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Asymptotic Stability of Nonholonomic Mobile Robot Formations
using Multilayer Neural Networks'

Travis Dierks and S. Jagannathan

Abstract—In this paper, a combined kinematic/torque
control law is developed for leader-follower based
formation control using backstepping in order to
accommodate the dynamics of the robots and the formation
in contrast with kinematic-based formation controllers that
are widely reported in the literature. A multilayer neural
network (NN) is introduced along with robust integral of the
sign of the error (RISE) feedback to approximate the
dynamics of the follower as well as its leader using online
weight tuning. It is shown using Lyapunov theory that the
errors for the entire formation are asymptotically stable and
the NN weights are bounded as opposed to uniformly
ultimately bounded (UUB) stability which is typical with
most NN controllers. Simulation results are included.

Index Terms —Neural network, formation control,
Lyapunov method, kinematic/dynamic controller, RISE

I. INTRODUCTION

Over the past decade, the attention has shifted from the
control of a single nonholonomic mobile robot [1] to the
control of multiple mobile robots because of the advantages
a team of robots offer for complex tasks like search and
rescue operations, mapping unknown or hazardous
environments, security and bomb sniffing besides increased
efficiency.

Many formation control papers using kinematic
controllers have appeared recently. However perfect
velocity tracking assumption is used and the individual robot
and the formation dynamics are ignored. Therefore, in [2],
the follower robot dynamics are considered using a neural
network (NN), however; the formation dynamics are
ignored.

In this paper, the frame work developed for controlling
single nonholonomic mobile robots is expanded to leader
follower formation control by incorporating the dynamics of
the robots as well as the formation in the controller design.
Thus, the dynamical extension introduced here provides a
more rigorous method of taking into account the specific
vehicle dynamics to convert a steering system command into
control inputs via backstepping. Both velocity feedback
control inputs and velocity tracking control laws are
presented to prove the formation is asymptotically stable. A
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multilayer NN is introduced to learn the dynamics of the
each follower robot and its leader online, and is combined
with a recently developed robust integral of sign of the error
(RISE) feedback method originating in [4]. The asymptotic
stability of the entire formation as well as the boundedness
of the weights of the followers' NNs and the leader's NN is
demonstrated using Lyapunov methods as opposed to
uniform ultimately boundedness (UUB), a result common in
the NN controls literature [2][3].

The RISE method [4] is designed to reject bounded
disturbances, unmodeled dynamics, and NN functional
reconstruction errors to yield asymptotic tracking.  To
accommodate the RISE technique, the NN must be
constructed using desired trajectory, which is similar to the
DCAL-based NN scheme [5]. An approach to blend a
multilayer NN with RISE feedback for a single rigid robot
control is taken in [6]. Boundedness of the actual NN
weights is shown separately using projection algorithm and
convergence of the tracking errors is then demonstrated by
using constant controller gains. Selection of the predefined
convex set for the projection algorithm both to prevent the
NN weights from diverging and ensuring the initial weights
be a part of the set is a challenging task.

By contrast, in this work the constant bounds and gains
in [6] are replaced for formation control with time varying
functions allowing bounds and gains to be determined with
more certainty, and a novel weight tuning is used [6]. An
additional advantage of using the proposed NN weight
tuning as opposed to the projection algorithm is less
decision making in the NN learning process, which can lead
to reduced system delays. Further, Lyapunov analysis is
presented to show the asymptotic convergence of the
tracking errors and boundedness of the NN weights
simultaneously. Finally, the bounds and gains developed
here also applicable to single rigid robot control [6] besides
formation control. No offline training is needed for the
NNs.  Simulation results are provided to demonstrate the
theoretical results.

II. LEADER-FOLLOWER FORMATION CONTROL

The goal of separation-bearing formation control is to
find a velocity control input such that [5]

lim (L, —L,) =023 limcy, -w)=0 (1)
11— 0 1—w0
where Lii and Y ; are the measured separation and bearing
of the follower robot, and Lifd and W/, represent desired

distance and angles respectively [5]. To avoid collisions,
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separation distances are measured from the back of the
leader to the front of the follower. The kinematic equations
for the front of the /” follower robot can be written as

)jc, c?s Zj —ddj sin:j v, ©)
yil= sin 0, ; cos 8, .
0. 0 1 !

J

where d i is the distance from the rear axle to the to front of
the robot, X Vi and Hj are actual Cartesian position and

orientation of the physical robot, and v Iz and @ ), are linear

and angular velocities, respectively. Many robotic systems
can be characterized as a robotic system having an n-
dimensional configuration space € with generalized
coordinates (g;,...q,) and subject to m constraints described
in detail in [1] and mathematically after applying the
transformation described in [1] as

M (g, +V, (q;.4,)v, +F,(v))+74,=B,(q,)7, @)
where ]\7 ; e R™is a symmetric positive definite inertia
matrix, Vm,- e R™is the centripetal and coriolis matrix,
F,- eR™is the friction vector, fdj represents unknown
bounded disturbances, 7, = B TE R™is the input vector,
and v, = [vj a)j]T eR™.

satisfies the following properties:
1. Boundedness[6]: ]Wj , the norm ofI7mj , and 7 are all

bounded. Furthermore, V)(f)eR,

— IR T _ 2 — .
mM S)/]\/g(cb)yﬁng(qjjw‘ where m,is a known real
positive constant, 71,(q,)is a known real positive function,

The robotic system (3)

and ”0” is the Frobenius vector norm [3].

A. Backstepping Design:

The description of the behavior of a mobile robot is
described by (2) and (3). Standard approaches [2-5] to
leader follower formation control deal only with (2) and
ignore dynamics (3). To incorporate the dynamics of the
mobile platform, it is desirable to convert a control velocity

v,.(2) into a control torque, 7 ,(#) for the physical robot.

In our previous work [7], the dynamics of the robots and the
formation are assumed to be known accurately. By contrast,
our aim in this paper is to design augmented NN/RISE based
torque controller such that (2) and (3) exhibit the desired

behavior for a given control velocity v, (¢) thus removing

perfect velocity tracking and relaxing that the dynamics are
known.

B. Multilayer Neural Networks

A multilayer NN is considered here consisting of tunable
weights 7 € R“" in the input layer and tunable weights
W e R™" in the output layer witha inputs, b outputs, and

L hidden neurons. The universal approximation property
for NN's [19] states that for any smooth function f(x), there

WePI25.6

exists a NN such that f(x) =W o(V"x)+¢ where&is the
NN functional approximation error and o(-): R* — R*is

the activation function in the hidden layers. The sigmoid
activation function is considered here. For complete details
of the NN and its properties, see [19].

Remark: ”” and ”” r will be used interchangeably as the

Frobenius vector and matrix norms [3].
To aid in future analysis, define the hidden layer output
error for a given x as [3]
G=oc-6=c(V"x)—o(Vx) 4)
Then, using the Taylor series expansion for o(V” x)[3], (4)
can be written as
G=c'WTxWix+00"x)? =6V x+00"x)* (5)

where o'(3) = 9o(2) =o(l-0) (6)
62 z=2
OV =[c(V x)—oc(VTx)]-6V x. (7
The following mild assumptions will be used.
Assumption 1. Follower j is equipped with sensors

and

capable of measuring the separation distance Lij and

bearing /;; and both leader and follower are equipped with

instrumentation to measure their linear and angular
velocities as well as their orientations 6, and 6, .

Assumption 2. Wireless communication is available
between follower j and leader i with communication delays
being zero.

Assumption 3. Leader i communicates its linear and

angular velocities v, , @, as well as its orientation &, and

control torque 7; to its followers at each sampling instant.

Assumption 4. For the nonholonomic system of (2) and
(3) with n generalized coordinatesg, m independent
constraints, and 7 actuators, the number of actuators is equal
to the number of degrees of freedom (r =n—m).

Assumption 5. The reference linear and angular
velocities measured from the leader i are bounded
andv, (¢) 2 Oforall .

Assumption 6. Let perfect velocity tracking hold such
thatv, =V, andV, =V, (this assumption is relaxed
later).

Assumption 7. On any compact subset of R” , the ideal
NN weights are bounded by known positive values for all
followers  j=12,..Nand leader i such that

V. L<W, [3]. Furthermore, augmented

i.j

<v, and|y, |

’
weight matrices can be defined such that

z =|" landp W O
i.j 0 Vz] ij 0 sz

wilz,|, <2,
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Assumption 8. Let the NN approximation property hold
f(x) with

followers j and leader 7 and for allx,, ; in the compact set

for a function accuracy &, for all

S [19] such that|e, ||<&y,j=12..N. Furthermore,
let”é‘i /” < g]'v and the disturbances and their derivatives be

<d, [1][6].

Assumption 9. The formation leader follows no physical
robots, but follows the virtual leader described in [1].
Furthermore, the virtual leader's velocity is defined by a
time varying function that is twice differentiable.

Assumption 10. The formation leader is capable of
measuring its absolute position via instrumentation like GPS
so that tracking the virtual robot is possible.

Remark: 1t should be noted that the Assumptions 1-10
are standard in single robot as well as formation control
literature.

bounded such thatH{- di,jH <d, and H[i- " T di,_/']

C. Kinematic Controller

Consider the two robot formation depicted in Fig. 1. In
our previous work [7], we found the error dynamics for
follower j to be

e Ly, cos(W,, +e;;)—L;cos(\V; +e3) o
e, =|e,|=| Ly sin(\¥;, +e,;)—L;sin(‘¥, +e;) ®)
€n 0,-9,
and its derivative as
e, [ =V, +v, cose; +@,e, —w, L, sin(¥y, +e;)
e, =\e, |=|~we, +v,sine,—d o, + oL, cos(¥,, +e,) ©)
€s] @, —;

The following velocity control inputs were proposed [7]
for follower robot j to achieve the desired position and
orientation with respect to leader i as

Vie v,cose; +he, —aL,sin(¥, +e;)

Ve = ;. - @, +(, +kv)k26j2 +(v; +k, )k, sineﬂ +7 e

enl@d, + L)+ o+ kR + k) (11

v 1k, +eld,

Theorem 1 [7]: Given the nonholonomic system of (2)
and (3) with n generalized coordinates ¢, m independent
constraints, and r actuators, along with the leader follower
criterion of (1), let Assumptions I through 6 hold. Let a

} (10)

where

smooth velocity control input V. for the follower j given by

(10) and (11). Then there exists a vector of positive
constants K = [k, k, k3]T such that the origin e, = 0

consisting of the position and orientation error for the
follower is asymptotically stable.
Proof:  Consider the following Lyapunov function
candidate
l-cose;
k2

(12)

1
V= E(eil +ej)+

WePI25.6

Fig. 1: Leader-follower formation control

It is shown in [7] that the velocity control (10) provides
asymptotic stability for the error system (8) and (9).

D. Dynamical NN/RISE Controller

Now assume that the perfect velocity tracking
assumption does not hold making Assumption 6 invalid.
Define velocity tracking and filtered tracking errors as

€je =Vie ™V

(13)
r=é,+a, (e, (14)
where ; (?) is areal time varying function greater than zero
defined as « (¢) = &, + a; () where @ is a constant
and &, (¢) is a time varying term. Multiplying both sides of
(14) by ]\7[/,, adding and subtracting 7 v and F}(vjc)’ and

substituting the robot dynamics (3) allows (14) to be
rewritten as

Mjrj:fd/+Tj+fdj—fj (15)
where f 0 = M}_{;jc (16)
T,=e (a,(0M, =V, )+ F,(v))~F,(v,) (17)
Differentiating (17) then yields

+ I7m,vjc +F}(vj4')

and

M7 ==Mr+ f, +T,+7, -7, (18)
Defining the control torque as in [6] to be
f/.:fd/+/u/. (19)

where ; s the estimate of f, and 4, is the RISE feedback
term defined similarly to [4] and [6] as
#y =k, +1)e; (1) = (k; + e, (0) 20)

+ [0k, + D, ()e, () + (B,,(5) + B, ) sen(e . (5)1ds
i, =(k,+Dr, + B, (D)sgne; )+ 5, sgne;.)

where 3, andk are a real positive constants, S, (¢) is a

such that

real, positive, time varying gain function, and sgn(e) is the
signum function.

In [4] and [6], B,(t) and «(f) are
considered to be positive constants. We choose time
varying functions here to facilitate in defining the upper

bounds necessary for the RISE aspects of the NN/RISE
controller which will be discussed in the proceeding

development and in the Appendix. Also, the constant ﬂjz

Remark:
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is added to the RISE term to facilitate in the stability
analysis of the system.

Using the universal approximation property for NN's [3],
define

fd] szTO'(Vijdj)+gj 21)
and define the NN approximation of (21) to be
fAd, = I/I%TU(I?/Txflj) (22)

where W/_Tis the NN estimate of the ideal weight matrix and
T
0] -
substituting the derivative of (20) into (18) and applying
(22) gives
Miy==Mr, + W o, ~W/ 6, +T, -, + 7, +e (23)

_ . .. : A > T
X, = [1 Vie Vie Ve Noting ;= O-(Vj xd/')’

Adding and subtracting e e and WjTEj + WjTOA' ; as well as

substituting the derivative of (20) and the Taylor series
approximation (5) into (23) yields

. 1 - N
My = =S Mry + N+ Ny + Ny = e (24)

where N, = _%]\7/@ +T +e, (25)

> T ~r T T > =
Ny =WV, x,+W, 00, x,) +¢,+7, (20)
Ny, =W, (6,6 V] x)+W 6V x,. (27
and V,=v,-7, andﬁ/j =W, An upper bound for ﬁj can

be obtained using the Mean Value Theorem as [4]
[¥.1< 2 (=Dl |

T TqT
wherez, =[e;,, r; ] and p(sz

(28)

‘) is a positive, globally

invertible, non-decreasing function.

Lemma 1: The terms of (26) and (27) and their
derivatives can be bounded by computable positive time
varying functions as

Nyl < B [Ny|<BL@) @9

[N < Bua @) [N < Bl 30)

Proof: See Appendix. For convenience, define
By()=B,,()+By,(nand Bl (1) = By, (1) + B}, (1) -

It should be noted at this point

The
leader i written in the form of (3) and rewritten as

b, =M (4B (4,)7, =7, (@4, )V ~F(v) =741 BD)
Substituting (31) and (9) into v e results in the dynamics of

thatv, = f.(v,,@,,v,,0,,¢;,¢;) . dynamics of

leader 7 robot to become apart of V. as

V. =/f0,0,0,7,€;) (32)
It is assumed that the leader and follower robots'
thatv,,v.

dynamics are sufficiently smooth such Ve

and v o are also smooth functions. Under these assumptions

WePI25.6
v o can be approximated with relatively small error by the

standard second order backwards difference equation for a
small sample period Af as

V=V (O)=2v, (= At)+v . (t-2A1) (33)
Using (33) and forming Vv e under the assumption that

v, = 0 and then including the terms of the function defined

in (32), the NN input vector x, takes the form of

Xy =[1 Vi Vi

v, 0, v, w1, 6 ¢] (4

v, =0 Jje

so that the dynamics of the leader i can be estimated by the
NN, and the terms of v e omitted by assuming v, = 0 can be
accounted for.

Theorem 2: Let Assumptions /-5 and 7-8 hold, and let
ks be sufficiently large positive constant. Let a smooth
velocity control input v, (#) for follower j be defined by

(10), and let the torque control for follower j given by (19)
be applied to (3). Let the weight tuning laws be defined as

W,=Fé.e, —F6V x,e, —K'F‘ e, (35)
V,=Gx, (6 We,) —xGle, |V, (36)

where F=F' >0, G=G" >0, and ¥ >0. Then the
position, orientation, and velocity tracking

erTors €; ande PR asymptotically stable, and the neural
network weight estimate errors VIN/j and I7j are bounded for

follower j provided that /3, is selected as

(37)

F

ﬂ,-l 2 BNfs(t) + LB;W(Z) +K(Zy + “Zf“p)“z.f
a5

Proof: Consider the following Lyapunov candidate

VISV, +V (38)
where Vj is defined as (12) and
1 1 ;—
Vinw = 2 eje; + 2 r M1, + P, +Q, (39)

where P =5, (())‘

6 O, (O Nyu(0)~ [, (s)ds (40)

Lj = V/'T(Nle +N3,'1 _:le Sgn(ejc))
+ef Ny, = Byle|+xriZ 2}

L
0, =l FW) + ]G 7))

(41)

Cje
and (42)

If ﬁil is chosen according to (37), the following inequality
can be obtained (this claim is proved in the Appendix)

ij ()ds < 3, (O)e, . (0) =€, (0) Nys (0)  (43)

Therefore, it can be concluded that P > 0and noted that
P=-L. Taking the of (38)
yields V/' = Vj + ijwv , and it was stated in Theorem I and

time derivative
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proved in [7] that Vj < 0, so our efforts will focus on ijwv-

Before proceeding, it is important to note there exists

U,(y) andU,(») such that

Ui(y) <V <UL (p)) (44)
where v, =l [P O, eR U,(y)and U,(y) are defined
in [6] to be Ul(y):ﬂqHszandUZ(y)zﬂz(q)Hszwhere
A :%min{l,ml}’ A, = max{%ﬁ(q),l} and m,andm(q) are

defined in the Boundedness property for robotic systems
described above.
Differentiating (39) yields

. ) I ..
Viw = efcejc + ’”/TM./”./ + 5”./TM./”./ +P 40, (45)

Making use of (14), (24), and the derivatives of (40) and

(42) yields

Vi =—aehe, —r (k,+)r,—r B, sgn(e, ) +r N,
+ e/T(NB/.2 + ,3/] ‘ et tr{W/F'IWI} + tr{l7jG'II7/} (46)
—K‘eﬂ, tr{Zij}

Substitution of (27) and simplifying allows (46) to be
rewritten as

. 2 2 T .
Viw ==at e, | =k, +D|r| —¢l.8,sente,)+ B,

riZ,Z}

ejc

e
+;f/.Nj—K‘

—&iPp|Ce €je

(47)
1l (F W, +.8 ¢, 697 v ye].))
T (G, +x, T 6 ))
Applying the weight adaptation laws (35) and (36), equation
(47) takes the form of

. 2 2

VjNN = _aj‘ €l — (k, + 1)Her - e;ﬂjz Sgn(ejc) (48)
tlecBy —a,B)+r N,

Recalling  thater;(f) = o)y + @, (f), and  selecting

a, ()= |B‘j1|/ﬂj2 , (48) can be rewritten as

2 2
=k, + D) ]

VjNN < _aj‘ejc éjc ﬂjz sgn(ejc) (49)

r~
_a‘/oﬂjz‘eﬁ: + rj Nj

However, calculation of ﬂ B is not only difficult, but
also only an upper bound of ,le can be accurately calculated

because of derivative chain rules. Therefore, will ﬁ 1be

estimated as ,B 1= ,3 qtéEg where &g is the estimation

error and f3,is the estimate of 5, using a standard

backwards difference written

A

as .jl =B,(O)— B, (t —A)where Atis a small sampling

period.

equation

WePI25.6

Now, SeleCtingajl(t) > (B, |/ B, %0 2 Ep 1B

and defining A=, —&, / ,sz’ equation (49) can be
rewritten as
2 2

= (k, + Dl [ |

V._/'NN = _a_/‘ejc € ﬂjz sgn(e,, ) (50)
@B+ N,
Noting that ”éjc —a |ejc < ”r,” yields
Viw < _a./‘efc - (k, +1)Hr./H2 +rf (N, + ) (D

Based on (28), define a second bounding function as

e Do =l e | - 50
7,1+ 82 <Pz DIz |

Now, using the bound in (52), and completing the square

(52)

with respect to ”rj " ,we arrive at

s

- o & fp DL PEDEL s
VjNN < _ﬂ'J'HZJ'H _j ‘rj H B k + 2k,
where A, = min{ajo,ks / 2+l}. The second term is

always less than or equal to zero, so considering the first and
third terms, a continuous positive-semi-definite function

2
Uy j) = c”z ; " , for some real positive constant ¢, can be

defined on the domain D such that
Fow €00, for D =, @907 [y < (7 ) 59
The inequalities in (44) and (54) can be used to show that

ijwv < ooand bounded in D, and therefore €. 1 Pj,

and Qj are also bounded in D. Continuing this way after
observing the boundedness ofe o and 7 in D, standard

linear analysis methods can be used to prove that all of the
quantities in (20) and (24) are also bounded in D.
Therefore, the definitions forU(y,)andz can be used to

prove thatU(y;)is uniformly continuous. For complete

details of the steps to draw this conclusion, see [6].
Let S < D denote a region of attraction such that

S=l, (DU, <A (22K )] (59)
Applying Theorem 8.4 of [8], it can be concluded

cszH2—>0 as t—>o V y(0)e§. From the

definition ofz i it is clear that”ejC ”_) 0 as t— oo

vV oy, (0)eS thus illustrating the asymptotic stability of the

tracking error and the boundedness of the neural network
weight estimates.

Remark: The region of attraction (55) can be made
arbitrarily large to include a larger set of initial conditions

by increasing the gaink, .
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E. Leader Control Structure

The kinematics and dynamics of formation leader 7 can be
described similarly to (2) and (3). From [1], the leader
tracks a virtual reference robot with the kinematic
constraints ofx, =v, sin€ y, =v, sinf. 6 =o,,
and the leader's tracking and its derivative are found to be

e, cosd, sind, O] x, —x, (56)
e, |=|—sinfd, cosf, 0|y, —vy,
e 0 0 1|6 -6,
€, =V, +v,cose;+we,
€y |= —we, +v,sine; 57)
e W, —®

i3 ir i

In order to stabilize the leader's kinematic error system,
the control velocity proposed in [1] is written as

Ve | v, cose, + ke,
Vie T |:wf(] - |:a)ir +k,v,e, +ksv, sine;
In order to define the dynamical NN/RISE controller for
the leaderi, define the velocity tracking and filtered

} (58)

tracking errors ase,, = v, —v,and7, = ¢, + a,(t)e, .
Using similar steps and justifications used to form (15)
for follower ] , define the error system for leaderi to be

M =f, +T,+7, -7,

i

(59)
where f, andTl- are defined similarly to (16) and (17),

respectively, and 7 4 represents the unknown, bounded

disturbances subject to the bounds described in Assumption

8.  The control torque,7;, for leaderican be defined

i

similarly to follower j's as
T= ot 1

where j} , is the estimate of f, and 4, is the RISE feedback

term defined similarly to the follower's controllers in (20).

Using the same steps and justifications used to form
(24), the closed loop error system for the for the lead
roboti can be written as

(60)

Mi’;i:_%ﬁir}+ﬁi+NBil+NB[2_e[c (61)
—(k, +Dr, — B, ()sgn(e,)

wherek ,is a positive control gain parameter, and

N .»Nyand N, are defined similarly to (25), (26), and

(27), respectively, and are bounded similarly to the bounds
defined in (28), (29), and (30), respectively.

Assumption 9 and the fact that the virtual robot does not
have its own dynamics allows two derivatives of the
reference velocity v;. to be calculated. Therefore, when

calculatingV. , the only unknown quantity encountered

ic
is v, which can be written as in (31). Using similar steps and
justifications used to form the NN input vector for
follower j in (34), the NN input vector for leaderi can be
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defined as x, =[1 v v/ ]

1c 1

@ v, @ 7]'. The NN

w0
weight updates for the leaderi are defined similarly to

follower j's shown in (35) and (36).
Theorem 3: Let Assumptions 1-5 and 7-10 hold for

leader i, and let K, =[k, k, k] be a vector of
positive constants, and let & be a sufficiently large positive

constant.
inputv, () for the leader i given by (58), and let the torque

Let there be a smooth velocity control

control input for the lead robot i defined by (60) be applied
to the mobile robot system in the form of (3). Then leader's
position, orientation, and velocity tracking errors are
asymptotically stable and the NN weight estimates are
bounded.

Proofi Due to space constraints, proof of Theorem 3 is
not included. However, the steps are similar to those used in

Theorem 2 and choosing the Lyapunov candidate
V!=V.+V,, where
Vo= Lot o2y 129%8¢% (62)
2 i2
| 1 7o
and Vi = Eeiceic + E'} M1, + F, +0, (63)

where P and Q, are defined similarly to (40) and (42),

respectively.

F. Formation Stability

The stability of the formation can be demonstrated by
using the individual Lyapunov functions as given in the
following theorem.

Theorem 4: Consider a formation of N+I robots
consisting a leader i and N followers. Let Assumptions 1-5
and 7-10 hold. Let there be a smooth velocity control input

v,.(t) given by (58) and torque control from (60) for the
lead robot i be applied. Let there be a smooth velocity
control input V (f) given by (10) and torque control given
by (19) for the j* follower robot be applied. Then there

exists vectors of positive constants, K=[k, k k]

andK, =[k, k,

’ k,.3]T, and sufficiently large positive

constants, k and k_; such that the

origine; =[¢ ¢, e e ] =Owheree; € R e
presents the augmented position, orientation and velocity
tracking error systems for the leader i and N followers,
respectively is asymptotically stable, and

Z, :[Z. ZJ.]:O is the augmented NN weight

estimation error matrix for the leader i and N followers,
respectively, is bounded. Let the NN weight updates for
leader i be defined similarly to (35) and (36) and the NN
weight updates for follower j be given by (35) and (36).

Proof: Due to space constraints, proof of Theorem 4 is
not included here. However, the theorem follows by
selecting the Lyapunov candidate
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N
V= ZV/ Vit Vi 64)
1

where V/. is defined by (12), Vis defined by (62), and

V\y is defined as

VNN=%eZeC+%rTA7r +P +Q >0 (65)

Whel‘e e; — [el: eT ]T c %IXV(NJrl) 7= [rlT

je

ro ]T e RINVAL

_ dag (BT, ) - for j =12,
i i

N N
B+ P4 0=0+3.0;

Remark: The stability of the entire formation for the
case when follower j becomes a leader to follower j+/
follows directly from Theorem 2 and the Lyapunov
candidate

M
P

" J

+1
v, = ZV;

J

(66)
where Vj' is defined in (38).

III. SIMULATION RESULTS

A wedge formation of five identical nonholonomic mobile
robots is considered where the leader's trajectory is the
desired formation trajectory, and simulations are carried out
in MATLAB. The NN controller gains are set
asF =5,G=5andx =.1, and the following gains were
utilized.

Leader k,3=dalg{65} Kl'[:]O Ki =5 Ki =4
Followerj | k,=diag{65} | k,=7 K,=15 | ks=.01
Formation Trajectories
127
Aoll!a\ Traje_olury
@ 10F|————-- Desired Trajectory
§ o
1
3
E o
X
o)
O o
4 . . . . )
5 0 5] 10 15 20

Distance in the X Direction (m)
Fig. 2: Formation Trajectories

The following gain parameters are selected for the NN/RISE
. 1 , A2 et
controller: ﬂi,jl _ BM)]_3 () + TBNWG (1)+0.05+ HZW_HFWIth

i,j0

the values of B N3 (¢)and B]'W’/:3 (¢) defined in the Appendix,
a,,,=10,and 3 . =20.
Also, the following robotic parameters are considered

for the leader and its followers in both scenarios: m=5 kg,
I=3kg’ R=.175m, r=0.08 m, and d=0.45 m.

WePI25.6

Figure 2 displays the formation trajectories taken by
each robot as well as the desired formation path. Examining
the plot, it is clear that the robots quickly converge to and
track the desired formation trajectory, and the formation
errors converge to zero as the developed theory suggests.

IV. CONCLUSIONS

An asymptotically stable multilayer NN tracking
controller for leader-follower based formation control was
presented that considers the dynamics of the leader and the
follower using backstepping with RISE feedback. The
feedback control scheme is valid even when the dynamics of
the followers and their leader are unknown since the NN
learns them all online. RISE feedback-based controller
design allows the asymptotic stability compared to the
uniform ultimately boundedness, a result common in the NN
control literature. Simulation results were provided to
illustrate the effectiveness of the control.
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Due to space constraints, the Appendix has been posted on:
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