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Abstract: 

We present a new method of solving large scale Traveling 
Salesman Problem (rSP) instances using a combination of 
Adaptive Resonance Theory (ART) and Serf Organizing 
Feature Maps (SOFM). We divide our algorithm into three 
phases. Phase one uses ART to form clusters of cities. 
Phase two uses a novel modification of the traditional 
SOFM algorithm to solve a slight variant of the TSP in 
each cluster of cities. Phase three uses another version of 
the SOFM to link all the clusters. The experimental results 
show that our algorithm finds approximate solutions which 
are about 13% longer than those reported by the chained 
Lin Kernighan method for problem sizes of 14,000 cities. 

1 Introduction 

Neural Networks have been applied to solve numerous 
combinatorial optimization problems (COP). The TSP is 
probably the best known COP and is NP complete. Neural 
Networks were first applied to solve the TSP by Hopfield 
and Tank who used a neural network with N2 neurons, 
where N is the number of cities in the TSP. However, this 
technique had problems even for small instances, and 
attempts to scale the method to larger problem sizes failed. 

A different approach is based on the SOFM method of 
solving the TSP, and many researchers have applied this 
technique with modifications. The idea in all the methods is 
to perform a mapping of cities to neurons, which are 
located on a ring, where the ordering on the ring represents 
the traversal of the cities. They can be broadly divided into 
two classes, depending on whether they use a fixed or 
variable number of neurons. 

In [1,2,12,13] the number of neurons at any stage of the 
algorithm is fixed and equal to the number of cities. In 
[3,4,5] the number of neurons at any stage is not fixed and 
neurons may be added and deleted as the algorithm 
proceeds. The advantage of using a fixed number of 
neurons is faster convergence and lesser bookkeeping, 
while techniques based on varying number of neurons seem 
to give a more accurate result for smaller instances. We 

combine the ART and the SOFM allowing the number of 
neurons at any stage to be fixed. 

Clustering has been frequently used to divide the TSP into 
smaller sub-problems, and combine the sub-solutions 
separately [6,7,8,9,10]. References [6,8,10] have combined 
clustering and a Neural Network approach to solve the TSP. 
Noel and Szu [IO] use genetic algorithms to solve the inter 
and intra cluster tours while [6] uses the Hopfield network 
for the same. In our approach we used the SOFM for the 
inter as well as intra cluster tours since the SOFM gives the 
best results among all neural network solutions. 

. 

2 ART/SOFM 

Our complete ART/ SOFM algorithm can be divided into 
the following modules. 

0 Clustering 
0 

0 

0 

Finding Hamiltonian paths for each cluster ( Intra 
cluster tours ) 
Finding Hamiltonian loop for inter cluster tour. 
Linking the clusters and applying heuristics to 
improve the solution. 

2.1 Clustering 

Adaptive resonance theory was developed by Carpenter and 
Grossberg, and a large number of ART architectures have 
been introduced in the last decade. A major separation 
among all the architectures is based on whether supervised 
or unsupervised learning is used. Unsupervised learning is 
implemented when a collection of input patterns is to be 
appropriately clustered into categories, while supervised 
learning is utilized when a mapping needs to be learned 
between inputs and corresponding output pattems. For our 
clustering of the input cities, we used the unsupervised 
ART1 algorithm given in [ 1 11, which discusses each of the 
ART variants and also supplies Matlab code for 
implementing each of them. 
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To form the binary input patterns for ART 1, first the x and 
y CO ordinates are quantized. The number of quantization 
levels, n, is an input which can be entered by the user ( we 
fixed it at 8). Then we append to each thermometer coded 
co-ordinate, its complement. Thus the input ‘I’ to the ARTl 
program is a vector of the following form 

.................. I (S ize4nbyN)  = [I, L 4 
........................ I, I2 IN 

[ill i21 ................................... i.11 

il2 it2 ................................... iwz 

i13 i23 ................................... i ~ 3  

Lild i24 .................................... i,,] 

where IN is the column vector for the N* city consisting of 
the sub vectors 

iN1 = coded X co-ordinate ( n by 1) 
iN2 = coded Y co-ordinate ( n by 1 ) 
iN3 = Complement coded X co-ordinate ( n by 1 ) 
iN4 = Complement coded Y co-ordinate ( n by 1 ) 

The ARTl algorithm forms clusters of cities using the 
above binary input vector. The number of clusters depends 
on the vigilance parameter ‘rho’. We fixed rho at 0.8 since 
it gave us best results, but it can be changed by the user. 

2.2 Intra Cluster paths 

Kohonen’s self organizing feature map has the topological 
characteristics that can be effectively used in solving the 
TSP. The key idea is to perform a mapping from cities to 
neurons which preserves the neighborhood relationships 
among the cities, ie cities which are geometrically close 
should be mapped onto neurons which are close to each 
other on the ring. For finding the intra cluster tours we have 
used a modification of the method outlined in [l]. 

The Intra Cluster Algorithm 

We use a fixed number of neurons at any stage; equal to 
the number of input cities N. The winner neuron for each 
city is not duplicated, but excluded in the next competition. 
The main advantage of using a fixed number of neurons is 
that the convergence speed is better, especially for large 
scale instances. We have made a slight change to the above 
method since for the intra clusters we look for Hamiltonian 
paths and not Hamiltonian cycles. 

We start with a ring of N neurons, each being characterized 
by its weights [W,i , Wyi 3. An epoch consists of 
presentation of all the N cities. City ‘i’ with 

CO - ordinates [ Xi , Yi 3 is presented as input to the SOFM 
and the neurons compete to be the winner. The winner 
neuron ‘j’ is determined as the neuron on the ring closest to 
the city 5’. For each neuron on the ring we compute its 
Euclidean distance ‘D’ from the input city and select the 
winner ‘j’ as 

Dj = min(D) (1) 

We then move the winner neuron and its neighbors toward 
city ‘i’ .The distance that each neuron moves toward the 
city ‘i’ is determined by the Gaussian function H( (3, d) 
where 

H( o, d) = exp ( - d2 / 02) (2) 

The parameter ‘(3’ measures the effective width of the 
topological neighborhood ; it measures the degree to which 
the excited neurons in the vicinity of the winner neuron 
participate in the learning process. For solving the TSP [ 13 
uses ‘d’ to represent the circular distance from winner 
neuron. The circular distance between neuron ‘k’ and 
winner neuron ‘j’ is 

This is because for the TSP we are looking to form 
Hamiltonian cycles and so we want to form a closed loop 
where neuron 1 and neuron N are neighbors. However, for 
our problem, we are looking to for best intra cluster tours, 
which are Hamiltonian paths. So we define the distance 
between neuron ‘k’ and the winner neuron ‘j’ as 

d = abs(i-k) (4) 

The update rule we use for the changing the weights of the 
neurons is 

Thus the winner neuron moves toward city i, and also 
induces its neighbors on the ring to do so, with a decreasing 
intensity along the ring. Also the winner is inhibited, by 
making its weights negative, so that the winner can no 
longer participate in any competition for this epoch. This 
ensures that in any epoch there is a unique neuron ‘j’ 
associated with a city ‘i’ though this association could 
change between epochs. 

The size of the topological neighborhood function shr inks 
with time, which is achieved by making ‘0’ decrease with 
every successive epoch. Thus we start with a large 
neighborhood which includes almost all the neurons 
centered around the winner and eventually reduce to a very 
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small value of only a couple of neighboring neurons around 
the winner. 

2.3 Inter Cluster cycles 

Solving the inter cluster problem for all the clusters gives us 
two cities for each cluster, the starting and ending cities Clk 
and CZk. To solve the problem of linking together clusters 
we use another modification of the algorithm outlined 
above. We perform a constrained mapping, wherein 
neurons representing cities of the same cluster are adjacent 
on the ring. For example if neuron 5’ is the winner for city 
‘Clk’ which belongs to cluster ‘k’ , then the winner neuron 
for the other city CZk of the cluster ‘k’ must be one of the 
immediate neighbors of neuron 5’. 

So when we present city ‘Clk’ belonging to cluster ‘k’ as 
input, we determine the winner for city ‘Clk’ as well as for 
the other city in cluster ‘k’; city CZk. Thus if neuron j maps 
to city Clk then force neuron j +1 or j-1 on the ring to map 
to the other city in the cluster C2k. 

2.4 Linking the clusters 

The final stage involves linking together the inter cluster 
and intra cluster tours to give the complete solution. 
However, just linking the tours according to the inter cluster 
solution gives rise to numerous crossings. So to improve on 
our initial solution we run heuristics to remove crossings 
and swap links. 

Remove crossings 
There are two kinds of crossings which occur in the final 
tours intra cluster crossing and inter cluster crossing. 

1) Intra Cluster / Minor crossing 

This type of crossing occurs within the intra cluster solution 
causing sub optimal tour. To remove this crossing we 
perform a brute force exhaustive search for the optimum 
path taking 8 cities at a time. 

2)  Inter Cluster crossing / Major crossings 

When the clusters are linked together, crossings are bound 
to occur. To remove these crossings we look at the line 
joining the ending city of cluster ‘i’ and the starting city of 
cluster ‘i+l’. We search in a small rectangular area around 
this line and look for adjacent neurons lying on the opposite 
sides of the line which indicates that a crossing has 
occurred. The key is to minimize the search area so as to 
reduce the time complexity . 

Intelligent link swapping 

We look at two neurons which are very close in weights but 
are located at a large distance apart in the ring and try and 
swap some links around these two neurons. This heuristic 
typically removes some long edges. 

3 Simulations and Results 

We tested our approach on TSP instances with different 
kinds of distributions like random, clustered random and 
semi random distributions. To generate the bench mark 
instances we used the code at 
httl,://www.research.att.coi/-dsi/chtsp/do~~load.html. 
This website aims to create a reproducible picture of the 
state of the art in the area of TSP heuristics (their 
effectiveness, their robustness etc.), so that fhture algorithm 
designers can quickly tell on their own how their 
approaches compare with already existing TSP heuristics. 
To this end the organizers have identified a standard set of 
benchmark instances and generators (so that quality of tours 
can be compared on the same instances). The benchmark 
instances have random and clustered random distributions. 
We also tested our algorithm on instances from the TSPLIB 
site. 

We ran our code, which was written in Matlab, on a Sun 
Ultra Sparc I1 450 Mhz quad processor system with 1G 
RAM. We compared our results to optimal solutions when 
known. Otherwise, the basis for comparison is the chained 
Lin - Kemighan approach, which is one of the most 
popular methods of solving large scale TSPs. A version of 
the code for implementing the same is available at 
http://www.caain.rice.edu/-bicollk.htm1 

The table below summarizes our results. Problem instances 
with uniform random distributions in a lO”6 X 10A6 square 
are indicated as R -problem size. For example RlOOO 
indicates a 1000 city uniformly distributed instance. 
Similarly clustered random instances (integer-coordinate 
points located in clusters that are uniformly distributed in 
the lO“6 X lO”6 square) are indicated as CR - problem 
size. For example CRlOOO refers to a clustered 1000 city 
problem. For these instances we compared our solution to 
the Lin Kemighan solution ( indicated by an *). The other 
instances are from the TSPLIB web site for which we 
compared our results to the optimal reported ones. 
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best scaling performance of neural net TSP results reported 
to date, to the best of our knowledge. 

R8000 
CR8000 
RlOOOO 
R14000 

Table 1 : Summary of results 

12.2* 
10.1* 
12.9* 
12.3* 

Percentage Excess 1 Problem 1 Our solution I Best neural 

cR2000 
R4000 12.7 * 

CR4000 
R6000 12.8* 

8.3* 

~~~ .. 

PrlOO2 I 9.4** I 7.6** 1121 I 
8.3** 
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