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Direct measurement of oscillations between degenerate two-electron bound-state
configurations in a rapidly autoionizing system

Heider N. Ereifej and J. G. Story
Department of Physics, University of Missouri–Rolla, Rolla, Missouri 65409-0640

~Received 15 February 2000; published 18 July 2000!

In this paper we report a direct observation of the oscillation between bound-state configurations in a rapidly
autoionizing system. Calcium atoms were excited to a pure 4p3/2nd two-electron configuration using a 500-
fsec laser pulse. The initial 4p3/2nd doubly excited state is energy degenerate with the 4p1/2n8d states and
several continuum channels. Because of the short-pulse excitation, the initial state of the atom is not an energy
eigenstate, but a nonstationary wave packet. As a result, oscillations between the two bound configurations
were produced. These oscillations were measured by scanning the timing of a second 500-fsec laser pulse
tuned to drive the 4p1/2n8d ionic state back down to the 4sn8d singly excited configuration, which was
subsequently detected using selective field ionization. A simple theoretical model was used to model the
experimental results and produced good agreement with the data.

PACS number~s!: 32.80.Rm, 33.80.Rv

I. INTRODUCTION

Multichannel quantum defect theory~MQDT! @1–5# with
the isolated core excitation~ICE! technique@6–8# have been
used extensively and successfully to characterize the com-
plex spectra of many two-electron configurations@9#. In par-
ticular, doubly excited states above the first ionization limit
played an important role in understanding the electron-
electron interaction@10,11#. These doubly excited states are
generally produced using ICE, in which one of the ground-
state electrons is optically excited to a high Rydberg state,
thus isolating the Rydberg electron from the ionic core. After
some time, a second photoexcitation promotes the core elec-
tron to an excited state, producing a doubly excited state.
Above the first ionization limit the eigenstates of the atom
are a mixture of a number of bound and unbound configura-
tions. The addition of the continuum configurations results in
autoionizing states.

Using a short-pulse laser~shorter than the classical Ryd-
berg orbit period!, the system can be prepared to occupy a
single bound configuration, resulting in a nonstationary state
@12,13#. These states are not energy eigenstates of the atom
and thus have a time-dependent probability distribution that
can be monitored as the system evolves in time. The transfer
of electron population between degenerate bound and con-
tinuum configurations is made possible through the Coulomb
interaction during collisions between the core electron and
the Rydberg electron. The decay of these nonstationary wave
packets was successfully modeled in 1991 by Wang and
Cooke@14# for the case when a short-pulse laser in conjunc-
tion with ICE is used to create these wave packets. A more
general MQDT description of the wave packets in two-
electron systems has been given by Henle, Ritsch, and Zoller
@15#.

The optical Ramsey method or bound-state interferometry
@16–19# has been used successfully to monitor the decay of
these nonstationary wave packets@20#. In this method, two
identical short-pulse lasers were used to create two wave
packets and the interference signal between these two wave

packets was monitored as the timing between the two laser
pulses was scanned. From the interference signal it was pos-
sible to measure the similarity between the wave packet at
time t and the wave packet att50. A large interference
signal corresponds to the two wave packets being very simi-
lar, which indicates that the atom is in the same state. As a
result the population in the initial state can be probed as a
function of time. Recently, two experiments have been per-
formed in which a more direct measurement of the evolution
of these wave packets has been made. In the first, a time-of-
flight electron detector was used, which showed a nonexpo-
nential decay in the autoionization of a shock wave packet
@21#, and in the second experiment, which used an atomic
streak camera@22,23#, it was shown that with the application
of a static electric field the decay of these wave packets can
be altered@24#.

In this paper we present a simple and direct measurement
of the time evolution of the 4p1/2n8d doubly excited states in
calcium. The measurement shows an oscillatory behavior be-
tween the energy-degenerate 4p3/2nd and 4p1/2n8d doubly
excited channels for the case when the atom att50 was
prepared in a pure 4p3/2nd state. To our knowledge this is
the first direct measurement of this oscillation. In addition,
our data suggest that in this energy range autoionization oc-
curs primarily while the wave packet is occupying the
4p3/2nd channel. A simple theoretical model is presented
that shows a rather good agreement with the experimental
results.

II. EXPERIMENTAL PROCEDURE

As shown in Fig. 1, nsec dye laser pulses were used to
promote the ground state of calcium to the 4s19d Rydberg
state. About 50 nsec later the Rydberg atoms were exposed
to a 393.5-nm, 500-fsec laser pulse tuned to excite the
4s19d-4p3/219d transition. This state is energy degenerate
with the 4p1/2n8d doubly excited states and with several
continuum channels. The excitation with the short laser pulse
produced a nearly pure 4p3/219d state, since the excitation
time was shorter than the autoionization lifetime of this state.
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As a result a nonstationary two-electron wave packet was
produced. After the laser excitation, the wave packet evolved
into degenerate bound and continuum dielectronic configu-
rations. This evolution was monitored by using a second
397-nm, 500-fsec laser pulse, tuned to stimulate the atoms
from the 4p1/2n8d doubly excited state back down to the
4sn8d singly excited neutral configuration. The resulting
4sn8d states live for several microseconds, which allowed a
selective field ionization detection of these states to be per-
formed. A direct and complete monitoring of the evolution
of these autoionizing states was made possible by simply
changing the timing between the first and second short-pulse
lasers.

The short laser pulses were produced using an amplified
self-mode-locked Ti:sapphire laser. The system produced
about 4-mJ, 100-fsec laser pulses with a repetition rate of 20
Hz. The full width at half maximum of the amplified short-
pulse laser was about 10 nm, with central wavelength at 790
nm. With this much spectral width, it was possible to pro-
duce both the core laser wavelengths from a single laser
beam simply by splitting the beam into two parts and using
two separate 1.2-cm potassium dihydrogen phosphate~KDP!
doubling crystals, with each tuned to the proper core laser
wavelength. By doing so, we were assured of nearly zero
temporal jitter between the two short pulses. Each of the
laser beams had a variable optical path length which allowed
continuous scanning of the delay between the two laser
pulses. The KDP doubling crystals limited the pulse band-
width to about 30 cm21, which corresponds to approximately
500-fsec laser pulse duration.

The experiment was performed in a vacuum chamber with
background pressures in the low 1027 Torr. All the lasers
entered the chamber from a window on the side and inter-
acted with the calcium atomic beam at a right angle. The
atomic beam was produced by a resistively heated effusive
stainless steel oven that produced an atomic density of about
109 atoms/cm3. Capacitor plates were placed above and be-
low the interaction region with a screen mesh in the top
capacitor plate, which allowed electrons to pass. Above the
interaction region a pair of microchannel plate charged-
particle detectors were used to monitor the electrons pro-
duced in the experiment. Detection of the final 4sn8d elec-
tron population was accomplished using a ramped negative
voltage applied on the lower capacitor plate. The ramped
voltage was applied at about 100 nsec from the firing of the
short-pulse laser. The electric fieldE that is required to field-
ionize a state with principal quantum numbern can be cal-
culated usingE51/16n4 a.u. For the case when a ramped
electric fieldE(t) was used, the atom was subjected to an
increasing electric-field value. As a result, states with larger
principal quantum numbern will field-ionize earlier in time
than states with smallern values. This technique allowed the
measurement of the population distribution in the finaln
states to be made.

The experiment consisted of tuning the Rydberg laser to
different initial Rydberg states~n518, 19, and 20!. In each
case the population in the 4p1/2n8d doubly excited state was
measured as the timing between the two short-pulse lasers
was scanned.

III. THEORY

To probe the evolution of these doubly excited states, let
us consider first the case when a series ofN noninteracting
Rydberg statesuf i& interact with a bound ‘‘perturber’’ state
ufp&. The eigenstate of the system at a given energy (Ej )
becomes a superposition of the Rydberg states and the per-
turber state,

uc~Ej !&5Cp~Ej !ufp&1(
i 51

N

Ci~Ej !uf i&, ~1!

whereCp(Ej ) andCi(Ej ) are energy-dependent coefficients
that reflect the amounts of the perturber and Rydberg states,
respectively, in the eigenstateuc(Ej )&. In other words, each
eigenstate contains a certain amount of perturber character;
the largest amount will be in the eigenstates with energies
close to the uncoupled perturber’s energy. A simple diago-
nalization exercise shows that the distribution of perturber
character among the eigenstates has a Lorentzian line shape.
The width of the Lorentzian is a measure of the coupling
between the Rydberg states and the perturber state. If a short-
pulse laser~with a spectral width larger than the Lorentzian
width of the perturber character! has coupling only to the
perturber state, then only the eigenstates that have perturber
character will be excited; as a result the excited state will be
the sum of all these eigenstates,

FIG. 1. Excitation diagram for calcium used in the experiment.
The first nsec dye laser pulse excites the 4s2 S0 ground state to a
high Rydberg level (4s19d 1D2). About 50 nsec later a 500-fsec
short-pulse laser promotes the atom to a pure 4p3/219d doubly ex-
cited state. A second 500-fsec short-pulse laser is then used to drive
the transition from the 4p1/2n8d states to the 4sn8d states.
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C~ t !5(
j 51

N

Cp~Ej !exp~2 iE j t !uc~Ej !&. ~2!

HereCp(Ej ) is the perturber character in thej th eigenstate,
which is given by

uCp~Ej !u2}
1

2p

DE

~Ej2Ep!21~DE/2!2 . ~3!

Ej andEp are the binding energies of thej th eigenstate and
the uncoupled perturber state, respectively.DE is the width
of the Lorentzian distribution of the perturber character.

The wave function in Eq.~2! is not an energy eigenstate
of the atom, but a nonstationary wave packet. The evolution
of this wave packet can be monitored by calculating the
population in the initial state~perturber state! as a function of
time. This is simply done by projecting the initial state onto
the wave packet in Eq.~2!, and thus the probability of being
in the initial state is

P~ t !5 z^C~ t50!uC~ t !& z25U(
j 51

N

uCp~Ej !u2 exp~2 iE j t !U2

.

~4!

Comparing this result to the experiment, the perturber
state can be considered to be the 4p3/219d ionic state, and the
Rydberg states are the 4p1/2n8d doubly excited states with
n8>29– 33. In addition to these two bound configurations
we also have continuum channels. The inclusion of the con-
tinuum channels will result in autoionization. Due to the
wave-packet nature of these doubly excited states, the auto-
ionization is not a simple exponential decay@21#, as in the
case of a long laser pulse.

After the short-pulse excitation, the population in the ini-
tial 4p3/219d state will evolve into several other bound and
continuum states. The population that evolves into the con-
tinuum will be lost~autoionization!, but the population that
goes into the bound states (4p1/2n8d) will survive. Some of
this population can then evolve back into the original state,
and as a result an oscillatory configuration is produced.

This oscillation can be monitored by measuring the popu-
lation in either the 4p3/219d or the 4p1/2n8d doubly excited
states as a function of time. In the experiment presented here
the population in the 4p1/2n8d states was measured using a
second short laser pulse tuned to drive the core electron from
the 4p1/2 to the 4s state, thus producing a singly excited
stable atom. The population in the 4p1/2n8d doubly excited
states can be calculated using Eq.~4! ~not including autoion-
ization!,

P4p1/2n8d~ t !5@12P4p3/219d~ t !#. ~5!

In this model we have made the approximation that autoion-
ization can take place only if the system is in the 4p3/219d
state. This assumption was used since the experimental result
showed that, while the wave packet occupied the 4p1/2n8d
states, very little autoionization was recorded. To implement
this situation a simple computer program has been developed
to calculate the population in the 4p1/2n8d states as a func-

tion of time. In each time step the program calculates the
population in Eq.~5! and multiplies it by an autoionization
factor that depends only on the population in the 4p3/219d
state and the rate at which this state will autoionize. As a
result a complete and accurate measurement of the final
population was accomplished.

IV. RESULTS AND DISCUSSIONS

Figures 2~a!–2~c! show a field-ionization signal of the
final 4sn8d states for three different initial Rydberg states,
n518, 19, and 20, respectively. The signal represents the
population distribution in the 4p1/2n8d doubly excited states.
This measurement was achieved by tuning the second short-
pulse laser to drive the 4p1/2n8d-4sn8d transition, thus sta-
bilizing the atom into the bound singly excited state. During
this transition the Rydberg electron population distribution
remained unperturbed since the laser was tuned directly on
the ionic resonance@11#. The final 4sn8d-state population
was measured using selective field ionization.

Figure 3 represents the population in the 4p1/2n8d doubly
excited state as the timing between the two short-pulse lasers
was changed. Att50 the wave packet is in a pure 4p3/219d

FIG. 2. The field-ionization signal of the final 4sn8d states is
shown. In~a!–~c! the Rydberg laser tuning was chosen to populate
one of three possible Rydberg states,n518, 19, and 20, respec-
tively. The large signal at about 200 nsec represents the autoioniz-
ation signal. The ramped electric field was applied;200 nsec after
the short-pulse laser was fired and had a rise time of 4msec, which
produced the time-resolved Rydberg signal seen in~a!–~c!. The
beginning of the ramp is marked on the figure by the solid vertical
line. The signal in~a!–~c! represents the population that evolved
into the 4p1/2n8d states from the initial 4p3/2nd state at a given
time. The data in~a! were for the case whenn518; the evolution
was primarily to threen8 states centered atn8527. In ~b! the initial
state wasn519, and evolution was to about five states centered at
n8531. For the case in~c! the initial state wasn520 and the
evolution was to about nine states centered atn8538.
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state. However, the interaction between the two electrons
rapidly spreads the character among the other bound and
continuum channels. For this case, approximately 60% of the
population evolved into the 4p1/2n8d states, with n8
>29– 33. Since the Rydberg states that make up the wave
packet in this case have a much longer Kepler period than
the initial n519 state, the evolution of the wave packet in
these states is expected to take much longer, and thus the
atom will spend a longer time in the 4p1/2n8d channel. This
behavior can be observed in the relatively flat regions in Fig.
3. These flat regions also suggests that very few autoioniza-
tion events take place while the wave packet occupies the
4p1/2n8d states.

Upon the first return of the wave packet to the core
~marked by the dashed vertical lines in Fig. 3!, additional
scattering events take place. As a result, some population
will evolve back into the bound 4p3/219d state and some will
transfer to the continuum. The population that scatters into
the 4p3/219d state will evolve very quickly, since the Kepler
period of this state is much shorter~,1 psec!. During this
time the atoms go through a period of rapid autoionization in
which a great deal of the population is lost; in our data about
20% of the population returns to the 4p1/2n8d states. This
return of the population to the 4p1/2n8d states is clearly
shown by the increase in the population after the first oscil-
lation. A second oscillation can also be observed where
about 5% of the population survives. This oscillation is less
pronounced since most of the population is already lost
through autoionization.

The dotted line in Fig. 3 represents our theoretical calcu-
lation of the population in the 4p1/2n8d states as a function
of time using Eq.~5!. The calculation shows very good
agreement with the experimental results. The deviation from
the experimental data at very short times is due to the fact
that this model is based on the assumption that the initial
state of the atom~at t50! is a pure 4p3/219d state. This
condition can be produced if a very short laser pulse is used
to excite the core electron. In our experiment the exciting

laser had a width of approximately 500 fsec, which was suf-
ficiently short to produce a nearly pure 4p3/219d initial state.
The theoretical calculation was done using Eq.~5!, where in
each time step the computer program calculated the popula-
tion in Eq. ~5! and multiplied it by an autoionization factor
that depended only on the population in the 4p3/219d state
and the rate at which this state autoionized. This autoioniza-
tion rate was the only fitting parameter in this model. The
rate that was used to fit the experimental result in Fig. 3 was
4.131025 a.u. This rate is in reasonable agreement with the
value of 5.631025 a.u. reported by Jones in Ref.@25#.

Figures 4~a! and 4~b! represent the population in the
4p1/2n8d states for two different initial Rydberg states,n
518 and 20, respectively. For the case whenn520, the
initial wave packet scatters into about seven 4p1/2n8d states
centered aboutn8538, and for the case whenn518, the
wave packet scatters to only three 4p1/2n8d states centered at
n8527. The Kepler period of the Rydberg state is almost
invariant when the atom is occupying the different 4p3/2nd
states, but as the wave packet scatters into the 4p1/2n8d
states, the Kepler period of the Rydberg states changes dra-
matically. This effect is clearly shown in the data in Figs.
4~a! and 4~b! where the oscillation period is about three
times longer in the case when the initial state is inn520.
The dotted lines in Fig. 4 are the calculation using our simple
model that we described earlier. The autoionization rate pa-
rameters that were used to fit the data in Figs. 4~a! and 4~b!
are 5.931025 and 3.931025 a.u., respectively. The rates
from Ref.@25# are 731025 and 5.731025 a.u., respectively,

FIG. 3. The population in the 4p1/2n8d states as a function of
time is shown for the case when the initial state of the atom was the
4p3/219d state. The solid line represents our experimental data. The
dotted line is our theoretical calculation and the vertical dashed
lines are the classical Kepler orbit periods of the 4p1/2n8d Rydberg
electron.

FIG. 4. The population in the 4p1/2n8d states as a function of
time for two different initial Rydberg states is shown. The data in
~a! were for the case when the initial state of the atom is 4p3/218d,
and the data in~b! were for the case when the initial state of the
atom was 4p3/220d. The solid lines represent our experimental data.
The dotted lines are our theoretical calculations and the vertical
dashed lines are the classical Kepler orbit periods of the 4p1/2n8d
Rydberg electron.
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which still show good agreement. It is also noted that the
deviation of our theoretical model from the experimental
data is largest in Fig. 4~a!. This is due to the fact that the
500-fsec exciting laser pulse width was short enough to pro-
duce nearly pure initial states in the cases ofn519 and 20,
but not short enough to produce the same initial-state purity
in the case ofn518. As a result, a slight different oscillation
pattern is expected to be produced in the experiment.

V. CONCLUSIONS

In this paper we have demonstrated a simple and direct
measurement of the oscillation between degenerate bound
states in a rapidly autoionizing energy configuration. To the
best of our knowledge this is the first direct measurement of

this oscillation. In addition to that, our data show that during
the time the wave packet is in the 4p1/2n8d bound states the
atoms have very few autoionization events. This is primarily
due to the long Kepler period of these Rydberg states. Fi-
nally, a simple time-dependent theoretical model has been
described which shows rather good agreement with our ex-
perimental results.
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