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Abstract—This paper presents a novel fuzzy logic based 
controller for a Static Compensator (STATCOM) connected to 
a power system. Type-II fuzzy systems are selected that enable 
the controller to deal with design uncertainties and the noise 
associated with the measurements in the power system. Interval 
type-II fuzzy is computationally more effective than the 
ordinary type-II fuzzy systems and is more suitable for the 
power network with fast changing dynamics. Using a 
proportional-integrator approach the proposed controller is 
capable of dealing with actual rather than deviation signals. 
The STATCOM is connected to a multimachine power system 
in order to provide extra voltage support and improve the 
system dynamic performance. Simulation results are provided 
to show that the proposed controller outperforms a 
conventional PI controller during large scale faults as well as 
small disturbances. The type-II fuzzy membership functions 
provide a robust performance for the controller and eliminate 
the need for a model based adaptive control scheme.  

I. INTRODUCTION 
TATIC Compensators (STATCOM) are power 
electronics based shunt Flexible AC Transmission 
System (FACTS) devices which can control the line 

voltage at the point of connection to the electric power 
network. Regulating the reactive and active power injected 
by this device into the network provides control over the 
power flows in the line and the DC link voltage inside the 
STATCOM respectively [1]. A power system containing 
generators and FACTS devices is a nonlinear system. It is 
also a non-stationary system since the power network 
configuration changes continuously as lines and loads are 
switched on and off. 

In recent years most of the papers have suggested 
methods for designing STATCOM controllers using linear 
control techniques, in which the system equations are 
linearized at a specific operating point. Based on the 
linearized model, the PI controllers are fine tuned in order to 
have the best possible performance [2]-[5]. The drawback of 
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such PI controllers is that their performance degrades as the 
system operating conditions change. Linearizing the 
nonlinear system in the vicinity of the operating condition 
cannot be a practical solution because of the ever-changing 
nature of the power network, either due to faults and 
disturbances or the normal changes in the operating 
conditions. Moreover, the process of fine tuning a PI 
controller in such a highly nonlinear environment is a 
complex and challenging task. 

Traditional nonlinear adaptive controllers on the other 
hand can give good control capability over a wide range of 
operating conditions [6]-[9], but they have a more 
sophisticated structure and are more difficult to implement 
compared to linear controllers. In addition, they need a 
mathematical model of the system to be controlled, which in 
most of the cases cannot be obtained easily. 

Intelligent controllers on the other hand have the potential 
to overcome the above mentioned problems. Fuzzy logic 
based controllers have, for example, been used for 
controlling a STATCOM [10],[11]. Essentially, a fuzzy 
controller performs like a nonlinear gain scheduling 
controller. However, in the traditional fuzzy approach the 
parameters of the fuzzy membership functions are fixed. The 
performance of such controllers can further be improved by 
adaptively updating their parameters. Mohagheghi et al. [13] 
applied the Controller Output Error Method introduced by 
Anderson et al. [12] in order to implement an adaptive fuzzy 
controller for the STATCOM. 

Adaptive controllers can efficiently deal with the 
uncertainties associated with the power system. These 
uncertainties can be in terms of modeling imperfection, 
noisy sensor measurements and/or unexpected disturbances 
in the system. However, the improved performance of the 
adaptive techniques comes at the price of higher 
computational complexities. This is due to the fact these 
controllers need a model of the plant to be controlled that 
can estimate the plant outputs. The controller parameters are 
then adjusted using these estimates [25]. Deriving a 
mathematical model of the plant to be controlled is often not 
a simple task and for a variety of complicated systems such 
as a multimachine power network can be impractical. An 
alternative solution can be estimating a model of the plant 
using intelligent techniques such as neural networks [26]. 
The authors have implemented this scheme for a neural 
network based controller for a STATCOM in a power 
system [27]. The same approach can be employed for 
designing adaptive fuzzy controllers, where the membership 
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functions of the fuzzy controller for the input and/or output 
variables are adjusted based on the estimated state of the 
power system at one step ahead. These estimates come from 
a neural network based identifier (neuroidentifier) that 
undergoes continuous online training in order to track and 
estimate the plant dynamics [27]. Clearly, implementing 
such an online trained neuroidentifier requires additional 
computations. However, for cases where the computational 
complexity is of main importance or an adaptively changing 
fuzzy controller structure is for any reason not desired, 
measures have to be taken in order to enable the controller 
with its fixed structure to deal with system uncertainties. 

 This can be achieved by introducing another measure of 
uncertainty to the membership functions and membership 
grades of the fuzzy controller. This is referred to as type-II 
fuzzy logic [17]. In this approach, the fuzzy sets have 
blurred boundaries (uncertainties within uncertainty); 
therefore, the membership grade of a specific sensor reading 
in a certain fuzzy set is not a crisp number anymore. Instead, 
it is a fuzzy set itself. This can help the controller reduce the 
effect of the system uncertainties, no matter what the source 
is (external disturbance, model error or measurement noise). 

An interval type-II fuzzy controller is design in this paper 
that can perform as a robust nonlinear controller for a 
STATCOM connected to a multimachine power system. 
Detailed procedure for designing the controller is presented 
in the next sections. The performance of the controller is 
also compared with the traditional PI controller during large 
scale and small scale disturbances. 

II. TYPE-II FUZZY LOGIC SYSTEMS 
Type-II fuzzy sets were introduced by Zadeh as an 

extension to the concept of fuzzy sets [14]. The membership 
grade of a type-II fuzzy set is a fuzzy itself [16]. This 
fuzziness in the degree of membership can represent an 
important fact that underlines the basis of fuzzy systems: the 
fuzzy sets/rules/consequents are not certain, instead they are 
derived based on the experience of the human expert. 
Therefore the increased fuzziness introduced by type-II 
fuzzy sets can enable the fuzzy system to handle the inexact 
information in a logically correct matter [15]. But perhaps 
the most important aspect of type-II fuzzy in a real world 
problem such as power systems analysis/control is that it can 
help the fuzzy system deal with the noisy measurements 
more efficiently. 

Figure 1.a shows a typical type-I ordinary fuzzy 
membership function (MF). As it can be seen, there is a crisp 
number as the membership grade associated with each crisp 
input x. A type-II fuzzy membership function can be derived 
from this by blurring the boundaries of the main MF (Fig. 
1.b). This can be interpreted as the fuzziness in the 
membership grade and the fact that for each input x there can 
be more than one possibility of membership grade. In other 
words, for each input x there is an ordinary type-I fuzzy set 
A, referred to as the secondary membership function, 
associated with it, which defines different values of the 
membership grade and their possibilities [17]. 

Fig. 1. Typical fuzzy membership functions: (a) type-I, (b) type-II.  

If for the type-II fuzzy set A~ , the membership grade of the 
input variable x varies between u1 and u2 with a type-I fuzzy 
set of )(uAµ , then the membership grade of x can be 

expressed as1: 

∫
∈

=
],[

~

21

/)(),(
uuu

AA uuux µµ    (1) 

Therefore, the type-II fuzzy set can be simplified as the 
summation of the membership grades of all x: 

∫ ∫
∈ ∈

=
Xx Uu

A uxuxA ),/(),(~
~µ   (2) 

General type-II fuzzy systems are computationally 
intensive. The problem can be considerably simplified if the 
secondary MFs are interval sets2. Such systems are referred 
to as interval type-II fuzzy sets, in which the secondary MFs 
are either zero or one [18]. A simplified case of (2) exists 
when the interval type-II sets are considered. For such a 
system: 





 ∈

=
otherwise

Uu
uA

0

1
)(µ  (3) 

 Interval type-II fuzzy systems are considered in this 
paper and their basic design procedure is explained in the 
next sections. For the more general case, the reader is 
referred to [17]. 

III. INTERVAL TYPE-II FUZZY LOGIC SYSTEMS 
Figure 2 shows the schematic diagram of an interval type-

II fuzzy logic controller. Basic equations and the main 
differences between type-I and type-II fuzzy systems are 
discussed in this section. More elaborate explanations on 
type-II fuzzy can be found in [17]-[20]. Also, Lee [21] 
presents a detailed discussion of type-I (ordinary) fuzzy 
systems. 

A. Fuzzification 
Fuzzy systems are essentially nonlinear mappings from a 

set of crisp inputs to a set of crisp outputs, through a set of 
fuzzy variables. The first stage in this process is 
transforming the crisp input to a type-II fuzzy variable. 
Various standard or non-standard fuzzifiers can be employed 
for this matter. The only challenge here lies in the definition 
of membership grade fuzziness. Clearly, the primary and 
 

1 The symbol “/” should not be confused with the algebraic division. In 
fuzzy literature this is a common way of relating any crisp variable u to its 
corresponding membership function. 

2 An interval set is a set that includes either 0 or 1. 
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secondary MFs should be formulated in a way that reduces 
the problem complexity as much as possible. The common 
approach is to define a lower MF and an upper MF for each 
type-II MF. These are both type-I fuzzy sets. The bounded 
region between the lower and the upper MFs is called the 
footprint of uncertainty of a type-II MF [17]. Therefore, 
equation (1) for the kth MF of the type-II fuzzy system can 
now be rewritten as: 

∫ ∈= )](),([~ /1),( xxuA kAkAk
uux µµµ           (4) 

where: 
)(x

kA
µ : lower MF for the kth type-II MF, 

)(x
kAµ : upper MF for the kth type-II MF. 

 
Fig. 2. Schematic diagram of interval type-II fuzzy logic controller. 

Various techniques exist for defining the lower and upper 
MFs depending on the membership function and the type of 
uncertainty [18]. For the special case of Gaussian functions 
considered in this study, the lower and upper MFs are 
considered to have the same center, but different standard 
deviations (Fig. 3). 

B. Rule Base 
Any fuzzy system includes a set of conditional statements 

(in the form of Modus Ponens) known as the fuzzy rule base. 
The fuzzy rule base can be derived from the data base 
(expert knowledge/operator experience), mathematical 
models or a combination of both. It can also be fixed (robust 
mode) or adaptive (learning mode). In general, in a multi 
input single output fuzzy system: 
Rule j:  

If x1 is jF1
, ..., and If xn is j

nF , Then y is ).,...,( 1 n
j xxG   (5) 

where depending on the inference mechanism used the 
function jG  can be a polynomial, a constant or a single 
value. In fuzzy logic, the Modus Ponens rules are extended 
to Generalized Modus Ponens (GMP) [21]. In a crisp logic a 
rule will be fired only if the premise is exactly the same as 
the antecedent of the rule. In fuzzy logic on the other hand, a 
rule is fired as long as there is a non-zero degree of 

similarity between the premise and the antecedent of the rule 
[17].  

 
Fig. 3. Type-II Gaussian membership function, illustrating the lower and 
upper membership functions and the footprint of uncertainty. 

In this study a singleton fuzzy system is considered, since 
the input parameters are single valued measurements. Also, 
all the fuzzy MFs are type-II functions, therefore, the GMP 
rule will be in the form of:  
Premise:         x1 is 1F , …, xn is nF . 
Implication:    If x1 is jF1

~ , ..., xn is j
nF~ , Then y is 

).,...,(~
1 n

j xxG                   (6) 

Consequence:  y is ).,...,(~
1

*
n

j xxG   

where
iF ’s are fuzzy singletons (which are equivalent to 

crisp numbers) and F~ andG~ represent type-II fuzzy sets.  

C. Fuzzy Inference System 
Fuzzy inference mechanism, also referred to as fuzzy 

model, applies the fuzzy reasoning on the rules in the rule 
base in order to derive a mathematically reasonable output or 
conclusion which represents the problem conditions best. 
Different fuzzy inference systems exist in the literature, such 
as Mamdani, Takagi-Sugeno and Tsukamoto fuzzy models 
[22]. In this study, the Mamdani min-max method is adopted 
[17]. 

For the specific case of interval type-II singleton fuzzy 
systems, the method can be simplified as follows: 

For the kth rule in the rule base, every input xi (a singleton 
with the value of Fi) intersects with its corresponding type-II 
MF F~ at two points: 

)(~ iF
Fj

i
µ : Intersection of the fuzzy singleton Fi with the 

lower MF for the kth type-II MF, and 
)(~ iF Fj

i
µ : Intersection of the fuzzy singleton Fi with the 

upper MF for the kth type-II MF. 
Based on the Mamdani inference mechanism, the result of 

the input and antecedent operations, i.e., the firing strength 
of rule j, is an interval type-I set: 







 ∈
=

otherwise

ffx
xF

jj

j

0

],[1
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1
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j FFf j
n
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Figure 4 shows an illustrative example of the simplified 
case with two input variables for the jth rule. 

 
Fig. 4. Illustrative example of Mamdani inference mechanism applied to an 
interval type-II singleton fuzzy system with two inputs. 

D. Type Reduction 
The interval type-I set derived from calculating the firing 

strength of rule j should be converted to a crisp value. The 
first step is type reduction proposed by Karnik and Mendel 
[23]. This process takes the type-II output set and converts it 
to a type-I set that is called the type-reduced set:  





 ∈

=−
otherwise

yyy
Y reducedtype

0

],[1
            (10) 

Several methods exist in the literature that can be 
employed for type-reduction, including centroid, center-of-
sets, height and modified height [23]. The details of type-
reduction for the general case of type-II fuzzy sets and the 
special case of interval type-II fuzzy sets are explained in 
[17],[18]. Nevertheless, the required steps for type-reduction 
using the center-of-sets method are briefly explained here: 
• Step 1: calculate the centroid of the type-II interval 

consequent sets jG~ . A brief summary of deriving the 
centroids in the special case of the interval type-II 
singleton fuzzy systems is presented in Appendix A. For 
detailed procedure of calculating the centroids in the 
general case the reader is referred to [17]. The results are 
interval type-I fuzzy sets for each consequent set: 







 ∈
=

otherwise

ggy
yC

jj

G j

0

],[1
)(~

           (11) 

This is a one time calculation and does not impose a 
burden on the simulation process. 

• Step 2: The lower and upper bounds of the type-reduced 
interval type-I set can be derived as: 

and
f

fg
y m

j

j
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j

jj

∑

∑

=

==

1

1
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∑
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=

== m

j
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f

fg
y

1

1
.

,      (12) 

where m is the number of rules in the rule base. 

E. Defuzzification 
Since the resultant type-reduced output is an interval 

type-I fuzzy set, it can be easily defuzzified using the 
average of its lower and upper bounds [18]: 

2
yy

y
+

= .                  (13) 

IV. STATCOM IN A MULTIMACHINE POWER SYSTEM 
The power system considered in this study is a 10-bus 

multimachine with two generators and an infinite bus (Fig. 
5). The generators are modeled in details, with exciter, AVR 
and governor dynamics taken into account. The details of the 
power system can be found in [24]. 

 
Fig. 5. STATCOM in a multimachine power system. 

 
The STATCOM is assumed to be primarily controlled by 

the scheme shown in Fig. 5, where two decoupled PI 
controllers try to control the line voltage at the point of 
connection to the power system and the dc link voltage 
inside the device respectively. Controlling the voltage at the 
point of common coupling (bus 5 in Fig. 5) is considered the 
main objective of the STATCOM. 

The proposed type-II fuzzy controller will replace the PI 
controller of the line voltage control loop only (PIV). The dc 
link control is considered to be performed by the 
conventional PIDC, since it is related to the internal structure 
of the STATCOM and as opposed to the power system, the 
STATCOM does not go through fast dynamics changes. 

V. STATCOM TYPE-II FUZZY LOGIC CONTROLLER 
The proposed fuzzy controller has two inputs, the line 

voltage error )(tV∆  and the change in the line voltage 
error )1()()( −∆−∆=∆ tVtVtE . Adding the latter helps the 
controller to respond faster and more accurately to the 
disturbances in the system. A time step of 20.0 ms 
(corresponding to a sampling frequency of 50 Hz) is selected 
for calculating the change in error. Figure 6 shows the 
schematic diagram of the proposed STATCOM type-II fuzzy 
controller.  
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Fig. 6. Schematic diagram of the STATCOM fuzzy controller. 

A proportional-integrator approach is applied in order to 
enable the fuzzy controller to deal with the actual signals 
rather than deviation signals. This is achieved by adding the 
instantaneous controller output )(tu∆ to the previously 
accumulated total control signal (Fig. 8). 

)()1()( tututu ∆+−=               (14) 
where the final control output )(tu replaces the inverter 
modulation index in Fig. 7. 

Six and three membership functions are assigned to the 
line voltage deviations )(tV∆ and the change in the line 
voltage error )(tE∆ respectively, while seven membership 
functions are considered for the controller output )(tu∆ . The 

rule base implemented for the fuzzy controller is shown in 
Table I. 

TABLE I 
FUZZY LOGIC CONTROLLER RULE BASE

1 

V∆  Fuzzy Inputs/ 
Output NM NS Z PS PM PB 

NM NB NM Z PS PM PB 
Z NM NM Z PM PM PB E∆  

PM NM NS Z PM PB PB 
1These membership functions are associated with the common terms 
Negative Big (NB), Negative Medium (NM), Negative Small (NS), Zero (Z), 
Positive Small (PS), Positive Medium (PM) and Positive Big (PB) for each 
variable. 

Type-II Gaussian MFs are considered for all the input and 
output variables of the fuzzy controller (Fig. 4). Each 
membership function has a fixed mean and its corresponding 
uncertain standard deviation varies in a given range: 








 −−= 2
~ )(

2
1exp)( j

i

j
ii

iF

mxxj
i σ

µ            (15) 

where: 
j: Number of rules in the rule base, 

j
im : Fixed mean (center) of the Gaussian function 

corresponding to the ith variable in the jth rule, 
],[ 21

j
i

j
i

j
i σσσ ∈ : Variable standard deviation of the Gaussian 

function corresponding to the ith variable in the jth rule. 
Table II summarizes the centers and the ranges of the MF 

centers and widths for the input variables. 
 
 
 
 
 

TABLE II 
FUZZY INPUT MEMBERSHIP FUCTION PARAMETERS 

V∆  E∆  FUZZY INPUT 
VARIABLES m  

1σ  2σ  m  
1σ  2σ  

NM -0.5 0.2 0.3 -0.04 0.03 0.05 
NS -0.15 0.1 0.14 --- --- --- 
Z 0.0 0.02 0.06 0.0 0.03 0.05 
PS 0.15 0.1 0.14 --- --- --- 
PM 0.5 0.2 0.3 0.04 0.03 0.05 
PB 1.0 0.3 0.4 --- --- --- 

 
Table III also summarizes the specifications of the type-II 

membership functions of the output variable. The details of 
calculating the centroids are provided in Appendix A. 

TABLE III 
FUZZY OUTPUT MEMBERSHIP FUCTION PARAMETERS 

u∆  FUZZY OUTPUT 
VARIABLES m  

1σ  2σ  
NB -0.018 0.003 0.005 
NM -0.015 0.004 0.006 
NS -0.010 0.005 0.008 
Z 0.004 0.007 0.010 
PS 0.010 0.005 0.008 
PM 0.015 0.004 0.006 
PB 0.018 0.004 0.005 

VI. SIMULATION RESULTS 
The performance of the proposed type-II fuzzy controller 

is compared with the fine tuned PI controller for the line 
voltage deviations and the simulation results are presented 
here. 

The PIV controller is fine tuned at only one operating 
point. In the first test, a step 5% step change is applied to the 
STATCOM voltage reference at 1 sec, followed by a -6% 
step at 3 sec. The performance of the two controllers is 
compared in Fig. 7. It can be seen that although the fuzzy 
controller is slightly faster in responding to the change, the 
PIV has an acceptable performance as well. This is due to the 
fact that the PI controller is fine tuned in that operating 
condition. 

However, in the second test, a 100 ms three phase short 
circuit is applied to the terminals of generator 3. This is a 
large enough disturbance to momentarily move the system 
away from its designed operating condition. Figure 8 shows 
the voltage at bus 5 where the STATCOM is connected to 
the power system. It can be seen that the proposed fuzzy 
controller is more effective in damping out the low 
frequency oscillations compared to the PIV controller. 
Clearly, a PIV with a much lower bandwidth (slower 
response) can be designed to counteract the large scale 
disturbances. But such an approach will reduce the 
efficiency of the controller during small scale disturbances, 
such as step changes. Therefore, in designing a PI controller 
there should always be a tradeoff between the time response 
of the controller during small scale disturbances and the 
overshoot caused during the large scale faults. 
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Fig. 7. Voltage at bus 5 during a step changes applied to the line voltage 
reference. 

 

 
Fig. 8. Voltage at bus 5 during a 100 ms three phase short circuit at the 
terminals of generator 3. 

One of the measures by which the performances of the 
two controllers can be evaluated is the control effort 
provided by each one. Figure 9 shows the reactive power 
injected by the STATCOM into the power network by the 
two controllers. It is clear that the fuzzy controller brings the 
system to steady state with less amount of reactive power 
injection, which in turn means less current will pass through 
the STATCOM inverter switches. This can bring down the 
switch ratings and therefore the cost of the FACTS device. 

 
Fig. 9. Reactive power injected by the STATCOM during a 100 ms three 
phase short circuit at the terminals of generator 3. 

The modulation index of the STATCOM inverter is 
another measure for comparison between the two 
controllers. Figure 10 shows that the PIV controller forces the 
inverter into over-modulation for a considerably longer 

period than the proposed fuzzy controller. This in turn 
causes more harmonic distortion for the power network. 

 

 
Fig. 10. STATCOM inverter modulation index during a 100 ms three phase 
short circuit at the terminals of generator 3. 

The performance of the two controllers should also be 
compared when the system configuration has changed. This 
can be looked at as an uncertainty associated with the 
system/controller modeling, since the parameters of the two 
controllers are determined at a single operating condition. 
This has been achieved by a 100 ms three phase short circuit 
followed by disconnecting one of the parallel transmission 
lines connecting buses 4 and 5. Figures 11 and 12 show the 
simulation results.  

 
Fig. 11. Generator 3 terminal voltage during a 100 ms three phase short 
circuit at the middle of one of the transmission lines. The line is 
disconnected after the fault is cleared. 

 
Fig. 12. Generator 3 speed deviations during a 100 ms three phase short 
circuit at the middle of one of the transmission lines. The line is 
disconnected after the fault is cleared. 

It can be seen that the proposed type-II fuzzy controller is 
robust to the change in the operating condition and even 
though its parameters are not fine tuned for this point, it still 
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manages to restore the system to steady state conditions 
faster than the PIV.  

VII. CONCLUSION 
An interval type-II fuzzy logic based controller was 

proposed in this study that can perform as a robust controller 
for a STATCOM in a multimachine power system. The 
uncertainties in the power system model can be incorporated 
into the fuzzy controller design by defining type-II 
membership functions. These fuzzy sets have footprints of 
uncertainties associated with them and therefore, are robust 
to changes in the plant dynamics. Whereas an ordinary fuzzy 
controller performs like a nonlinear gain scheduling 
controller whose parameters are still dependent on the 
operating conditions of the system. 

The proposed type-II fuzzy controller replaces the line 
voltage controller of the STATCOM. Simulation results are 
provided that indicate the fuzzy controller is more effective 
in damping out the oscillations occurred as a result of small 
scale and large scale disturbances. The superior performance 
of the fuzzy controller even prevails when the operating 
conditions of the power system are changed. This is the 
point where a PI controller fine tuned at a single operating 
condition fails to function properly. 

Detailed step by step design procedure is provided for 
implementing an interval type-II fuzzy logic based 
controller, which can be applied to any problem. 

APPENDIX 
A. CENTROID OF A TYPE-II FUZZY SET 

It was seen in section III.D that one of the steps required 
for type-reduction is calculating the centroid of the type-II 
consequent sets jG~ . In this section, a simple step by step 
approach is presented for calculating the centroid of a 
general type-II membership functionG~ which can represent 
any of the consequent type-II sets mentioned in section III. 
This procedure is explained based on the main theorems and 
general discussions in [17],[20].   

Figure 13 shows a typical type-II MF with the footprint of 
uncertainties associated with it.  

The input variable y can be dicretized into p points 
throughout its universe of discourse. It was seen that 
associated with each point yi, there’s a type-I fuzzy set Gi 
that defines the range Ui=[ui1,ui2] in which the fuzzy 
membership grade of yi varies along with the probability of 
each membership grade (secondary membership function).  
Each range Ui can be further discretized into qi points. An 
embedded type-I set Ge within the set G~ can be formed by 
randomly selecting p points, where each one belongs to a 
specific Ui (Fig. 13). The centroid of each set Ge can be 
written as: 
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where uik belongs to the kth set of randomly selected points 
and lies within the range Ui=[ui1,ui2]. In general there can be 
p×q different embedded type-I sets Ge, whose centroids 
need to be calculated. 

 
Fig. 13. Computation of the centroid of a type-II fuzzy set. 

Each centroid CGe has a membership grade associated 
with it that can be directly derived from the corresponding 
membership grades of the points uik, which can be expressed 
as: 
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In the general case, the centroid of the type-II fuzzy setG~  
can be written as: 
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Clearly, equation (17) is computationally intensive and 
might not be appropriate in an online application. However, 
the introduction of the interval type-II sets, drastically 
reduces the computational burden, since the membership 
grades of the points uik are now constant, i.e., unity. Hence, 
equation (18) is simplified to: 
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which means the calculation is now reduced to calculating 
the centroids of the embedded type-I sets only. Naturally, 
this is a one time calculation, since the membership 
functions are not changed during the simulation time. Figure 
16 shows a typical type-II function with its corresponding 
center.  
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