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SYNOPSIS. A simplified elastic model for analyzing static and dynamic interaction between earth
retaining structures and backfill within the ran?e of small displacements is presented. The postu
lated model covers some of the available models as special cases. The model lends itself readily 
to the treatment of non-homogeneous backfills with elastic properties varying with depth. Internal 
(linear) damping in the backfill can be included without impairing the simplicity of the model. 
Radiation losses due to waves propagating horizontally in fills of semi-infinite extent are inherent 
to the postulated model. The solutions for some statical and dynamical problems of practical 
importance show satisfactory agreement with results based on the classical theory of elasticity. 

INTRODUCTION 

Interaction between earth-retaining structures 
and backfill in the range of small displacements 
has been treated by Wood (1973) within the frame 
of classical elasticity. Matsuo and Ohara (1960) 
have proposed a simplified model assuming vanish 
ing vertical displacements. More radical -
simplifying assumptions have led Scott (1973) to 
represent the backfill as a cantilever shear 
beam, coupled with the retaining wall by a 
system of Winkler springs. Tajimi (1973) gives 
solutions for the problem of a quarter of an 
elastic space, excited by prescribed rigid body 
displacements on a part of one of its boundaries. 
The corresponding static problem has been 
treated by Finn (1963). Ambraseys (1960) used 
a model consisting of horizontal slices that 
deform only in shear to study the seismic be
haviour of earth dams. 

An examination of the available solutions based 
on classical elasticity theory shows that this 
type of formulation is confronted with consider 
able analytical difficulties due to the fact -
that the equations of motion in terms of 
components of displacement (Navier's equations) 
are coupled by terms containing the mixed 
derivatives. It is this difficulty that led 
Matsuo and Ohara to their proposal. However, 
as stated by Wood (1973) , the significance of 
the approximations involved in Matsuo and 
Ohara's model and the importance of the devia
tions from the results of classical elastic 
theory are known for only a limited number of 
problems and need further evaluation. For 
Poisson's ratio v = 1/2, the model of Matsuo and 
Ohara gives infinite thrust on the wall, in 
contradiction with the results of conventional 
elastic models. Within the frame of classical 
elasticity, problemes in which there is perfect 
adhesion between the fill and the retaining wall 
are particularly difficult. This difficulty has 
been circumvented employing finite elements 
(Wood, 1973). The finite element method is con
fronted with difficulties of another kind in the 
case of backfills of semi-infinite extent; these 
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can be handled through the introduction of 
adequate boundaries at the remote end of the 
model. 

On the other hand, Scott's model offers some dif 
ficulties concerning the evaluation of the length 
of the base of the shear beam and the stiffness 
of the Winkler medium. It can be shown that, to 
obtain results consistent with the theory of 
elasticity, the stiffness of the Winkler springs 
should be a function of wall height, H, varying 
approximately as H- 1 , while the length of the 
base should be proportional to HVp/Vs, where VP 
and Vs are, respectively, the velocities of pr~ 
pagation of compressional and shear waves in the 
backfill. Furthermore, Scott's model does not 
inherently include radiation losses due to hori
zontally propagating waves in backfills of semi
infinite length. To include this type of effect, 
one must either account for it artificially 
through the addition of ad-hoc dashpots, or 
generalize the model by representing the backfill 
as an infinite sequence of elastically coupled 
shear beams. In the second case, the main 
advantage of Scott's model, i.e., its simplicity, 
is lost. 

Thus, it appears that there is some ground to 
propose a model that does not lead to analytical 
difficulties as hard as those confronted with in 
the classical theory of elasticity, and that, on 
the other hand, does not exhibit some of the 
shortcomings of more radically simplified models. 
The guiding principle in the formulation of the 
model will be the assumption that the main 
earthquake effects on retaining structures are 
due to horizontal actions, and that the main 
effects of these actions on the backfill can be 
described ignoring the vertical displacements. 
An extended work on the model is being developed 
(Arias, et at, 1981). 

FORMULATION OF THE MODEL 

It will be assumed that the geometrical and 



mechanical characteristics of the backfill and 
of the retaining structure, as well as the 
forcing function (body forces, inertia forces, 
prescribed displacements at the boundaries, 
specified surface tractions) and the constraints 
are such that the system behaves in plane strain. 
This assumption is by no means essential to the 
model to be now postulated; it is adopted for 
the sake of convenience and simplicity, so that 
problems may be formulated and analyzed on a 
plane Oxy· For definiteness, Oy is chosen to 
point vertically upwards, while Ox is horizontal 
and is directed away from the retaining wall and 
towards the backfill. 

The specific hypotheses that define the model 
herein proposed are the following: 

H.1. The backfill behaves as a continuous de
formable solid without couple stresses. 

H.2. Verticalstresses in the backfill are equal 
to zero. 

H.3. Stresses and strains in the backfill are 
related by the equations 

a = K au 
X XX dX 1 (1) 

Here ax and Tyx have the usual meaning; u is the 
component of aisplacement parallel to the x-axis, 
and Kxx' Kyx are elastic coefficients, which 
will be assumed to be given functions of x and y. 

With the usual assumption of small displacements, 
Newton's second law of motion leads to the par
tial differential equation 

P ~:~ = a'dx [Kxx ~~] + .}y [Kyx ~~] + pX, (2) 

where p is the mass density of the backfill 
material, X is the horizontal component of body 
forces per unit of mass, and t is time. 

Homogeneous backfill 

If the backfill is homogeneous, Kxx' Kyx' and p 
are constants. It is convenient in that case to 
introduce two positive constants a, S such that 

K = pa 2 
XX 1 (3) 

With this notation, Eq. 2 becomes 

(4) 

which, for zero body forces, can be reduced to 
the two-dimensional wave equation by a suitable 
change of the space variables. 

If X= 0 and u does not depend on the coordinate 
x, Eq. 4 take the form 

In a similar way, when X= 0 and u does not 
depend on y, the equation is reduced to 

(5) 

(6) 

It follows that the postulated medium is capable 
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of propagating body shear waves in the vertical 
direction with velocity S, and compressional body 
waves in the horizontal direction with velocity a. 

It is easily verified that F(mx + ny ± ct), where 
F(·) is an arbitrary twice differentiable func
tion, is a solution of Eq. 4 for the case of zero 
body forces, provided that c 2 =m 2 a 2 + n 2 S 2 and 
m2 + n 2 = 1. Therefore, plane waves can propa
gate in any direction defined by the direction 
cosines (m, n), with velocity c. It can be shown 
that S < c < a, with equality holding if and only 
if the direction of propagation is either verti
cal (shear waves, c = S) or horizontal (compres
sional waves, c = a) • For intermediate directions 
of propagation, plane waves are not purely shear
nor purely dilatational waves, particle displace
ments being in all cases horizontal. 

Let us remark that the postulated model is not 
isotropic and does not strictly exhibit effects 
of the Poisson type. Therefore, even in the 
homogeneous case, it differs significantly from a 
Hookean isotropic solid. In order to establish 
a relation with the classical theory of elasticit~ 
consider two simple cases of homogeneous strain: 
simple horizontal shear, and uniform horizontal 
compression (or dilatation) . It is easily found 
that for these two cases the results of the pro
posed model coincide with those of classical 
elasticity if the constants Kxx' Kyx are chosen 
to be 

K 
XX 

E 
1 - \) 2 

(7) 

where E, G and v have the usual meaning. It 
follows that the constants a and S are related 
by the equation 

a=S0'· (8) 

This interpretation of the elastic coefficients 
differs from that implicit in the model of Matsuo 
and Ohara. Both models coincide if and only if 
v = 0. As will be seen in the examples, the pre
sent interpretation leads to satisfactory agree
ment with the results of classical elasticity. 

DISCRETIZATIONS OF THE MODEL 

The postulated model can be discretized in several 
ways. One of them is shown in Fig. 1. This might 

Fig. 1. Discretized elastic model 



have been used as the original model. The con
tinuum equations would then have been obtainedby 
a limiting process letting h + 0. 

If Fig. 1 is partitioned by vertical planes, and 
the horizontal (compressional) springs inside 
each partition are replaced by rigid links, each 
partition will behave as a vertical shear beam. 
If now, the axes of contiguous beams are coupled 
by horizontal compressional springs of flexibili 
ties equal to the sum of the flexibilities of -
the original compressional springs lying between 
the axes, the generalized shear beam model of 
Scott (1973) is obtained. 

If Fig. 1 is partitioned by horizontal planes 
and the vertical (shear) springs are replaced by 
rigid links, each partition will behave as an 
elastic bar in compression and tension. Now, if 
contiguous bars are coupled by shear springs of 
flexibilities equal to the sum of the flexibili 
ties of the original shear springs lying between 
the axes of the bars, the discrete model thus 
obtained is equivalent to that proposed by 
Ambraseys (1960) for the analysis of earth dams. 

Thus, both of the above mentioned models are 
particular cases of the one postulated here. 
From the point of view of practical applications, 
discretization by horizontal bars has the 
advantage that horizontal stratified fills can 
be represented by a model in which the elastic 
properties of each bar are constants. This 
circumstance introduces significant analytical 
simplifications. 

GENERALIZATIONS 

The postulated model can be generalized in 
several ways without loosing simplicity or 
mathematical tractability. For example, to 
take account of the third dimension a term of 
the form 

a (K au ) az- zx az 

can be added to the right-hand side of Eq. 2. 
This generalization should prove to be useful in 
the analysis of seismic pressures on the front 
wall of bridge abutments, for example, when it 
is desired to account for the restraining effect 
of side walls. 

Dissipative effects in the backfill can be 
simulated through the introduction of viscous 
dashpots acting in parallel with the springs of 
Fig. 1. Calling Cxx• Cyx the respective damping 
coefficients, the following equations hold 
instead of Eqs. 1 

a =K au+C au 
X XX ax xxax' 1 =K au+C Clu 

yx yx ay yx ay 

The partial differential equation of motion 
becomes 

P~:~ = aax [Kxx ~~]+ a
3
y [ Kyx ~~] 

+ a
3
t a

3
x fxx ~~ ]+ a

3
t aay [ cyx ~~] + pX 

(1') 

(2.) 

If it is assumed that there exists a coefficient 

237 

K, not depending on the space variables x, y, 
such that 

= K K yx 

and furthermore, that there are no external 
forces (X= 0) , Eq. 2' takes the form 

(9) 

P ~:~= [ 1 +K a3t]{aax[Kxx~~]+a3yryx~~]} <10 l 

This equation is separable. In fact, writing 

u(x, y, t) = <l>(x, y) f(t) (11) 

Eq. 10 is separated into a partial differential 
equation for <!> 

a [K a<~>l+ a [K ~]+ "2 P <!> = 0 ax XX axj Cly YX Cly 
(12) 

and the ordinary differential equation for f: 

(13) 

where \ 2 is the separation parameter. Putting 

K A = 2r, ( 14) 

Eq. 13 reduces to the well known differential 
equation for the free motion of a simple linear 
oscillator with viscous damping G (as a fraction 
of critical damping). 

FIXED RIGID WALL. HORIZONTAL BODY FORCE 

Consider a fixed rigid wall of infinite length 
backfilled with a material that satisfies 
hypotheses H.l-3. Let the forcing function be 
X= -a, where a is a constant. Three cases will 
be considered as shown in Fig. 2. The governing 
differential equation is 

(15) 

where subscripts denote partial differentiation. 
The following boundary conditions are valid for 
the three cases 

u(2,y)=O, u(x,O)=O, u (x, H) = 0 
y 

(16) 

the condition at the far end of the backfill 
being different for each of the cases considered. 

Semi-infinite backfill 

The boundary condition at infinity is 

lim u(x, y) = u (y)=' ~ (y 2
- 2Hy) 

0 2(32 
(17) 

u 0 (y) can be interpreted as the displacement due 
to a body force a in a layer extended indefinitely 
in both senses of the x-axis. 

The solution of Eqs. 15-li is 



-x,u 
(a) 

(b) (c) 

-x,u 

Fig. 2. Rigid wall and backfill under horizon
tal body force. a) Semi-infinite back 
fill; b) backfill fixed in x = L, and
c) backfill free in x = L 

u(x, y) = u 0 (y) + l: 
n=l 

where 

A 
n 

-:\ X e n . ¢n (y) (18) 

and the coefficients An are obtained expanding 
u 0 (y) in a Fourier series of sines of the form 

00 

u
0

(y) = l: An sin ~n y 
n=l 

(20) 

Expressions for pressure distribution, thrust, 
and overturning moment about the toe of the wall 
may be readily obtained: 

p(y) 8yH 
TiT 

p = 16yH
2 

• 
113 

M=32yH
3

• 
114 

a. 
g 

a. 
g 

a. 
g 

a l: ¢n (y) 

T n=1 (2n-1) 2 

~2: 1 2 

13 n=1 (2n-l)3 ""0.543 Y~ta• 

n+1 3 

~2: (-1) ~ yH aa 
13 n=1 

( 2n-1 )4 ~0.325--gs. 

Backfill of finite length 

(21) 

(22) 

(23) 

Two cases are considered: backfill fully fixed 
at x = L, and backfill free at x = L; the 
boundary conditions being, respectively 

u(L, y) = 0, and ux(L, y) = 0 (24) 

In both cases the solution can be expressed as 

u(x,y) = l: (B cosh:\ x+C sinh:\ x)<l> (y) (25) 
n=1 n n n n n 

The coefficients Bn, en are determined in each 
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case so as to satisfy the boundary condition at 
x = 0 and the pertinent boundary condition of 
Eqs.24atx=L. 

Fig. 

1.0 ,------------------.---------, 
.... -

/ 

y 
H 

0.8 

0.6 

0.4 

0.2 

S:mplilied model 
Elastic FEM 
(bonded wall) 
Wood (1973) 
(smooth wall) 

0.4 0.8 

/ 
I 

1.2 1.6 

p( y) g ---
yH a 

3. Pressure distribution on a rigid wall. 
Horizontal body force on backfill with 
L/H = 5, and \! = 0. 3. Comparison with 
classical elasticity solutions 

Fig. 3 shows the pressure distribution for a 
length to height ratio of 5. Results are 
compared with data taken from Wood (1973) and 
from a FEM solution based in classical elastic 
theory. Thrusts and overturning moments are 
plotted in Fig. 4 together with Wood's results 
and FEM solutions. As it appears from these two 
figures, the agreement is very satisfactory. 

0.6,--------------~~------------------~ 

0.5 

0.4 

0.3 

0.2 FEM Wood (1973) 
(bonded well) (smooth wall) 

• Jl< 0.1 0 J/ < 0.1 

• II< 0.2 D Jl< 0.3 
0.1 • Jl< 0.3 d v<0.4 

X v<OA 0 Jl<0.5 

2 3 4 5 6 7 

L~ =J:... J¥ 
Ha H 2 

Fig. 4. Thrusts and overturning moments on a rigid 
wall. Horizontal body force. Comparison 
with results based on classical elastic 
theory 



FIXED RIGID WALL. DYNAMIC RESPONSE 

Seismic excitation 

Assume that the base and wall of Fig. 2a move in 
the x-direction as a single rigid body with a 
given arbitrary acceleration s(t). Let u(x,y,t) 
be the resulting displacement of the backfill 
with respect to its base. Then u(x,y,t) is the 
solution of the boundary value problem 

u(O,y,t) = 0, u(x,O,t) = 0, u (x,H,t) = 0 (27) 
y 

It can be shown that the solution is 

u(x,y,t) 

where 

f (x,t)=-J1_
2 

ls(T)dT /' sin\xsin!Rn(t-T)] d\ 
n TI -oo o X Rn (2n 1) 

with 

Rn = IA 2o: 2 + n~ I rln = (2n-1)TIS/(2H). 

The pressure on the wall is therefore 

p(y,t) =- pa 2u (O,y,t) 
X 

=Bp~ ~ <Jn(y) 1t .. ( )d foo sin[Rn(t-T)] d).. 
'TT2 t... (2n-1) S T T f-L 

n=l -oo o ·TI 

Making use of the substitution 

(i.e., 
rln 

\ = -- 0J2=-ll a 

the inner integral becomes 

f"" sin[\.lr:ln(t-T)]d\.1 =~ J [rl (t-T)] 
1 a~ 2a o n 

(28) 

( 29) 

(30) 

(31) 

( 3 2) 

( 33) 

where J (·] stands for the Bessel function of the 
first k~nd and order zero (Gradshteyn and Ryzhik, 
1965, 3.753.2, p. 419). 

Setting 

t 
S(t,rl) =rl f s(T) J

0
[rl(t-T)] dT ( 34) 

the following final results for pressure, p(y,t), 
total thrust, P(t) I and overturning moment, M (t), 
are obtained 

p(y,t) = 8-yHa l: 
<!>n(y) 

S(t,rln)' ( 35) TI2Sg n=1 (2n 1) 2 

p (t) 16rH 2a l: s ( t, rlnl ( 3G) TI2Sg (2n-1) 3 I 

n=1 

M(t) 32-yH 3 o: 
l: 

S(t,rlnl (-1)n+ 1 
( 37) TI 4 Sg n=1 (2n-1) 4 

As far as the authors are aware, the function 
S(t,rl) appears for the first time in earthquake 
engineering literature, in the results obtained 
by Kotsubo (1959) and by Ferrandon (1960) for 
the hydrodynamic seismic pressures on a vertical 
rigid wall. 

By analogy with the theory of earthquake response 
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of simple structures with zero damping, a res
ponse spectrum B(rl,O) can be defined as 

B ( rl, 0) = sup { IS ( t, rl) I } 
t 

(38) 

We shall call B(rl,O) the B~~~~t a~~ete~at~on 
~pe~t~um of the excitation for zero damping. It 
follows immediately that the absolute values of 
pressure on the wall, total thrust and overturn
ing moment admit upper bounds that can be 
obtained from Eqs. 35-37 after replacing S(t,rln) 
by B(rln,O). 

The theory can be extended to include (linear) 
internal damping in the backfill. With the 
specification of damping introduced in Eq. 9, the 
differential equation for u takes the form 

(39) 

the boundary conditions being the same as in the 
undamped case. 

The final results are of the same form as those 
found in Eqs. 35-37 for the undamped case, with 
S(t,rl) replaced by the function S(t,rl;s) defined 
by 

s(t,n; sl = 
2n 

TII1-s2 

t . 
f S (T)ImK ( rl(t-T)e -~arccos s] dT. 
-oo 0 

(40) 

Here K0[~ denotes the modified Bessel function of 
the second kind and order zero, and I~ stands for 
'imaginary part'. Let us give the damped Be~~~t 
~pe~t~um, B(rl,s), defined as 

B<rl,sl = sup{jS(t, rl; sl j}. 
t 

Impulsive response 

(41) 

Let u. (x,y,t-8) 
the backfill to 
s<tl =o<t-8). 
found that 

be the displacement response of 
a unit pulse of acceleration, 
For the undamped case it is 

BU(t-8) <1>-(v) 
u. (x,y,t-8)=- 2 l: .:...I.L-'.L..!h (x t-8) 
~ TI n= 1 2n-1 n ' 

(42) 

where U ( ·) is the Heaviside's step function and 

X rl 
_2'TT~ f J [ ~ I a 2 ( t- 8 ) 2 - s 2 I d s I 
~ 0 0 a 

ifO<x<a(t-8) 
hn (x, t-8 )= ( 43) 

2'TT sin[rl (t-8)], if x > a(t-8) > 0. 
a n 

This result shows that waves reflected at the 
vertical wall affect the behaviour of the back
fill, up to instant t, only in the region 
0 < x< a (t-8), and have no influence on it for 
x > a ( t-8) . The wave front introduced by the pre
sence of the wall is a vertical 'Plane moving with 
velocity a. Furthermore, in the region that has 
not been reached by the front, the displacement 
of the fill does not depend on x, being the same 
as for a layer extending indefinitely in both 
senses of the x-axis. Similar results can be 
obtained for the damped case. 

Frequency response 
Let p(y,w)eiwt, P(w)eiwt, andM(w)eiwtbe respectively 
the pressure distribution on the wall, the thrust, 
and the overturning moment caused by the excita-



tion 5 (t) = eiwt It can be shown that 

P(y, w)= 8yHa l: <fh(y) F (w ~) 
rr28g n= 1 (2n-1) 2 n '" 

(44) 

where 
2 11/2 

Fn (w,U=n f [ (1-r 2 cos 2 <jl)-i2~r cos¢] d¢, (45 ) 
( 1 r 2 cos 2 ¢)2+( 2 ~r cos<jl)2 

and r w/On· P(w) and M(w) can be readily 
obtained by integration. In order to compare 
our results with those obtained by Wood (1973), 
Fig. 5 shows the frequency response of P(w)/~0), 
the normalized thrust for ~ = 0.1, calculated 

P(w)
3 

P(o) 
2 

-1 

Simplified model 

Wood (1973) 

-----

3 
will, 

4 

Fig. 5. Frequency response of normalized thrust. 
Comparison with Wood's results 

from Eq. 44. Comparison is given with Wood's re
sults for an elastic backfill with L/H = 50 and 
the same damping. Agreement is excellent. Simi 
lar results can be obtained for overturning mo~ 
ments and other dampings. Indeed, Fig. 6shows 
the moduli of the normalized thrust for various 
dampings. It should be noted that the maxima of 
the normalized frequency responses decay with 
increasing t approximately as (2~)- 1~. This 
result differs from that obtained for the res
ponse of a single-degree-of-freedom-damped oscil 
lator j~ which maxima decay as (2~)- 1 • 

4 

I P(w) I c 
PTOT 0 °lo 

3 °lo 
3 5 °lo 

10 °lo 
15 °lo 

2 

3 will, 4 

Fig. 6. Moduli of normalized thrust for various 
danpings 
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CONCLUSIONS 

The simplified elastic model here presented 
appears to be a useful tool to deal with a variety 
of static and dynamic problems of retaining struc 
tures with small displacements. Mathematical -
simplicity is gained compared with the complexity 
of classical elasticity. On the other hand, 
accuracy and physical insight are retained with 
this model. The model can be extended to deal 
with three dimensional cases and non homogeneous 
fills. Moreover, an important advantage of the 
model is that it naturally includes horizontal 
radiation effects. 
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