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Automatic Drift Compensation Using Phase
Correlation Method for Nanomanipulation

Qinmin Yang, Student Member, IEEE, S. Jagannathan, Senior Member, IEEE, and E. W. Bohannan

Abstract—Nanomanipulation and nanofabrication with an
atomic force microscope (AFM) or other scanning probe micro-
scope (SPM) are a precursor for nanomanufacturing. It is still a
challenging task to accomplish nanomainpulation automatically. In
ambient conditions without stringent environmental controls, the
task of nanomanipulation requires extensive human intervention
to compensate for the spatial uncertainties of the SPM. Among
these uncertainties, the thermal drift, which affects spatial reso-
lution, is especially hard to solve because it tends to increase with
time, and cannot be compensated simultaneously by feedback from
the instrument.

In this paper, a novel automatic compensation scheme is in-
troduced to measure and estimate the drift one-step ahead. The
scheme can be subsequently utilized to compensate for the thermal
drift so that a real-time controller for nanomanipulation can be
designed, as if the drift did not exist. Experimental results show
that the proposed compensation scheme can predict drift with a
small error, and therefore, can be embedded in the controller for
manipulation tasks.

Index Terms—Nanomanipulation, neural network (NN), phase
correlation method, scanning probe microscope, thermal drift.

I. INTRODUCTION

NANOMANIPULATION, which aims at manipulating
nanometer size objects with nanometer precision, has be-

come possible since 1990 [1] after the invention of scanning tun-
neling microscopes (STM), atomic force microscopes (AFM),
and other types of scanning probe microscopes (SPMs). By ac-
curately controlling atoms, molecules, or nanoscale objects, nu-
merous applications of nanotechnology can be cited in the area
of molecular biology and genetics, solid-state physics, chem-
istry, material science, computer industry, and medicine. By
reducing the object size from micrometer to nanometer, new
sensors, terabyte capacity memories, deoxyribonucleic acids
(DNA) computers, man-made materials, etc., would be possible
within the near future [2].

Today, the manipulation of particles with the order of 10 nm
in diameter using AFMs is being investigated by many re-
searchers [3], [10]–[13], [17]. Preliminary controller designs
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for nanomanipulation systems were introduced in [14] and [15].
Besides using AFM or other SPM as imaging tools, they are
also employed as teleoperated manipulators at the nano scale.
However, for future new nanotechnology products, there are still
many challenges to be addressed. From macro to nano world,
any nonlinearity such as thermal noise, even if it is small, will
cause major hurdles during manipulation with the microscope.
Without treating these uncertainties, real-time controller designs
will be impractical. Therefore, at present, the nanomanipulation
requires extensive user intervention to compensate for the spatial
uncertainties associated with the microscope and its piezoelec-
tric drive mechanism, such as hysteresis, creep, and thermal
drift [3], [16], [17], when operated in ambient conditions with-
out stringent environmental controls.

Among the uncertainties that AFM encounters, hysteresis
can be reduced by scanning in the same direction always, while
creep effects almost vanish by waiting a few minutes after a
large scanning motion [3]. Alternatively, a comprehensive study
is presented in [16] on techniques that are being developed to
compensate them. Usually, these solutions are normally embed-
ded into an AFM software for compensation although they slow
down the manipulation tasks.

Nevertheless, unlike other uncertainties, the effect of the drift
will increase with time, and it cannot be compensated automat-
ically by the instrument. In other words, due to the temperature
change in the ambient environment, the AFM tip drifts with
time at a speed of about one atomic diameter per second, even
when the voltage inputs for controlling the tip position are held
constant. Although the drift can be greatly reduced by plac-
ing the microscope in a temperature-controlled and ultrahigh
vacuum (UHV) environment, this will be expensive and diffi-
cult, and therefore, will limit its applications in the industry.
At the same time, other uncertainties such as calibration error
and instrument noise will be introduced during the manipulation
processes, and their effects are similar to that of the thermal drift
that renders gross manipulation inaccuracies. As a result, it will
typically take hours for an experienced operator to construct a
pattern with several nanoparticles using the AFM. To efficiently
and successfully accomplish such tasks or even more complex
ones, an automated manipulation is desirable. For an automated
nanomanipulation, the drift compensation is the first step.

Several researchers have addressed the problem of drift and
proposed solutions in [3] through [8] and [17]. However, most
of them [4]–[8] are assuming that the drift is held at a constant
value. Additionally, in [4]–[8], the drift is computed by con-
sidering the entire image data, although during manipulation,
part of topography of the sample is changed. To overcome this
problem, in this paper, a block-based phase correlation method

1536-125X/$25.00 © 2008 IEEE
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Fig. 1. Image sequences of a graphite sample taken at 256 s intervals by an
AFM showing drift on the x–y plane due to ambient conditions. The scanned
area is 512 × 512 nm2 .

is employed to divide the entire image into blocks, using which
drift for each block is estimated individually. Thereafter, the
drift value of the entire image is computed based on the drift
calculation for each block.

Further, to make this method suitable for future real-time
controller design, both a neural network (NN) and signal recon-
struction technique are also necessary and proposed here. As a
matter of fact, given diverse working conditions during manipu-
lation, an artificial NN is utilized for predicting drift at the next
sampling interval for relaxing the need for drift models. Using
signal reconstruction techniques, the drift can be expressed as a
continuous function of time for any real-time controller design.

The paper is organized as follows. In Section II, the prob-
lem of drift is introduced, whereas Section III presents the de-
tailed compensation methodology for the drift problem. The
system implementation and experimental results are included in
Section IV before conclusions.

II. PROBLEM STATEMENT

Mainly due to the thermal expansion and the contraction of
the microscope components and the sample in ambient condi-
tions, drift usually appears in successive AFM scans even when
all of the scanning parameters are not altered. In the x–y plane
(or the horizontal plane), drift can be observed as a translation
between different images, as shown in Fig. 1. The drift velocities
on the x–y plane are reported to vary from 0.01 to 0.1 nm/s [3].
However, during our experiments, the problem due to drift ap-
pears to be worse at times. As observed from Fig. 1, the graphite
sample is drifting to the left at a speed of around 0.5 nm/s. So,
the drift between any two images taken at a 256 s interval can
be as much as 128 nm, which is larger than the diameter of the

nanoparticles themselves that are normally manipulated. Mean-
while, from the height data of the sample, it can be observed
that the drift along the z-direction is approximately 0.005 nm/s
during our experiments.

Unfortunately, measuring drift precisely in the z-direction
will be difficult or impossible because the topographic data
provided by an SPM are essentially relative height information
in terms of discrete points on the sample surface. Fortunately,
considering that the vertical drift is comparatively small and has
little impact on the controller [3], there is no need to estimate its
exact value. In fact, the effect of vertical drift can be mitigated
by using gradient images, as will be introduced later. Thus, it is
normally sufficient for a drift compensation scheme to estimate
and compensate the drift along the x- and y-directions and under
the reduced influence of the noise from the z-axis, so that the
automated nanomanipulation can be performed as if the drift
does not exist.

Past experiments show that the drift along x- and y-directions
can be observed as a translational movement and not as a ro-
tation [3], [17]. Furthermore, there is a negligible correlation
between the two directions [3]. Hence, ideally, the height data
between the two consecutive collections along with the drift can
be written as

hk+1(x, y) = hk (x + ∆xk , y + ∆yk ) + ∆zk (1)

where ∆xk , ∆yk , and ∆zk denote the drift in the x-, y-, and
z-axes, respectively, between time instants k and k + 1. Here,
we assume that every point of the overall imaging area of the
sample has the same drift value along the z-direction, which
appears to be a reasonable assumption.

Although several methods [4]–[8] to compensate for the drift
in the horizontal plane have been proposed, these techniques
fail to provide accurate compensation when the drift velocity
changes, as illustrated by the experimental results in Fig. 1.
A novel Kalman-filter-based estimator [3] and compensator is
introduced. However, the user still has to select the appropriate
model parameters for every experiment, which will be very
difficult for automation. Moreover, the techniques in [3]–[8] are
based on comparing successive images of an unmodified sample
or unmodified part of the sample. Unfortunately, the topography
in the scanning region is usually changed during manipulation
or fabrication processes. For instance, as shown in Fig. 2, there
are two particles being pushed by the operator, and it is not too
difficult to notice that a drift exists between the two images.
Under this condition, the methods reported in [4]–[8] render
inaccurate results. The tracking window technique can solve
this problem, but it is not a true automatic approach.

In this paper, drift will be measured and processed using
block-based phase correlation method in a totally automatic
manner, and without human intervention, and even when some
areas of the sample have been altered due to manipulation.

III. COMPENSATION METHODOLOGY

The block diagram of the proposed compensation method-
ology is depicted in Fig. 3. The entire system will operate in
a recursive fashion with a constant sampling interval, where
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Fig. 2. Image sequences of gold particles with 30 nm diameter on the mica
substrate with manipulation under an AFM for the scanned area of 1024 ×
1024 nm2 . Note: There are two particles at the right top corner moved by the
operator (one is pushed into the image from outside and the other is moved
downwards). Drift also present upside.

Fig. 3. Block diagram of the overall proposed drift compensation system.

images of the sample are secured by the microscope. Our drift
compensator is updated even when the manipulation is carried
out elsewhere on the sample during the interimaging period,
which is the case discussed in [4]–[8].

The entire manipulation scheme will be executed by the fol-
lowing procedure in a recurrent manner. Once the microscope
acquires a most up-to-date image data, the block-based phase
correlation algorithm starts and computes a measurement of
the current drift value. As soon as this computation is done, it
delivers the measurement to the NN predictor. The NN predic-
tor estimates the drift for the next imaging instant, which, in
turn, is employed by the signal reconstruction block to form
a continuous variation of drift as a function of time between
the current imaging instant and the next one. With the drift in-
formation expressed as a continuous function of time, the task
of nanomanipulation can be accomplished automatically by the
controller, as the drift estimate can be explicitly utilized during
nanomanipulation.

As stated earlier, there is no correlation between the drift
along x- and y-axes [3]. Therefore, for simplicity, only the drift
in the x-direction is discussed in the following sections, and the
drift in the y-direction can be obtained similarly, and therefore,
omitted.

A. Gradient Imaging

In principle, an AFM operates by measuring attractive or
repulsive forces between the tip and the sample surface. As a
raster-scan drags the tip over the sample, some sort of detection
apparatus (e.g., laser) tracks the forces by monitoring the vertical
deflection of the AFM cantilever, which indicates the height of
the sample locally. Thus, the images provided by an AFM are
essentially the height data of the sample locally.

It is important to note that the drift in the z-direction depends
upon the measurement errors from the x- and y-directions.
Although it is comparatively small and has little impact on
nanomanipulation, it could still influence the accuracy of our
drift algorithm. Therefore, to minimize this error, the gradient
information will be used for measuring drift, which is defined as

gk (x, y) = hk (x, y) − hk (x − 1, y). (2)

From (2), one can find that a new image is formed by
using the gradient information and by just taking the height
difference between each pixel and the corresponding horizontal
neighboring pixel in the original image. This is also called the
horizontal gradient image. The vertical gradient image can be
defined similarly, and it is also applicable for our approach. In
this paper, only the horizontal gradient is discussed.

Considering the drift factor and substituting (1) into (2) yields

gk+1(x, y) = hk+1(x, y) − hk+1(x − 1, y)
= hk (x + ∆xk , y + ∆yk ) + ∆zk

− (hk (x + ∆xk − 1, y + ∆yk ) + ∆zk )
= gk (x + ∆xk , y + ∆yk )

(3)

where the effect of the z-axis drift is eliminated. Moreover, as
observed in our experiments, results using gradient-based im-
ages will yield more accurate results than using the original
height data due to the presence of the drift along the z-axis.
Once the microscope finishes the sample imaging and the gra-
dient calculation, the gradient data is forwarded to the phase
correlation module.

B. Block-Based Phase Correlation Method

The drift measurement problem is similar to the motion esti-
mation (ME) and compensation (MC) issue in the area of signal
processing. Among various techniques, phase correlation tech-
nique measures the motion directly from the image, so that it
can give a more accurate and robust estimate of the motion
vector and a motion field with a much lower entropy [9]. Addi-
tionally, the phase correlation method is computationally very
efficient, which will allow more time for manipulation opera-
tions between imaging instants. In particular, this method shows
a better performance on translational and large-scale motion and
these are the characteristics that are normally observed in the
AFM drift.

On the other hand, as we argued in the former section, ex-
isting methods [3]–[7] will produce inaccurate results in the
presence of topography changes of the sample surface resulting
from the manipulation, or they need human intervention to mark
them manually [8]. In our algorithm, to distinguish the drift
from other user-defined operations and further eliminate the drift
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Fig. 4. Schematic diagram of the block-based phase correlation method.

automatically, the image is divided into blocks, and the drift cal-
culation is performed for each block separately. As a matter of
fact, block-based motion estimation and compensation schemes
are quite popular in practice due to their robust performance, and
they do not require object identification. Moreover, they allow
some objects in the image to be moved while not influencing the
motion estimation of other blocks. This feature makes it easier
to estimate the drift of the overall image even when some parts
of the sample surface have been altered by operators, which is
usually the case in the nanomanipulation environments.

The schematic diagram of our block-based phase correlation
method and the parameters used in our experiments are depicted
in Fig. 4. Other settings may also be possible for different ex-
perimental conditions.

In the proposed scheme, assuming a new gradient frame with
512 × 512 pixels is received from the AFM, it is first divided
into 64 × 64 pixel blocks. By using a straightforward calcu-
lation, there will be 64 blocks from a 512 × 512 image. The
objective of the first step is to estimate the drift value for each
block by comparing the new image with the previous one. For
more accurately estimating the cross correlation of correspond-
ing block pairs in respective image frames, we extend the blocks
to 128 × 128 pixel in size, centered around the formerly defined
64 × 64 pixel blocks for calculation. It can be readily found
that, with bigger blocks, the overlapping area between the block
pair is larger. Therefore, their correlation can still be kept high
even with a large amount of drift.

Subsequently, a 2-D raised cosine weighting window is ap-
plied to each 128 × 128 extended block to enforce more weight
on our formerly defined 64 × 64 region. The 2-D raised cosine
window is defined as

w(x, y) = wxwy

=
1
4

[
1− cos

(
2π(x + 1/2)

M

)][
1− cos

(
2π(y + 1/2)

M

)]

for x, y = 1, 2, . . . ,M (4)

Fig. 5. 2-D raised cosine window function.

where M is the size of the image, which is equal to 128 for our
system. The raised cosine function is also illustrated in Fig. 5,
which clearly demonstrates that the pixels in the center are given
higher emphasis.

Thereafter, the phase correlation method measures the move-
ment between two blocks directly from their phase values. The
basic principle is briefly discussed next.

Assume that there exists a translational shift between frames
k and k + 1. In this paper, the same relationship stands for
consecutive gradient images, which can be rewritten from (3) as

gk+1(x, y) = gk (x + ∆x, y + ∆y). (5)

Taking 2-D Fourier transform of (5) yields

Gk+1(fx, fy ) = Gk (fx, fy ) exp[j2π(∆xfx + ∆yfy )]. (6)

Therefore, the displacement in the spatial domain is reflected as
a phase change in the frequency spectrum domain. Further, the
cross correlation between any two frames can be written as

ck,k+1(x, y) = gk+1(x, y)g∗k (−x,−y) (7)

whose Fourier transform is given by

Ck,k+1(fx, fy ) = Gk+1(fx, fy )G∗
k (fx, fy ). (8)

After normalizing the cross-power spectrum by its magnitude
and eliminating the luminance variation influence during our
phase analysis, we obtain its phase as

Φ[Ck,k+1(fx, fy )] =
Gk+1(fx, fy )G∗

k (fx, fy )
|Gk+1(fx, fy )G∗

k (fx, fy )| . (9)

By substituting (6) into (9), we have

Φ[Ck,k+1(fx, fy )] = exp[−j2π(∆xfx + ∆yfy )] (10)

whose 2-D inverse Fourier transform is given by

ck,k+1(x, y) = δ(x − ∆x, y − ∆y) (11)

where δ is an impulse function on the x–y plane. As a result, the
displacement in the spatial domain corresponds to an impulse
in the correlation domain. Therefore, by finding the location of
the impulse in (11), we are able to obtain an estimate of the
displacement, which is represented by a motion vector. In our
system, the phase correlation for each block pair in consecutive
frames is calculated using 128 × 128 fast Fourier transform
(FFT).
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Fig. 6. Map of a typical phase correlation function between two blocks.

In practice, since the motion between any two blocks cannot
be both pure translational and noise-free, usually we have a
phase correlation map similar to what is depicted in Fig. 6.
Although there is an obvious peak appearing, there are other
peaks also, and some with noise.

In other words, in ideal situations where there is only a spa-
tial shift between images due to drift, it should be reflected
as a single spike after the application of the phase correlation
technique. Therefore, the highest peak in the phase correlation
map usually corresponds to the actual drift value. Even if the
images are contaminated with noise, the highest peak still pro-
vides the best estimate of drift between two frames. However,
for our 128 × 128 pixel extended blocks, due to the nontransla-
tional movement and other unexpected noise, several peaks with
height closer to one another might be appearing in the correla-
tion map. In this case, several candidates will be selected first
instead of just choosing the highest peak. Thereafter, the peak
that best represents the displacement vector for the object block
has to be found by examining the peaks using image correlation
in terms of the mean squared error (MSE) criterion. The candi-
date possessing the highest image correlation is then identified,
and its corresponding drift displacement is accepted as the mo-
tion vector for the object block. Note that a maximum drift of
±64 pixels is assumed in order to ensure that there exists an
overlapping area with enough size between the corresponding
block pair. In case the drift exceeds the assumption, one may
increase the block size to 128 × 128 to solve this problem.

Finally, after the motion vectors for all blocks are computed,
we could obtain a motion vector as a field map shown in Fig. 7,
which is the result of applying our algorithm on the experiment
data shown in Fig. 2. Ideally, if the translational drift is the
only reason for the motion vectors within the image sequence,
a satisfactory drift measurement of the whole frame can be
produced by simply calculating the mean of all motion vectors.
However, as we have stated before, to fulfill nanomanipulation,
some particles or some parts of the sample surface are designed
to be altered. Additionally, image data are usually corrupted by
noise and other uncertainties at the nanoscale. As a result, some
of the blocks will have considerably different motion vector

Fig. 7. (a) Motion vector field corresponding to Fig. 2 before the noise can-
cellation. (b) Motion vector field after the noise cancellation.

values from others, as shown in Fig. 7(a). Thus, a specific noise
cancellation mechanism is required to pick the “contaminated”
blocks out, and restrain them from being involved into the final
calculation.

By assuming that only a limited area of the sample is altered
during a short interval, a simple but an effective approach to
remove this noise is to first compute the mean of all motion
vectors, pick some blocks that are farthest from the mean, and
set their values invalid. By this way, a more accurate drift mea-
surement can be obtained by computing the mean of motion
vectors of the left blocks.

In practice, a constant threshold value of ε is used in our
scheme for noise cancellation. In particular, after getting the
mean, all the blocks whose distance to this mean value larger
than ε are not considered in the final calculation of the drift
measurement for the overall image. Usually, the choice of ε
depends on how large area of the sample is being manipulated,
which should be known a priori.
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Fig. 8. Architecture of the two-layer NN predictor.

C. Time Series Prediction With NNs

After obtaining the drift measurement at the current time
instant k, the drift behavior in the next time-step k + 1 must be
estimated for compensation purpose. In [3], the Kalman-filter-
based estimator is introduced for this purpose. Although Kalman
filters can provide the best estimation based on the maximum-
likelihood optimization, the model and parameters used in the
filter have to be identified beforehand, where a general model
and parameter settings are still impossible under multifarious
sample materials and varying ambient conditions.

As an alternative, in this paper, a two-layer NN is employed
for predicting the drift in the subsequent time instant, as shown
in Fig. 8. The matrices V and W are the hidden layer and output
layer weights. Moreover, as noticed from Fig. 8, the number of
nodes in the input, hidden, and output layers are N + 1, N2 ,
and 1, respectively, where N denotes the history data utilized in
the calculations. It is well known that the NNs have excellent
approximation capability for any nonlinear temporal mapping.
Assuming that the environmental conditions will not change
much in a short-time period, the NNs can learn the statistical
nature of the drift from the historical data and other informa-
tion. In our system, not only the previous drift measurements are
forwarded to the NN predictor, but also the temperature fluc-
tuations are measured and taken as an additional input to the
NN. The weights of the NN are updated in a supervised training
mode along with the drift measurement feedback from the phase
correlation algorithm.

D. Signal Reconstruction Using the Sinc Function

For a real-time controller design, it is necessary to obtain a
drift description as a continuous function of time from the dis-
crete measured points. Considering that the power spectra of
the time series for drift exhibits a bandwidth of the order of
0.001 Hz [3], it is possible to get proper reconstruction results
using the sinc function, as long as the sampling interval be-
tween the images are small enough. In our applications, the
samples are imaged every 256 s or the sampling frequency
is about 0.004 Hz. Therefore, it is reasonable to use the sinc
function to reconstruct the drift signal without much loss of
information.

Therefore, it follows that

d(t) =
k+1∑
i=0

di sinc

(
π(t − ti)

∆t

)
, for t ∈ (tk , tk+1) (12)

where d(t) is the continuous drift function at the time between
the current sampling instant to the next one, di is the drift
measurement (i = 0, 1, . . . , k) or prediction (i = k + 1) on the
sampling time ti , and ∆t is the sampling interval.

IV. IMPLEMENTATION AND EXPERIMENT RESULTS

To verify our proposed research, the drift compensator is
implemented on a multimode SPM with NanoScope IIIa con-
troller (Veeco Instruments) at the University of Missouri–Rolla
(UMR)’s Materials Research Center. The laboratory has air con-
ditioning but the ambient temperature is not tightly controlled.
Additionally, no humidity control is provided in the laboratory.
The AFM is forced to operate in tapping mode.

In our experiments, the imaging frequency is set at 0.004 Hz,
which implies that each recursive loop of our system takes about
256 s. As a matter of fact, the imaging frequency could be al-
tered. Smaller frequency leads to longer loop period, and there-
fore, longer manipulation time. However, larger drift volume
will be accumulated resulting in degraded experiment outcomes.
Meanwhile, the samples are imaged at a scan rate of 4 Hz in our
trial. At each scanning, a 512 × 512 pixel height image repre-
senting 1 µm2 area is obtained. This means that it takes the AFM
about 128 s to finish one imaging routine. Thus, almost half of
the loop time can be used for algorithm computation, manipu-
lation, fabrication, and other tasks on the sample. Typically, the
computing time of our algorithm is about 15 s on a Pentium M
1.86 GHz computer with 1.00 GB RAM. This means that most
of the time can be allocated for manipulation and or fabrication
operations, since the computation time is small compared to the
imaging time.

For the NN-based drift predictor, a fixed time window of past
eight drift measurement values were fed into the input layer
of the NN (N = 8). The laboratory temperature information
is also collected by a thermal sensor attached to the head of
the microscope and fed as an additional NN input. The two-
layer NN consists of N2 = 50 neurons in the hidden layer. The
initial weights of all the layers are selected at random between
[0, 1]. The activation functions of the first layer are selected as
hyperbolic tangent sigmoid functions, and that of the second
layer are taken as pure linear functions. Initially, the first 20
sets of drift measurement data will be used for offline training
by using the Levenberg–Marquardt backpropagation algorithm.
After that, along with the accumulating new measurement data
from the phase correlation algorithm block, online learning is
utilized by using the training set with the most recent 50 data
points.

First, we applied our system on the same sample depicted in
Fig. 1. In this experiment, no manipulation work is executed on
the sample surface. With the compensator, the AFM is able to
focus on the same location as shown in Fig. 9.

The second experiment is taken with a sample of Au on the
mica substrate for a duration of 8 h in order to test the feasibility
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Fig. 9. Image sequences of a graphite sample by an AFM tapping mode taken
at 256 s intervals with drift compensation. The scanned area is 512 × 512 nm2 .

Fig. 10. Measured and predicted drift value from the phase correlation algo-
rithm and the predicted value from the NN.

of the NN predictor and the signal reconstruction block. Fig. 10
displays the errors between the measured and the predicted drift
values along the x-direction, which average at 1.62 nm with a
peak of 6.88 nm. In Fig. 11, we can see the continuous function
of the drift after the signal reconstruction process.

In the end, to evaluate the effectiveness of our algorithm
under the influence of manipulation, which is one of the major
contributions of our paper, the compensator is implemented for
an automatic manipulation task. Fig. 12 depicts the results of
manipulating gold particles with 30 nm of diameter on a mica
substrate. One of the particles is manipulated to form a line with
two other particles, and the other is moved out of the screen.
The drift measurement and the compensation are finished before
starting the manipulation routines.

Fig. 11. Continuous drift function after the signal reconstruction compared
with the discrete drift measurement.

Fig. 12. Manipulation of 30 nm gold particles using the block-based phase
correlation compensator.

V. CONCLUSION AND FUTURE WORK

To realize fully automated nanomanipulation and nanofabri-
cation, the effects of nonlinearity and spatial uncertainties of
AFMs have to be compensated in order to minimize user inter-
vention. This paper describes a novel compensation system for
drift, which is a major cause of spatial uncertainty. The compen-
sating scheme can be subsequently used in designing a real-time
controller for nanomanipulation. Experimental results show that
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the proposed scheme is able to predict drift that can be success-
fully utilized for compensation during nanomanipulation.

As part of future work, similar to the drift compensation, more
efficient tools must be developed for other uncertainties, such
as creep, hysteresis, etc. Trying other prediction methodologies
to lower the tracking errors is also our future work. Moreover,
since the microscope undergoes drift simultaneously as captur-
ing images, fundamentally speaking, any images obtained from
the AFM are drift “contaminated.” To eliminate the drift error
within an image, possible solutions in the future will include:
1) updating the current image by using the force feedback from
the microscope during manipulation; 2) using smaller imag-
ing area for reducing the drift within one image; and 3) using
multiple tips and conduct manipulation and drift compensation
simultaneously in a parallel way.
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