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Behavior of Interfaces Between Structural and 
Geologic Media 
C. 5. Desai, Professor of Civil Engineering 

Virginia Polytechnic Institute and State University, Blacksburg, Virginia 

SYNOPSIS The main objective of this paper is to identify and discuss the subject of the effect of 
interface behavior on the overall soil-structure interaction in building foundation systems. A 
brief review of the previous approaches based on the assumption of compatibility between the struc
ture and soil is followed by a discussion of the recent efforts toward inclusion of relative slip, 
debonding and rebonding at interfaces. Here available models in the context of the lumped para
meter and finite element approaches are reviewed. A number of models used in static and dynamic 
analyses are presented, and the difficulties associated with those based on relative displacement, 
particularly in relation to the (arbitrary) choices of normal and shear stiffness, are discussed. 
Some ideas toward a simple but potentially promising model based on the use of thin element of soil 
(or structural medium) as interface is presented. 

The importance of appropriate laboratory tests is established and is followed by a review of avail
able laboratory test devices for static and dynamic interfaces. Finally, a brief description of a 
new multi-degree-of-freedom device including testing of interface under vertical, horizontal, tor
sional and rocking modes is described together with preliminary test results. 

INTRODUCTION 

It is now well established that for any real
istic evaluation of the behavior of a 
structural-soil system subjected to static 
or dynamic loads, it is essential to allow for 
the interaction or coupling between the struc
ture and the geologic media. Many recent 
analyses for soil-structure interaction have 
included the coupled and m~tual influences of 
deformation of the structure and geologic 
media, but usually by assuming compatibility 
at the interface between the two. It is 
realized, however, that the behavioral aspects 
such as relative slip, debonding and loss of 
contact, and rebonding of interfaces under 
various translational and rotational motions 
can influence the interaction behavior. 

A number of constitutive or stress-strain 
models have been proposed in order to simulate 
the interface behavior, particularly for static 
behavior. No model has yet proved to be suit
able for general applications. One of the 
deficiencies in the development of such a 
model lies in the general lack of appropriate 
laboratory test devices for determination of 
the constitutive parameters and for verifi
cation. The objectives of this paper arc 

l. 

2. 

To present a brief review and definition 
of interaction phenomenon and the methods 
for incorporating interaction by assuming 
compatibility, 

To establish motivation for the study of 
interface behavior under various modes of 
deformation, 
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3. To present a historical review of the 
available models for static and dynamic 
analysis, and propose improvements and new 
concepts, 

4. To identify importance of appropriate lab
oratory tests and present a review of static 
and dynamic test devices, and, 

5. To describe a new test device together with 
typical preliminary test results. 

INTERACTION BE!!AVIOF 

Importance of interaction phenomenon in static 
and dynamic soil-structure interaction has been 
recognized and studied by many investigators, 
and it is not intended to present a detailed 
review herein; comprehensive reviews on various 
aspects of soil-structure interaction arc pre
sented by Roesset, Whitman and Dobry (1973), 
Kausel and Roesset (1974), Desai (1977), Desai 
and Christian (1977), Idriss ct al (1979), 
Isenberg, Vaughan and Sandler (1978), Kauscl 
ct al (1979), Desai (1979), Whitman and Bielak 
(1980) and Roesset and Scalctti (1980). 

Whitman and Bielak (1980) explain soil-structure 
as follows: 

If the motion at any point on the soil
structure interface differs from the 
motion that would occur at this point 
in the free field if the structure 
were not present, there is soil
structure interaction. If the inter
face moves or distorts differently 



than the corresponding surface in the 
free field, there is interaction. Aver
age horizontal and vertical translation, 
rocking about a vertical axis are all 
included in the definition. 

The motion of a point influenced by soil
structure interaction can include a component 
due to mutual deformations if compatibility is 
assumed, and another component due to relative 
generalized displacements under rotational and 
translational movements. Most previous analyses 
by using the lumped parameter or finite element 
approaches have considered only the first com
ponent. Study of the second component due to 
relative motion is of recent origin. 

Compatibility Between Structure and Soil 
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In this approach, the analysis permits inclusion 
of deformation characteristics of both the struc
ture and the foundation soil. However, complete 
compatibility is assumed at a point common be
tween the soil and structure. A number of pro
cedures have been proposed and used. Chief among 
these are: the lumped parameter models modified 
to account for soil response simulated by using 
spring-mass point simulations, continuum models 
and finite element model. As noted previously, 
a number of review papers are available for de
tails of these approaches. Figure l(a) to (d) 
shows schematic diagrams of some of these models. 

MODES OF DEFORMJ\'l'ION 

It is commonly assumed in many seismic analysis 
that the earthquake input motion is identical at 
all points beneath the structure, and very little 
experimental evidence is presently available to 
supplant this viewpoint. Scanlan (1976), and 
also, if the dimension of the foundation is large 
compared with wavelength of the input motion this 
assumption may be in error, Sun and Tang (1979). 
Thus a travelling wave may cause cancelling 
effects of the input motion and because the wave 
can reach different points in the foundation, it 
becomes necessary to consider both the trans
lational and rotational motions at the structure
soil interface. Isenberg, Vaughan and Sandler 
(1978) noted that rocking is the principal effect 
of interest to the aseismic design of power 
plants, although vertical, horizontal and tor
sional effects also occur. 

Within the context of compatible apnroachns, the 
importance of rotational motions such as tor
sional and rocking together with the transla
tional motion has been identified and analyzed 
also by various investigators; Newmark (1969), 
Krizek, Gupta and Parmelee (1972), Urlich and 
Kuhlemeyer (19730, Lee and Wesley (1975), Luco 
(1976), Scanlan (1976), Kennedy (1976), Wolf 
(1976, 1977), Whitley et al. (1977), Dawson 
(1978), Sun and Tang (1979), Idriss ct al. (1979), 
Kausel et al (1979), Byrne (1980), and Roesset 
and Scaletti (1980). 

Relative Motion: Sliding, Debonding, Rebonding 

As observed earlier, in addition to the effect of 
deformation characteristics of the structure and 
soil, interaction can be influenced by relative 
motions that occur in various translational and 
rotational modes. Sliding at interface, and 

debonding, and opening and closing of the inter
faces are some of the major attributes of the re
lative motion; a schematic representation of these 
modes is depicted in Fig. 2. The main objective 
of this paper is concerned with the behavior and 
constitutive laws of interfaces when the structure 
and soil remain together, and the effects of re
lative motions. 

The importance of such motions in dynamic analysis 
and design of structure-soil systems has been dis
cussed and analyzed by Isenberg, Lee and Agbabian 
(1973), Kausel and Rosset (1974), Wolf (1976, 1977), 
Isenberg, Vaughan and Sandler (1978), Idriss et al 
(1979), Idriss et al (1979), Kausel et al (1979), 
Roesset and Scaletti (1980), Aubry and Chouvet 
(1981), Salagado and Byrne (1981) and Isenberg 
and Vaughan (1981). 

In Appendix A of the Report by the Ad Hoc Group on 
Soil-Structure Interaction of the Committee on 
Nuclear Structures and Materials, ASCE edited by 
Idriss et al (1979) it is observed "that relative 
displacements due to slip or separation arc not 
tractable by linear or quasilinear analysis. And 
there are reasons-to believe that such discontin
uous displacements are not a major cause of error, 
although it is observed that such slips can induce 
high shear strains, drastic reduction in soil 
moduli, stress redistribution, large shear defor
mations and finite displacements across interfaces. 
Further, it was recommended that complete fixity 
be assumed between soil and structural clements 
in qu_asi-linear finite element analysis." 

On the other hand, Kennedy (1976) and Wolf (1976) 
observed that (for soft geologic Ptedia) separation 
and slidinq effects may cause substantial in
creases in the amplified response spectra in the 
high frequency range. Roessct and Scaletti (1980) 
performed two-dimensional plane-strain finite 
element analysis by using nonlinear soil response, 
and by modifying the finite element equations to 
allow for slip debonding and separation. They 
studied behavior of structures resting on the 
ground surface and of embedded structures. It was 
found that the effect of relative motion on the 
response of structure on soil may increase the 
maximum horizontal acceleration by about 15 per
cent due to separation; overall, this may not be 
significant from a design viewpoint. At the same 
time, there was a significant influence on the 
vertical forces due to separation and sliding. 
t1oreovcr, the influence cif the behavior of em
bedded structures was found to be substantial. It 
was also observed that sliding and separation can 
cause large increases in the soil stresses, and 
the behavior can be affected by the magnitudes of 
excitation and the frictional characteristics of 
the interfaces. It was also noted that improved 
nonlinear models for soil may indicate different 
behavior. The importance of rocking behavior and 
the possibility of cavitation in soil-structure 
interaction was identified by Isenberg, Vaughan 
and Sandler (1978). 

From the foregoing, it appears that study of the 
influence of relative motion involving sliding 
and separation on soil-structure interaction have 
received only little attention. It is believed 
that additional research toward development of 
constitutive models for interfaces, determination 
of constitutive parameters from appropriate lab
oratory tests, and incorporation of the models in 
solution procedures in order to identify influence 
of relative motion are required for improved 
analysis and design. 
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INTERFACE MODELS 

Junctions or interfaces between two dissimilar 
media having widely differing strength properties 
pose a different problem than deformation of a 
continuous medium. In the case of the latter, 
two adjacent points deform such that continuity 
of displacements at the points is maintained. On 
the other hand, two adjacent points A & A' at the 
interface, Fig. l(c), one in the structure and the 
other in the soil, may maintain continuity of 
displacement but only up to a certain load level. 
At higher loads, relative slip and debonding can 
occur and the two initially adjacent points may 
no longer have continuous displacements. Under 
certain types of loading and unloading, the inter
face may also experience separation or opening and 
then may close. Thus, the behavior at the inter
face renders the structure-soil system to deviate 
from being "continuous". 

A variety of efforts have been made to account 
approximately for the foregoing special behavior 
at interfaces. These have included characteri
zation of behavior of joints in rocks and inter
faces in structure-soil systems. 

Most of the studies towards development and appli
cation of models for interfaces and joints have 
involved static loading and use of such models 
for cyclic loading is of rather recent origin. 
Hence, for the sake of logical development and 
completeness, a review of the models for static 
analysis is first presented. 

Models for Static Analysis 

One of the earlier works in the context of rock
joint or fault behavior involved use of a model 
in which two intact masses were connected by 
using pin-ended clement, Fig. 3 (a), Anderson and 
Dodd (1966). 

Ngo and Scordelis (1967) presented a linkage ele
ment for simulating cracks in concrete and des
cribed the behavior of a crack in the two-dimen
sional mass by using springs for normal and shear 
responses. 
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Goodman, Taylor and Brekke (1968) presented a rock 
joint clement by expressing the relative displace
ment between the two-dimensional intact rock 
masses, and formulated the stiffness matrix for 
the joint in terms of normal and shear stiffness, 
Fig. 3 (b). Zicnkicwicz ct al (1970) developed a 
similar joint element based on the isoparametric 
concept. 

The clement developed by Goodman, Taylor and Brekke 
(1968) has been formalized for application in 
linear and nonlinear interaction analysis by a 
number of investigators; for details see various 
Chapters in Desai and Christian (1977). For in
stance, Clough and Duncan (1971) used it for 
plane-strain problems of retaining walls. Here 
the shear stiffness, kss' for the interface is 
simulated by hyperbolic stress-strain model based 
on tests for direct shear apparatus. Desai (1972, 
1974, 1977) extended the element for use in axi
symmetric problems for simulating interfaces in 
pile problems. 

Ghaboussi, Wilson and Isenberg (1973) presented a 
model similar to above but used relative displace
ment as an independent degree-of-freedom. They 
also defined the behavior in terms of the normal 
and shear stiffness. 

Desai and Appel (1976) and Phan (1979) and Desai, 
Phan and Perumpral (1980) have presented inter
face elements for three-dimensional linear and 
nonlinear analysis of soil-structure interaction 
problems, Fig. 3(c). 

Herrmann (1978) presented an algorithm for inter
face element similar to the foregoing concepts 
with certain improvements through constraint con
ditions. He discussed various modes of interface 
behavior such as sliding and debonding and pro
posed a numerical algorithm that can provide con
vergent solutions. However, still the normal and 
shear stiffness during the various modesl were 
essentially chosen arb~trarily. 

Reviews of foregoing models and related aspects 
are available in Goodman and St. John (1977), 
Desai (1977), Wilson (1977) and Desai (1979). 

Theoretical Details 

The foregoing models for interface element are 
usually based on the following constitutive or 
stress-strain relationship for a two-dimensional 
body 

{o) = [k.] (u) 
J r 

(l) 

where {o)T = [onn os~J is the vector of normal 
and shear stresses, {ur)T = [unr usr] is the 
vector of relative displacements (strains) in 
the normal and shear modes, respectively, and 
[kj] =matrix containing stiffness of the inter
face clement, which can be expressed as 

[ 

knn knsl 
[k. J = 

J k k 
sn ss 

(2) 

Very often the cross stiffness kns and ksn are 
assumed to be zero, then 

[kj] e [:nn :,,] ( 3) 

In soil-structure interaction problems, it is 
usually assumed that the structural and the soil 
medium may not penetrate each other and hence, 
during the translational model, Fig. 4(b), the 
value of the normal stiffness, knn is assumed to 
be very high, of the order of 108-1012 (F/L3). It 
is difficult to arrive at an appropriate high 
value of knn that would yield consistent and 
reliable results; it is often arrived at by per
forming a parametric study for a given problem. 

Figure 4 shows various possible modes of deforma
tion at an interface under static loading. They 
involve translation with compressive onn with re
lative slip identified by using a criterion such 
as Mohr-Coulomb, debonding or opening of the inter 
face and its closing or rcbonding. 

As described subsequently, the value of kss is 
usually defined from stress-strain response ex
pressed in terms of shear stress oss vs relative 
translation (strain), u , often obtained from 
direct shear tests. H~te slip in translational 
motion is often assumed to occur when the induced 
shear stress oss exceeds the Mohr-Coulomb strengt 

0 nn > c + a tano 
a nn ( 4) 



where c = adhesion at the interface, and 
angle o~ friction. After such slip has occurred, 
the value of and shear stiffness is arbitrarily 
reduced to a small value, say kss = 10 to 100 
(F/L 3 ). In this case, the value of Knn is often 
kept at the arbitrarily chosen high value. When 
debonding occurs with opening of the interface, 
the normal stiffness Knn is reduced to a small 
value. 

Fault 

Intact 
Mass 

Pin-Ended 
Elenent 

I-- l--1 I 

4 3 I 
_t._.__ 

I ! Zero 2T 
y,n 

4--x,s 
Interface 

Fiq. 3(b) Interface Elenent; Gcx::x:Jrrlan, Taylor, and Brekke (1968) 

Fig. 3(a) Pin-Ended 1-bd.el; Anderson and Codd (1966) 

element 

Fiq. 3(c) Three-Dimensional Interface f~lemcnt; 
Phan (1979), Desai, Phan, Perumpral (1980) 

Fig. 3(d) Constraint-Interface Ybdel; Katona et al (1976) 

Fig. 3 Various Interface Models 



Limitations 

The computed behavior of an interface under the 
foregoing procedure and assumptions may work sat
isfactorily for translation up to the relative 
slip, but there appears no physical basis for 
adopting arbitrary values of knn and kss when 
relative slip and debonding has occurred. Be
cause of this, very often, the above interface 
models involve considerable computational diffi
culties, and the results obtained cannot be al
ways depended upon. 

Katona et al (1976) have derived an interface 
model based on the virtual work principle modi
fied by a special constraint condition, Fig. 3(d) 
This element can provide improved conditions at 
the interFace as affected by the state of force 
(stress) lnduced during various modes, slip, de
bonding and rebonding, and can be considered to 
be an improvement over the other previous models. 
Hughes et al (1975) considered the contact-impact 
problem and proposed a contact model bused on 
splitting of nodes. Peterson (1977) proposed a 
contact surface element to simulate the interface 
behavior and introduced multi-constraint relation 
to avoid numerical ill-conditioning. 

Comment 
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Eventhough the foregoing interface models con
sider relative motions between structure and 
soil, still the displacements of two initially 
adjacent points after loading follow the require
ment of continuity, Fig. 5(a). That is, these 
models, in reality, do not allow for discontin
uities caused by relative slip and debonding. 
Such a formulation can be considered to allow 
essentially for the (large) differences in the 
deformation characteristics of the two media by 
introducing constraints through use of relative 
displacements. Since it can involve computa
tional and other difficulties, and it is still 
based on continuity, it may be possible to con
sider the junction or interface as a "thin" solid 
element treated as soil or structural medium, and 
simulate the same effects due to the relative 
motion. Furthermore, as the relative motions at 
interfaces are caused mainly due to the fact that 
there is a (large) difference between the defor
mation characteristics of two media, it is felt 
that such an approach with 'thin' solid element, 
with appropriate modification, can prove to be 
as or more effective than the conventional models 
that are based on relative displacement and 
assumption of zero thickness for the interface. 

Thus, it may be appropriate to investigate the 
use of a "thin" solid element at the interface 
assuming it to be either a soil or a structure 
element. Here the question of choosing an appro
priate value of the thickness of the thin element 
may arise and need investigation in order to pro
vide consistent, reliable and convergent solutions. 
However, this investigation need not be any more 
difficult than the problems encountered with the 
models of zero thickness based on relative dis
placements. Investigation of this concept is a 
subject of recent study by various investigators, 
including the author and his associates over the 
last three years: Lightner and Desai (1980) and 
siriwardane and Desai (1980). Further details 
of this concept are given subsequently. 

Pande and Sharma (1979) investigated the idea 
of using a thin interface clement as an 8-nodc 
isoparametric element and compared it with the 
conventional model based on relative displace
ments. It was found that both approaches yield 
similar results for a wide range of problems. 
It was also shown that reliable results can be 
obtained with the 'thin' element for large 
values of aspect ratio defined as the ratio 
of length to thickness of the interface. 

INTERFACE MODELS FOR DYNAMIC ANALYSIS 

In dynamic analysis, rotational modes such as 
torsion and rocking need to be considered in 
addition to the translational mode, Fig. 6. 
Although a few studies have considered this 
subject, interface models for dynamic analysis 
have not received as much attention as those 
for static analysis. 

Newmark (1965) considered interface behavior as 
sliding of a rigid block for analysis of dams 
and embankments; Crandall, Lee and Williams 
(1974) also assumed slip of a sliding rigid 
block. Seed (1976) noted that the shear 
strength to be used for sliding stability of 
structures on loose saturated soils should 
correspond to the shear stress level necessary 
to cause liquefaction in a given number of 
cycles of loading established by seismic design 
criteria. 

Isenberg, Lee and Agbabian (1973) used the 
interface clement proposed by Ghaboussi et al. 
(1973) for three-dimensional analysis of a 
structure subjected to blast loadings; this 
essentially involved use of the same clement 
as used for static analysis. Belytschko and 
Chiapatta (1973) used a model that allowed 
occurrence of slip in dynamic soil-structure 
interaction. 

Wolf (1977) allowed for relative slip based on 
the co-efficient of friction and Mohr-Coulomb 
criterion; this was based on computation of 
displacement of a point on soil surface relative 
to the corresponding point on the foundation
disk. It was observed that the torsional 
effects due to travelling shear waves induce 
rocking perpendicular to the direction of 
excitation when liftoff or slip occurs. 

Kausel ct al. (1979) gave a comprehensive con
sideration to interface behavior, discussed the 
importance of sliding or relative slip, and 
proposed a model to account for translational 
and rotational motions. It was observed that 
in most cases sliding will occur at interfaces 
and rarely in the soil mass and that the classi
cal pseudo-clastic limit equilibrium analysis 
for sliding stability can give factors of 
safety against sliding unrealistically low in 
many cases and do not provide information on 
magnitudes of sliding motions. Lateral 
pressures on embedded structures will change 
due to soil and water pressures affected by 
magnitude and direction of ground acceleration 
and soil-structure interaction and with such 
unbalanced lateral pressures, stability against 
sliding may be reduced. Here on the active 
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(a) (b) 
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Fig. 7 ~1odcl Proposed by Kimscl ct ul. (1979) 

(c) Torsional (d) Rocking 

Fig. 6 Modes of Deformation at Interface in Cyclic Loading 



side, pressures will decrease resulting in 
separation of the structure and soil. 

Figure 7 shows the model proposed by Kausel 
et al. (1979). The contact between the bottom 
mass (foundation) simulated by a massless plate 
and soil is defined by Coulomb friction. 
Although soil response is simulated by using 
springs and dashpots for translational and 
rotational motions, relative slip was per
mitted only in the translational motion. It 
was assumed to occur when the horizontal base 
force exceeded maximum frictional resistance 
between structure and soil. Once sliding 
occurred, the system was assumed to continue 
sliding until the relative sliding velocity 
reduced to zero regardless of contact forces. 

Nazarian and Hadjian (1979) discussed three 
types of displacements, rigid body translation, 
rigid body rotation and flexure, for retaining 
walls and noted that damage to walls can be 
attributed to lateral pressures during earth
quakes that can induce sliding or tilting on 
both of the structures. They proposed a model 
incorporating 'no tension' capability at the 
wall-soil interface, and observed that for 
improved analysis, allowance should be made 
for separation of walls from soils. As dis
cussed before, Roesset and Scaletti (1979) 
considered sliding and separation with respect 
to two-dimensional plane strain analysis. 

Aubry and Chouvet (1981) considered sliding, 
debonding and rebonding in cyclic motion by 
using Coulomb's law of friction. Salagado and 
Bryne (1981) used a lumped model in which the 
lumped mass revresenting the structure is con
nected to the free-field element in series 
representing the sliding of the structure. 
Isenberg and Vaughan (1981) gave a detailed 
consideration to interface behavior under 
dynamic loading and used the interface as a 
thin layer of solid soil element. They con
sidered relative slip, debonding and rebonding 
with an interative procedure, and presented 
successful applications to a number of problems. 

PROPOSED MODELS 

A general model for interface behavior should 
include both the translational and rotational 
modes. Each mode should include provision for 
relative slip, debonding and rebonding. It is 
also desirable to develop such models for in
corporation with available solution procedures 
for dynamic analysis such as lumped parameter 
and finite element methods. 

Lumped Parameter Model 

It is proposed to modify the previous lumped 
parameter model, Fig. l(b), for relative slip, 
debonding and rebounding. The proposed modi
fied model is shown in Pig. 8. It involves 
simulation of semi infinite soil medium by 
springs and dashpots for the translational, 
torsional and rocking modes. Special spring, 
sliding and debonding-rebonding element is 
inserted between the soil springs and dashpots 
for soil and the soil medium. The behavior of 
the structure is simulated by linear sping
mass systems. The springs and dashpots simu-
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lating the soil response can be represented 
as linear or nonlinear; in the case of the 
latter the parameters can be made nonlinear 
functions of the states of stress and/or 
accumulated strain. The parameters can be 
evaluated as impedance functions based on the 
half-space theory or by appropriate modifi
cation of their static values, Idriss et al. 
(197 9) . 

The spring-sliding mechanism for the interface 
behavior is assumed to be nonlinear function of 
the shear stress ahd/or relative displacements 
or rotations. Debonding can be approximately 
simulated by using a criterion based on the 
sign of the induced (vertical) force. If it 
becomes tensile, debonding is assumed to occur, 
and rebonding takes place when the force becomes 
compressive. 

Finite Element Model 

As discussed previously, the idea of the 'thin' 
(soil) element is proposed, Fig. 9. The 
important questions that should be addressed 
are the proper definition of normal and shear 
stiffness during those modes and proper defini
tion of forces when debonding and rebonding 
occurs. 

It has been found that one of the possible 
sources of difficulties can be due to in
appropriate choice of arbitrary values of 
normal stiffness, knn· In order to reduce 
this difficulty, it is proposed to define 
normal stiffness based on the state of stress 
in the thin interface itself and/or the state 
of the surrounding structural and soil elements. 

The constitutive matrix for the thin interface 
element is expressed as 

{!\o) = [c] {II E } 
r 

( 5) 

where {Aoi= vector of stress components, {!\c I 
= vector of relative generalized displacements 
(strains) and [c] is given by 

[ 0 J 
[c] (6) 

Here [c ] = portion related to normal behavior 
and is §ctermined from appropriate linear or 
nonlinear parameters for the thin soil element. 
[Cs] = portion related to the shear behavior and 
is essentially dependent on the shear modulus of 
evaluated from (direct) shear tests as follows: 

G (o, y) 
ss a ss 

u /t 
r 

( 7) 

where u = relative displacement, c = corres-
pondingrshear stress, and t = thickR8ss of the 
interface element. 

The normal portion [c ] can be defined on the 
basis of the state ofnstrcss and nonlinear 
material parameters of the adjoining structural 
and soil elements: 
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(8) 

where cc st 
l 

(i=l,2, ... ) =deformation parameters 

of the structural medium and s ( i l' 2' ... ) i' 
= deformation parameters for the soil element. 

The proposed concept can be expressed by decom
posing the stiffness matrix [k] for the system 
of structural, interface and sofl elements, 
Fig. 10, as 

[k] 
a 

(Aa) 

([k d] + [k .]) 
n Sl 

(Ab) 

where [kh]= sum of stiffness matrices for the 

two solid clements, [k]nd = normal portion of 

the interface stiffness [k]., and [k] . = 
l Sl 

shear portion of [k]i. 

Debonding 

Debonding can be identified by a criterion 
based on the sign of the induced (vertical) 
force; debonding can be assumed to occur when 
the force is tensile. The extent of debonding 
is determined by finding the point of zero 
normal stress, "nn' Fig. 11. >vhen debonding 
occurs, an equivalent or residual load IQ0 i is 
added to the clement equations. The load 
vector iQ

0
1 can be [ound ns 

ff [B]T {r. ) dAne 
nn nc ( 10) 

where A =area 
occur rea~ [Il J = 
matrix and {·JAn 1 

where loss of contact has 
corresponding transformation 

tensile normal stress. 

Rcbondinq can be assumed to occur when the 
(vcrticai) force again becomes compressive. 
Then the equivalent load fQ

0
' is assumed to 

be ·, o:. 

CONS'l'J'l'U'l'IVE MODELS AND TESTING 

In view of the complexity of the behavior of 
interfaces in static and cyclic loading, it 
is important to define appropriate constitutive 
models, and give special attention to deter
mination of constitutive parameters from lab
oratory tests. 

Constitutive Models 

Figure 12 shows some of the conunonly used 
models for interfaces. In the case of trans
lational modes, the common scheme for lumped 
parameter models is to use a rigid-plastic 
type simulation, Fig. l2(a). !lore, the 
sliding is assumed to occur when the induced 
yield stress equals or exceeds the Mohr
Coulomb strength, Eq. 4. It is possible to 
treat the behavior as (linear) elastic up to 
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the yield and then sliding to occur according 
to the criterion in Eq. 4, Fig. l2(b). 

In the context of the finite element method, as 
discussed previously, the normal stiffness, k , 
is often assumed as follows nn 

k 10 8 
nn 

k 1 o" nn 

k 10 1 -
nn 

1010 (F/L J) 

lOlU 

10 2 

Before sliding 

After sliding 

For tensile con
ditions and de
bonding. 

The shear stiffness kss is usually obtained on 
the basis of static dlrect shear tests, Figs. 
l2(c) and 13. With linear behavior it is 
assumed to be constant up to the yield stress. 
With nonlinear (elastic) assumption, it is 
evaluated as the tangent at a point on the 
shear stress vs relative displacement curve. 
Often, hyperbolic simulation is used for this 
purpose. After sliding occurs and for tensile 
conditions, the value of kss is arbitrarily set 
equal to a small value, say 102 (F/L3). 

If appropriate laboratory test data arc avail
able, it is possible to define interface be
havior as clastic-plastic, Fig. l2(d), expressed 
as 

; ,\ (11) 

where [ce] = elastic constitutive matrix and 
[cP] = plastic constitutive matrix. The 
plasticity behavior can be defined through 
conventional models such as Mohr-Coulomb, and 
recently developed strain hardening cap type 
models, Fig. 12 (d). 

As discussed earlier, the foregoing constitutive 
models should be modified to include dcbonding 
and rebonding. This can be achieved by incor
porating a residual load vector bosc'd on the' 
tensile strcsscos induced in the i nterfaCL' 01· in 
a part of it togethc'r with an itc'rativc· schcmt'. 

Laboratory Determination of Parameters 

This is one of the most important phases in the 
development of models and has not received 
sufficient attention in the past. In this 
section, a review of the previous studies re
levant to static and cyclic testing is first 
presented. Then a new and general device 
called dynamic multi-degree-of-freedom shear 
device is described together with prc'liminary 
test data and some projections on cyclic bL'
havior under translational and rotational modes. 

Sta~ic Direct Shear Testing, ~ig. l4(a) 

Potyondy (1961) performed a comprehensive series 
of direct shear tests for interfaces between 
concrete and soil (sand, clay). From a design 
viewpoint, the following results were reported: 

(12) 
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f = 6/~ = 0.82 to 1.04 

where c = cohesive strength of clay, and o = 
angle of friction of sand. Tomlinson (1957), 
Mohan and Chandra (1961), Coyle and Suleiman 
(1967), Watt, Kurfurst and Zeman (1969), 
O'Neill and Reese (1972), Desai (1972, 1974) 
and others have reported direct shear test data 
to evaluate strength parameters ca and 6 for 
interfaces. 

In the context of rock joints, Barton (1974) 
has given a comprehensive consideration to 
factors such as filled discontinuities, sliding 
along filled joints, influence of displacement 
and load history, dilatency and pore pressures; 
such results can be relevant to interfaces. 

Clough and Duncan (1971), Desai and Holloway 
(1972), Desai (1974, 1975), Desai, Johnson and 
Hargett (1974) and others have reported direct 
shear test results for interface models and 
have used them in conjunction with finite 
element analysis of piles and retaining struc
tures. 

Cyclic Testing 

Brummund and Leonards (1973) used a coaxial 
device, Fig. 14(b) with interface around a 
circular rod inserted along the center of a 
cylinder of sand enclosed in a light membrane. 
By using a vacuum, 4 confi~ing pressures up to 
12.5 psi (8.6 x 10 N/cm ) were induced. They 
found the following values of the ratio f~ 

Static, f 

Smooth concrete= 0.76 
Rough concrete~ 0.71 

Dynamic, f ,) 

0.84 
0.99 

Consideration to interface behavior under 
dynamic loading has been given, among others, 
by Whitman and Healy (1962) and Goodman and 
Seed (1966). 

A rational and theoretical consistent con
sideration to interface behavior between con
crete and soil together with an advanced ring 
shear device, Fig. 15, has been given by Huck 
et al. (1974). However, it may be difficult 
to construct such a complex device for other 
modes, and the interface model can be diffi
cult to implement. 

Although, not directly related to laboratory 
tests, mention of the experimental work by 
Higgins et al. (1978) is appropriate here. 
On the basis of measurements of pressures on 
the sides and bottom of a cylindrical prototype 
structure subjected to earthquake type loads 
caused by explosives, they found that the 
lateral pressures (at interfaces) were func
tions of vertical acceleration. 

DYNJ\MIC MULTI DEGHEE-OF-FHEEDOM SHEAR DEVICE 
(DMMDOFS) 

As discussed before, in general, it is neces
sary to consider all motions at interfaces, 
namely vertical, horizontal, torsional and 
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rocking. In order to develop constitutive 
models for interfaces subjected to these 
motions, it is desirable to develop a test 
device that can allow simulation of the trans
lational and rotational modes. In order to 
identify the influence of cyclic loading in 
comparison to static behavior, such a devlce 
should include provision for tests for statlc 
(slow) and cyclic loading. Furthermore, the 
device should be capable of both strain and 
stress controlled tests. The dynamic multi
degree-of-freedom shear device has been de
signed and constructed to incorporate the 
foregoing characteristics, Desai et al. (1979, 
1980), and Desai (1980). 

A photograph of the device is shown in 
Fig. 16. Three different test boxes for trans
lation, torsion and rocking modes, from inte
gral parts of the device. At this time, only 
the test box with vertical and horlzontal 
motions is operational and is briefly des
cribed herein. 

The test box for the translational modes is 
depicted in Fig. 16. It is essentially a 
large direct shear assembly in which the 
bottom half consists of a square 16 x 16 x 9 
inches (40 x 40 x 23 ems) sample of structural 
or geologic medium, and the top half, 12 x 12 
x 9 inches (30.5 x 30.5 x 23 ems) can lnclude 
qeologic or structural medium. The interface 
is created at the junction of the two halves. 

Loading 

A maximum amplitude of load (vertical or hori
zontal equal to + 12000 lbs (53.4 KN) can be 
applied; the frame, however, has been designed 
to withstand much higher loads. The frequency 
of load application ~an be up to about 5 Hz, 
although most are run for frequencies up to 
about 2 Hz. 

For horizontal shear tests, the vertical load 
is applied and is kept constant, and the hori
zontal load is then applied, slowly to sLmulate 
static tests or cyclically to simulate earth
quake type or repetitive loads. The latter can 
be applied in various forms, Fig. 17. 

For strain controlled horizontal shear tests, 
the vertical load is kept constant whereas 
displacement amplitudes up to ~ 1.5 inches 
(3.80 em) can be applied with wave forms shown 
in Fig. 17. 

Tests 

Initially the tests are run for dry samples. 
In the case of stress controlled configuration, 
tests with various amplitudes of horizontal 
shear stress for given normal stress are run. 
The changing displacements arc measured at the 
end of a given number of cycles, N, of load 
application. Based on the test results, 
relations between shear stress and relative 
displacements or strain are constructed for 
given N, normal stress ann and frequency, f. 
These relations can provide evaluation of shear 
stiffness as a function of state of stress, 
number of cycles of loading, accumulated strain 
and frequency. 
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For the strain controlled tests, results are 
obtained in terms of shear stress vs number of 
cycles for given frequency and normal stress. 
Stress-strain relations and Mohr-Coulomb plots 
for finding interface adhesion ca and friction 
angle, 6, Eq. 4, are then obtained as function 
cycles of loading and frequency. 

Test Results 

Testing for interfaces such as those between 
concrete and soil, concrete and (railroad) 
ballast, wood in ties and ballast, concrete 
and water proofing membrane are in progress, 
Desai et al. (1979, 1980), Janardhanam (1980). 
Only a typical set of preliminary results for 
stress controlled tests for interfaces between 
concrete and ballast, Fig. 18. The tests were 
run at different normal stresses. For each 
normal stress, a number of horizontal stress 
amplitudes were applied. For the preliminary 
test results presented herein, the frequency 
of sinusoidal load application was 0.50 Hz and 
the initial density of ballast was 112 lbs/cft 
(1787 kg/m3). 

Figure l9(a) shows plots of horizontal stress, 
oSS' vs relative displacements for three differ
ent values of normal stresses. Figure 19(b) 
shows relation between horizontal displacement 
and number of cycles, N, for three ratios of 
shear to normal stress, and Fig. 19(c) shows 
the relation between initial shear stiffness, 
k i vs normal stress, ''nn, after various cycles 
o~ load applications, N, and Fig. l9(d) shows 
the relation between ksi and N for various 
normal stresses. It can be seen from Fig. l9(a) 
that the relation between shear stress and re
lative displacement is nonlinear at low 'nn and 
essentially linear at higher unn· The variation 
of ksi show, Fig. l9(c) essentially a nonlinear 
relation with o • Variation of ksi with N also 
is nonlinear, p~Qticularly at higher nn· The 
initial stiffness decreases with number of shear 
stress applications, N, that is, with time, and 
at higher time levels and for higher normal 
stresses, it appears to stabilize, Fig. 19(d). 
Thus, the initial stiffness for f = 0.5 Hz can 
be expressed as 

k si = Fl (cl SS' u rs' " nn' N) (14a) 

If it were also dc'pcnclcnl on [' then 

k si = F (urs' ,, 
nn' N, f) 2 ( l4b) 

Additional tests arc in progress for var
ious interfaces, and for translational (normal 
and shear) and rotational (torsion and rocking) 
modes, and different frequencies. Then the 
stiffnesses, in general, will be expressed as 

[k] [k (ki' {o} ( 15) 
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where ki =initial stiffness, "j (i=.l,2, ... N) 
= factors such as water content~ rnrtral density, 
and physical properties of i ntc>rfaces. 

CONCLUSIONS 

A review of the importance of interaction 
between structure and geologic media indicated 
that there have been a number of studies to 
include (nonlinear) deformation characteristics 
of the two media based on the assumption of 
complete compatibility. It has been only 
recently that the effect of relative slip, 
debonding and rebonding at interfaces have 
been identified and analyzed. A review of 
various interface models for static and dynamic 
analyses indicate need for improved and 
rational models to account for the foregoing 
effects. Appropriate (laboratory) tests are 
needed to define constitutive models for inter
faces, and there appears to be a general lack 
of testing devices; a new multi-degree-of
freedom shear device is described herein. 

On the basis of this review, it appears that 
significant new research, analytical and experi
mental, will be needed in order to define and 
develop appropriate models for interfaces, and 
then delineate the effects of slip, debonding 
and rebonding under various translational and 
rotational modes on soil-structure interaction 
of systems subjected to dynamic loads. 
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