus a spherically symmetric approximation for
the interaction between the projectile electron and the target
electrons, which is obtained from the quantum mechanical
charge density of the target. The charge density is obtained
by summing 2 |φDY| 2 over all occupied orbitals (the 2 is for
double occupancy and the original non-averaged Dyson or-
bital is used). The nuclear contribution to Us is the interaction
between the projectile electron and all the nuclei of the re-
spective molecular target averaged over all orientations. Av-
eraging the nuclei over all orientations is equivalent to putting
the nuclear charge on a thin spherical shell whose radius is the
distance of the nuclei from the center of mass (CM).

For THP, there are no nuclei located at the CM. The clos-
est nuclei to the CM are the 2 carbon nuclei at 2.699 a0.
Consequently, the first nuclear sphere is constructed with
a summed charge of 12 with a radius of 2.699 a0. The
next sphere describes the oxygen nucleus with charge 8 at
2.700 a0. The third sphere is constructed for another two car-
bon nuclei with a total charge of 12 at a radius of 2.753 a0,
while the fourth sphere contains one carbon nucleus with a
charge of 6 at a radius of 2.774 a0. The fifth sphere has two
hydrogen nuclei with a total charge of 2 at a radius of 3.728 a0,
while the sixth sphere describes one hydrogen nucleus with a
charge of 1 at 3.823 a0. The next 6 hydrogen nuclei are de-
scribed by 3 spheres of charge 2 with radii of 3.827, 4.601,
and 4.645 a0, respectively, and the last sphere has 1 hydrogen
nucleus with charge 1 at 4.681 a0.

For 1,4—dioxane, also there are no nuclei found at the
CM. The first nuclear sphere has 4 carbon nuclei with a total
charge of 24 at a radius of 2.639 a0. The next sphere has 2
oxygen nuclei with charge 16 at 2.668 a0, while the 8 hydro-
gen nuclei are described by 2 spheres of charge 4 with radii of
3.707 and 4.521 a0, respectively. Note that we present the radii
to three decimal places to distinguish the closely spaced nu-
clear spheres, not because we necessarily believe that we have
this level of numerical accuracy in our calculations. Note that
the corresponding details of our calculations on THF can be
found elsewhere.15

UE is the exchange potential of Furness-McCarthy (cor-
rected for sign errors),26 which approximates the effect of the
continuum electron exchanging with the passive bound elec-
trons in the molecule, and UCP is the correlation-polarization
potential of Perdew and Zunger27 (see also Padial and
Norcross28).

In Eq. (6), the final state for the system is approxi-
mated as a product of distorted waves for the two con-
tinuum electrons (χ−

a , χ−
b ) times the Ward-Macek average
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FIG. 2. Electron momentum profile and spatial representation of the HOMO
for each cyclic ether. (a) 9b ( · · · ), 12a′ (– –), and the conformational average
of the 9b + 12a′ (—) orbitals of THF; (b) 15a′ orbital of THP; (c) 8ag orbital
of 1,4-dioxane. See text for further details.

Coulomb-distortion factor Cscat − eject. The final state distorted
waves are calculated the same as the initial state except that
the final state charge density is used to calculate Us. The final
state charge density is obtained the same as the initial state
except that unity occupancy is used for the active electron
orbital. Additional details can be found in Madison and Al-
Hagan.29

To assist in the interpretation of the scattering phenom-
ena, theoretical calculations to optimize the geometries and
calculate molecular properties have been performed at the
B3LYP/aug-cc-pVDZ level using GAUSSIAN 09.30 These cal-
culations have been utilized to generate electron momen-
tum profiles for each target,31 with the results being given in
Fig. 2.

IV. STRUCTURE AND SPECTROSCOPY OF CYCLIC
ETHERS

The structures of the cyclic ethers have attracted consid-
erable interest.32–35 On the one hand, THF has a relatively
flat 5-member ring that possesses puckering out of the pla-
nar configuration, with the flatness of this ring structure pro-
ducing a number of conformations that lie close in energy.
Further, low potential energy barriers for pseudo-rotation be-
tween its conformations enable essentially free rotation be-
tween minima.32, 33 As such, THF exists in conformers with
either C2 or Cs symmetry found along the pseudorotation
coordinate.32, 33 On the other hand, it has been well estab-
lished that both THP and 1,4-dioxane exist in their lowest
energy chair conformations.34, 35 These, respectively, have Cs

and C2h symmetries. In the interest of making fruitful com-
parisons regarding the behavior of these three cyclic ethers,

we consider THF through an average over the C2 to Cs con-
formations; with experimental results having revealed that
both conformations exist in near equal proportions at room-
like temperatures.32, 33 As our experiment is performed un-
der room-like temperature conditions, this is a reasonable ap-
proximation given the complexity of the calculations. The
full details of this averaging approach have been described
elsewhere.15

Information regarding the ionization of the cyclic
ethers has been obtained by ultraviolet photoelectron spec-
troscopy (PES),36–38 Penning ionization electron spec-
troscopy (PIES),36 and electron momentum spectroscopy.33, 39

In all the species under consideration, the HOMO is well sep-
arated from the other orbitals. Here the HOMOs are 9b +
12a′, 15a′, and 8ag for THF, THP, and 1,4-dioxane, respec-
tively. The calculated electron momentum profiles and spatial
representation for the HOMO of each species are presented
in Fig. 2. Each of these orbitals is dominated by the out-of-
plane lone electron pair from the oxygen atom(s). Here, the
structure of the target allows for varying degrees of interac-
tion between the lone-electron pair and the carbon ring struc-
ture, with the non-bonding lone-electron pair interaction with
the carbon frame increasing, as the structure changes in going
from the relatively flat THF molecule to the chair conforma-
tion of THP. These interactions are further enhanced in 1,4-
dioxane where there are also through-bond interactions that
couple the lone-electron pair contributions from each of the
oxygen atoms found in the ring. Note that this through-bond
interaction energetically splits the molecular orbitals cor-
responding to the symmetric/asymmetric lone electron pair
contributions.

The coupling of the lone-electron pair contributions to
the carbon frame is particularly evident from the calculated
electron momentum distributions presented in Fig. 2. Note
that our calculated electron momentum profiles for THF and
1,4-dioxane are in reasonable qualitative agreement with mea-
sured electron momentum profiles from independent electron
momentum spectroscopy experiments.33, 39, 40 To our knowl-
edge, there are no other theoretical or experimental data for
the electron momentum profile of the HOMO of THP with
which we can compare our calculation. Here we see that the
electron momentum profiles for each species have two dis-
tinct features. Namely, there is the oxygen lone-electron 2p
contribution that gives the local maxima at about 1.0–1.3 a.u.
and the σ -contribution from the carbon frame at momentum
|p| ∼ 0 a.u. In Fig. 2 we also see discernible trends in the
electron momentum profiles, with the σ -contribution increas-
ing from THF to THP and then to 1,4-dioxane, as the lone-
electron pair(s) have larger interactions with the carbon frame.
Note that the delocalization of the lone-electron pair through
the carbon frame reduces the overall magnitude of the 2p oxy-
gen contribution and shifts its peak to a higher momentum
value. These peak values have intensities of 0.044, 0.035, and
0.030 and are located at 1.00, 1.16, and 1.24 a.u. for THF,
THP, and 1,4,-dioxane, respectively. In 1,4-dioxane, this re-
distribution of intensity in the electron momentum profile is
also expected to be influenced by the interference effects of
having O(2p) contributions located on separated atoms, the
so-called bond-oscillation phenomenon.41
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While the structural changes across the series of cyclic
ethers significantly affect the momentum distributions, these
structural variations may have a minimal bearing on the scat-
tering dynamics in the ionization of the HOMO for these
species. Here the localized geometric perturbations surround-
ing the oxygen atom, in expanding the ring structure to ac-
commodate the additional C atom in going from THF to THP,
appear to be negligible. Specifically, the two closest C-atoms
to the primary oxygen ionization site have bond distances of
1.43 Å, while making COC angles of ∼111◦–112◦ for both
THF (C2) and THP. Note that for the THF (Cs) conformer,
it has the same bond distances with a slightly smaller COC
angle of 106◦. Further, the CO bond distances and COC an-
gles are also 1.43 Å and 111◦, respectively, for 1,4-dioxane.
We note that recent TDCS calculations on methane have re-
vealed that a delocalization of the nuclear charge reduces
the electron-nuclei post-collision interaction.42 Bearing this
in mind, perhaps of most importance in understanding ioniza-
tion scattering dynamics is the proximity of the surrounding
nuclei to the primary ionization site. We will examine this no-
tion again later.

V. RESULTS AND DISCUSSION

In Fig. 3, the binding energy spectrum for each of the
cyclic ethers is presented. Recall that all of these BES have
been obtained under conditions where the incident electron
is 250 eV, the scattered electron is detected at θa = −10◦,
and the ejected electron is detected at θb = 75◦ with an en-
ergy of 20 eV. For each species, we note reasonable agree-
ment regarding the location of features in the binding energy
spectra with those previously observed in the PES and PIES
experiments.36, 38 Each binding energy spectrum has been de-
convolved using Gaussian functions whose widths represent
the combination of the coincidence energy resolution from
the experimental apparatus and the line widths of the ion-
ization transitions, as estimated from the respective photo-
electron spectra. This deconvolution procedure suggests that
the HOMO of THP may be completely resolved from the
other molecular orbitals. For THF (conformer independent)
and 1,4-dioxane, while PES reveals that the HOMOs are well
separated from the next highest occupied molecular orbitals
(NHOMO), the limited energy resolution of our spectrome-
ter suggests that the HOMOs may not be completely resolved
from the NHOMOs in our measurements for these species.
However, the NHOMO contribution to the HOMO peak in
the BES would still be very small in these cases.

Figures 4(a)–4(c) show the experimental and theoreti-
cal TDCS results for the electron-impact ionization of the
HOMOs of THF, THP, and 1,4-dioxane. For each cyclic ether,
the cross sections have been measured with the incident elec-
tron having an energy of 250 eV and the scattered electron
being detected at θa = −5◦. Once again the ejected electron
is detected with an energy of 20 eV. Note also that our exper-
imental measurements are relative, and to place them on the
absolute scale they have been independently normalized to the
M3DW theory in each case at θb = 65◦. While we note that
experimental techniques exist for placing the (e,2e) measure-
ments on an absolute scale,43 such techniques are not possible

FIG. 3. Measured binding energy spectra (●) for (a) THF, (b) THP, and
(c) 1,4-dioxane. Also shown are the spectral deconvolutions of the measured
spectra into contributions from each orbital feature (– –) and their sum (—).
See text for further details.

here owing to the complexity of the ionization spectra for such
large molecules. We further note that the quite large statistical
uncertainties in our TDCS in Fig. 4 arise from the difficul-
ties in performing coincident measurements under the present
kinematical conditions.

Considering Fig. 4, it is immediately apparent that the ex-
perimental binary peak for each species is particularly broad.
Comparing these experimental results with those calculated,
we observe that the width of the binary feature in each species
is largely underestimated by the M3DW calculations. A pos-
sible exception to this is for 1,4-dioxane, where the M3DW
calculation gave a broader peak than that calculated for either
THF or THP. Although, even in this case, the M3DW cross
section decreases more rapidly in magnitude than the experi-
mental data at the larger ejected electron scattering angles (θb

= 110◦–120◦) in the binary region. The M3DW calculations
of the cyclic ethers in this binary region are also particularly
interesting, and those details are now discussed in turn.

First, the magnitudes of the cross sections for THF, THP,
and 1,4-dioxane in the binary region are comparable. This
may be somewhat expected as the HOMOs for the cyclic
ethers are quite similar in their nature. Second, the maxi-
mum binary cross section intensity is calculated to be at 60◦,
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FIG. 4. Triple differential cross sections for the electron-impact ionization
of the HOMOs of (a) THF (conformational average of the 9b + 12a′),
(b) THP (15a′), and (c) 1,4-dioxane (8ag) with E0 = 250 eV and Eb
= 20 eV. Measured experimental data (●). The M3DW calculation results
(—) are also presented for each orbital or conformational average of con-
tributing orbitals. Additionally shown are the TDCS contributions from the
9b (– –) and 12a′ ( · · · · · ) orbitals of THF, after being weighted by their
respective conformer populations. See text for further details.

55◦, and 61◦ for THF, THP, and 1,4-dioxane, respectively.
Here we note that the momentum transfer direction, under
these kinematical conditions, for each of these cyclic ethers is
52◦. The M3DW calculation gives larger shifts away from the
momentum transfer direction for THF and 1,4-dioxane than
that calculated for THP. Unfortunately, the broad nature and
rather large statistical uncertainty, on the experimental data
for the binary feature, does not allow us to make a quantita-
tive assessment of any possible experimental shift in the bi-
nary peak.

Shifting our discussion to the recoil region, prominent
recoil peaks are observed in the experimental data for each
species. In this case, we observe in Fig. 4 that the strength
of these recoil features, relative to that observed for the bi-
nary features, changes between the 5- and 6-member rings.
For THF, the recoil peak is about a third of the intensity of
the binary peak, while it is about two-thirds of the intensity of
the binary peak for both THP and 1,4-dioxane. Interestingly,
the experimental recoil data reveal quite broad flat features for
both THF and THP, when the errors on the data are allowed
for, while there is evidence of a quite prominent peak cen-
tered at θb = 260◦ for 1,4-dioxane. While significant experi-

mental intensity is observed in the recoil region for each of the
cyclic ethers, the M3DW model greatly underestimates the re-
coil feature intensity for each species. The absence of any im-
portant theoretical recoil peak contribution has also been ob-
served in our earlier studies on large biomolecules.9, 10, 15 This
is attributed to weak electron-nuclear scattering arising from
the need to spread the nuclear charge in the calculation over
large spherical shells, in order to perform the spherical aver-
aging over the random orientation of the molecule. The key to
unlocking this information may involve considering the local-
ized ionization of the lone-electron pair on an oxygen atom,
however, such calculations are limited by the complexity in
performing scattering computations on open-shell targets.

The trend in the measured binary to recoil ratios across
the series of cyclic ethers is also quite interesting. Previously
Xu et al.44 have suggested that the origins of the observed
binary-to-recoil ratio may be related to the electron momen-
tum profile of the ionized molecular orbital. In earlier studies
on THF,12–15 the behavior of the binary to recoil ratios with
respect to the variations in kinematical conditions could be
qualitatively explained by relating the kinematical conditions
to the ionized orbitals electron momentum profile. However,
comparisons between the cross sections of THF and THFA15

also revealed that the target molecular structure must play a
role in the observed binary-to-recoil ratio. The cyclic ethers
thus present an opportunity to discover the extent by which
electron momentum profiles may influence the scattering dy-
namics. In the present work, the geometric perturbations in
expanding the 5-member ring structure to accommodate the
additional C-atom are negligible in going from THF to THP,
such that any contribution arising from electron-nuclei scat-
tering may be similar if the scattering dynamics are dominated
by the nuclei closest to the ionization site. We now evaluate
if the electron momentum profile can provide any clues for
explaining the observed binary-recoil ratios in this series of
structurally related cyclic ethers.

To assist in this discussion, the electron momentum pro-
files of Fig. 2 have now been plotted together in Fig. 5. Under
the present kinematics below the bound Bethe-ridge condi-
tion, where substantial linear momentum contributions must
arise from the internal momentum of the target particles, the
range in magnitude of the recoil momentum values covered
by the experiment in going from the binary to recoil region is
|q| = 0.77–1.66 a.u. Note that under such low-incident elec-
tron energy and low momentum transfer collisions, there is no
guarantee that the recoil momentum is equal and opposite to
the momentum of the bound electron at the time of ionization,
as in electron momentum spectroscopy experiments,45 how-
ever it may still provide insight into the observed physical be-
havior. Considering Fig. 5 in the momentum range 0.77–1.66
a.u., the electron momentum profile for the HOMO of THF
starts at a higher intensity and decreases rather more rapidly
than that for the HOMO of either THP or 1,4-dioxane. This
observation may thus explain why the recoil peak intensity,
relative to that observed for the binary, is lower for THF when
compared to THP and 1,4-dioxane. Note also that the similar
electron momentum profiles in this recoil momentum range
for THP and 1,4-dioxane may also explain the similar binary
to recoil peak intensities observed for those species.
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FIG. 5. Electron momentum profiles for the 9b + 12a′ orbitals of THF (—),
the 15a′ orbital of THP ( · · · ), and the 8ag orbital of 1,4-dioxane (– –), now
plotted on the one graph. See text for further details.

With the clues for the observed scattering behavior be-
tween THF and THP possibly being qualitatively described by
their respective momentum distributions, it appears as though
5- and 6-member rings exert similar effects on the scatter-
ing dynamics. This result may be somewhat expected, as the
geometric perturbations in expanding the ring structure to ac-
commodate the additional C-atom may be negligible here. It
is interesting to note that this behavior is markedly different
from an earlier comparison between THF and THFA, where
the addition of the exocyclic group appeared to perturb the
scattering dynamics despite the electron momentum profiles
of the two targets being similar. All of these observations ini-
tially suggest that we may be able to separate contributions
from the orbital behavior and the scattering dynamics to the
measured TDCS. This in particular alludes to the possibility
of identifying key structural moieties that can be utilized for
the purpose of modeling the scattering dynamics of the ion-
ization process in combination with quantum chemical calcu-
lations.

VI. CONCLUSION

We have presented results from the first dynamical study
of the electron-impact ionization of tetrahydropyran and 1,4-
dioxane. Here the measured binding energies for each species
were found to be in good agreement with earlier photoelectron
spectroscopic measurements. The chosen kinematical condi-
tions enabled a comparison with our earlier measurements on
tetrahydrofuran in order to study the dynamics of the ioniza-
tion process over a series of structurally related cyclic ethers
under kinematics that fall below the bound Bethe ridge con-
ditions. Across this series of cyclic ethers, the binary peak
structures were seen to be quite broad with their widths gen-
erally being underestimated by our theoretical calculations.
For each of the cyclic ethers, significant recoil peak inten-
sity was observed and this was also largely underestimated by
the present theoretical calculations. Our calculated electron
momentum profiles suggest that they may yet provide key in-

formation into explaining the observed binary-recoil ratios in
this kinematic regime. The present results also hint at the pos-
sibility for separating the orbital and structural contributions
to the scattering phenomena under dynamical (e,2e) condi-
tions. This would represent an important step in improving
quantitative models for ionization phenomena in larger com-
plex systems.
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