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Exciton diffusion at finite frequency: luminescence observables for 
anisotropic percolating solids 

P. E. Parris 
Department of Physics. University of Missouri-Rolla. Rolla. Missouri 65401 

(Received 15 August 1988; accepted 1 November 1988) 

A study is made of the luminescence intensities associated with exciton diffusion and trapping 
on a three-dimensional anisotropic percolating lattice. The calculation is based upon a 
relationship that exists between the frequency dependent diffusion tensor at frequencies 
comparable to the inverse excitation lifetime, and luminescence observables such as the host 
and trap luminescence intensities for conditions of constant illumination. The present 
approach allows the study of crossover behavior in percolative systems that are of intermediate 
transport dimensionality 2 < d t < 3. Our results suggest that curvature seen in luminescence 
observables near the transition need not always be a direct reflection of the critical indices 
associated with classical isotropic percolation. We have identified three possible sources of 
deviation from the classical behavior: (1) the radiative time scale of the luminescence 
measurements, (2) the functional dependence of the luminescence yields on the diffusion 
tensor, and (3) the demands of dimensional crossover in the critical region arising from the 
anisotropy of the medium. 

I. INTRODUCTION 

Excitons possess no charge, and so their transport prop­
erties cannot be probed through conductance measure­
ments. Instead, more indirect means are required to obtain 
information regarding the transport properties of interest. 
Several techniques for doing this have been devised. 1-4 

Among the most common are those which rely upon the 
interaction of the mobile excitation with some other species, 
such as impurity atoms or molecules,I,2 which have been 
doped into the solid to irreversibly trap or quench the excita­
tion. The observed mutual annihilation of exciton pairs can 
be used for the same purpose.2 In either case, the result is a 
change in the normal exciton population that is detected in 
the luminescence decay of the excitation back to its ground 
state. 

Clearly, the quality of information that can be obtained 
from such indirect techniques depends upon our under­
standing of the relationship that exists between experimen­
tally accessible quantities (such as luminescence intensities) 
and physical quantities of interest (such as exciton transport 
coefficients). The purpose of the present paper is to explore 
and discuss this relationship for a model system relevant to 
sensitized luminescence experiments on substitutionally dis­
ordered molecular solids.2 Specifically, we calculate lumi­
nescence intensities associated with exciton transport and 
trapping in an anisotropic percolating solid in which a frac­
tion q = 1 - P of the nearest-neighbor jump rates have been 
randomly removed (Le., set equal to zero). Vanishingly 
small jump rates between excitation sites in real solids can 
occur, it is believed, due to the presence of energy barriers 
associated with impurity molecules of higher excitation en­
ergy. Correspondingly, in the present model the quantity q is 
to be at least approximately associated with the fraction of 
such energetically inaccessible molecules in the solid. 

The present analysis differs in a number of important 
respects from several others2

,5,6 that have been developed to 

address transport in multicomponent molecular crystals; 
first, we employ a well-defined transport model (nearest­
neighbor bond percolation) whose transport properties are 
well understood. This helps to separate the uncertainties as­
sociated with the treatment of transport with those associat­
ed with the calculation of luminescence observables. The 
second difference is the careful and self-consistent way in 
which transport anisotropy is handled in the present analy­
sis. A high level of anisotropy is a common feature of many 
of the molecular solids upon which exciton trapping lmd 
annhilation measurements have been performed. Thus, one 
of the central aims of the present study is to clarify, by the use 
of an analytical and numerically tractable theory, when it is 
appropriate to interpret a highly anisotropic disordered sol­
id in terms of an isotropic solid of lower dimensionality. 
While it is trivial to accomodate anisotropy into standard 
theories of transport for ordered (i.e., translationally invar­
iant) solids, it is more difficult to do this for disordered sys­
tems. The difficulty arises from the fact that the macroscopic 
anisotropy in the latter case is no longer simply related to 
that of the pure crystal-or even to that of the microscopic 
hopping-rate distribution functions which characterize the 
solid. By way of example, consider the fact that the diffusion 
tensor for an anisotropic random walk becomes (critically) 
isotropic at the percolation threshold for any finite amount 
of microscopic anisotropy. 7,8 The present paper explores the 
consequences of this behavior for luminescence observables 
in exciton trapping experiments. The treatment given here is 
based upon an earlier theory8 developed specifically to de­
scribe excitation transport in strongly anisotropic, disor­
dered materials. 

The paper proceeds as follows. In the next section a mas­
ter equation is introduced to describe the evolution of exci­
ton probabilities in a disordered anisotropic medium with 
dilute randomly placed traps. A program for solving these 
equations is then outlined. The steady-state luminescence 
intensities can, within a certain well-defined approximation, 
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be written as functionals of the frequency-dependent diffu­
sion tensor associated with transport in the disordered solid. 
Numerical solutions to self-consistent equations for the 
transport properties are then evaluated and used to examine 
the behavior of luminescence observables as a function of 
disorder, lattice anisotropy, and excitation lifetime. 

II. THE MODEL 

In keeping with the essential physics of the problem we 
are led to consider an anisotropic variation of the classical 
bond-percolation model in which connected bonds along 
different axes of a three-dimensional cubic lattice are asso­
ciated with jump rates W, that are allowed to depend upon 
the crystal axis s = 1,2,3 (which are also referred to as x, y, 
and z). Disconnected bonds (associated with zero jump 
rates) are assumed to occur isotropically with probability 
q = 1 - p for each axis, as in normal bond percolation.9 The 
creation, migration, and capture of excitons in the solid is 
then assumed to obey a master equation for the probability 

d 
-Po +Pnhr -set) 
dt 

3 

L W~ (Pn- s - Pn) + W~+s (Po + s - Pn ) 
s~1 

- L (Pnhc)on,r' (1) 
{r'} 

of finding the diffusing excitation at site 0 = (n l , n2 , n3 ) of 
the lattice at time t. In Eq. (1), s represents a unit vector 
pointing along the positive s-coordinate axis from the oth 
site to its neighbor along that direction, and W~ is the hop­
ping rate (either zero or Ws ) from site 0 to its neighbor at 
o-s. We assume a cubic lattice for simplicity, and, in keep­
ing with the model described above, the hopping rates W~ 
are assumed to be independent random variables governed 
by an anisotropic probability distribution function of the 
form 

p(W~) =po(W~ - Ws ) + (1-p)o(W~). (2) 

The intrinsic anisotropy of the molecular solid is character­
ized by the set of microscopic anisotropy ratios 
;s,s' = Ws / Ws" which are equal to one for an isotropic sys­
tem. 10 In what follows, we consider a quasi-two-dimensional 
solid which is isotropic in the x-y plane, so that 
Wx = Wy = W. Hops out of the plane are described by a 
different hopping rate Wz = ;w, (; < 1) which is assumed 
to be smaller in magnitude than that associated with hops in 
the x-y plane. The second term on the left-hand side of Eq. 
( 1) describes the radiative decay of excitons back to the 
ground state with lifetime 1'r' This process is assumed to be 
intrinsic to the excitation and independent of disorder. The 
spatially uniform source term Set) describes the creation of 
excitations through illumination. In the steady-state experi­
ments considered here it is independent of time. The last 
term on the right-hand side of the Eq. (1) describes the trap­
ping proces. Excitons are assumed to be captured to trap 
states associated with a certain number Nt of trap molecules 
that are randomly distributed throughout the solid. Capture 
occurs by decay of probability with rate kc = 1I1'e from host 
lattice sites which are in the immediate vicinity of a trap. 

(For simplicity we assume one such host site per trap.) The 
sum in Eq. (1) is therefore understood to run over the set 
{r'} of host sites from which excitation can decay to the 
traps. The total number of traps, Nt, is assumed to be small 
compared to N, the total number of host lattice sites, so that 
the fractional trap concentration x = Nt / N is much less 
than 1. The goal of the calculation is an expression for the 
quantum yield for capture, Y, by which we mean the fraction 
of excitation which migrates to and gets captured by a trap 
before having decayed radiatively back to the ground state. 
In terms of steady-state observables of the luminescence ex­
periments, Y is equal to the fraction of total luminescence 
emitted at wavelengths corresponding to the trap excitation 
energy. Denoting the trap luminescence intensity by It and 
that of the host lattice by I h , one obtains the relationship I I 

Y=IJUt +Ih ). (3) 

Perhaps the key feature associated with the observed 
luminescence yield in mixed molecular crystals consisting of 
three energetically distinct species is an observed critical in­
crease in the yield as a function of the concentration of active 
(energetically accessible) sites in the crystal. In the percola­
tion picture advanced by Kopelman and co-workers2 this 
increase is identified with the increased mobility of excitons 
at the transport threshold, which is itself associated with the 
existence of a percolating path of connected sites in the solid. 
For low values of p very few connected sites exist and few 
excitons are able to travel to the neighborhood of a trap to get 
captured. As a result, the luminescence yield is very small. 
Well above the percolation threshold exciton mobility is 
high, many excitons get trapped, and so nearly all of the 
luminescence emerges from the trap manifold. Hence the 
luminescence yield, Eq. (3), is, in this limit, very close to 
unity. 

Because the luminescence observables signal events oc­
curring in different parts of the solid, they necessarily reflect 
average properties of the disordered system. Hence any real­
istic calculation of Y requires an ensemble average over the 
disorder. In what follows it is implicitly assumed that this 
can be done in two steps. In the first step, discussed in Sec. 
n A, the average over transport disorder is performed. The 
result is a translationally invariant but frequency-dependent 
set of equations describing transport of excitation in an effec­
tive medium that characterizes the disordered system8 (Said 
another way, the averaged system is assumed to obey a trans­
lationally invariant generalized master equation. 12

(a) ) It is 
this latter system upon which effects of trapping are consid­
ered, and upon which the remaining average over the ensem­
ble of trap configuration is performed. This latter step is 
addressed in Sec. n B. 

A. Transport in the disordered solid 

The transport properties of the solid are determined by 
the averaged solutions in Eq. (1) with the source and decay 
terms excluded. Disordered transport equations of this type 
have been extensively studied for isotropic systems. 12 Re­
cently the transport part of Eq. (1), with anisotropy includ­
ed, has been studied as well.8 In particular, in Ref. 8 an exact 
expansion for the frequency diffusion tensor was obtained 
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from consideration of the equations of motion for the proba­
bility currents that flow between nearest-neighbor sites. 
From the expansion obtained in that work, a self-consistent 
theory l3 was constructed in which the macroscopic proper­
ties of the system were completely described by a self-consis­
tent diffusion tensor with Laplace transformed components 
D s (z). The components of the diffusion tensor are related to 
the components of the (dimensionless) mean-square dis­
placement (R ;(t) > = "I.nPn (nos)2 through the relationS 

Ds(z) =Z ('" dte-z'!!...(R;(t». (4) 
Jo dt 

In Eq. (4), z is the Laplace or "frequency" variable conju­
gate to time. In what follows, we assume that the averaged 
transport of excitons in the disordered lattice described by 
Eq. (1) is adequately described by the anisotropic extension 
of effective-medium theory introduced in Ref. 8. Thus we 
express the conditional probabilities or Green's functions 
Gn,o (t) = (Pn,o (t», describing the probability for an exci­
ton to be at site n if it was initially at the origin (all decay 
processes excluded), in terms of the Fourier integrals of 
their Laplace transformS: 

gn,m(z)= L'" dte-z'Gn,m(t) 

= (21T) -3 f exp[lk- (m - n)] , dk. 
z + "I..,2D., (z) (1 - cos k's') 

(5) 

In Eq. (5) the k integral is over the first Brillouin zone of the 
reciprocal lattice. The theory of Ref. 8 gives the following 
expression: 

Ds (z) = Ws (dsp - 1 )/(ds - 1) (6) 

for the diffusion tensor associated with an anisotropic sys­
tem described by the distribution function of Eq. (2). The 
direction and frequency dependent quantities ds (z) appear­
ing in Eq. (6) are defirled self-consistently through that 
equation and through the following integrals: 

lIds (z) 

-3f 2Ds(z)(1-cosk's) dk 
=(2~ . 

z + "I.s, 2Dsf (z)( 1 - cos k's') 
(7) 

In Ref. 8, where details of the derivation leading to Eqs. (6) 
and (7) can be found, the quantitites ds (z) are referred to as 
effective dimensionalities because in the isotropic limit they 
reduce (at zero frequency) to the Euclidian dimension. 
Even for a (finitely) anisotropic system they reduce at the 
percolation threshold to the Euclidian dimension of the un­
derlying connected lattice and thus lead to a vanishing of the 
diffusion tensor at the effective medium critical point 
Pc = lid. For the present, it is important to note only that 
Eqs. (6) and (7) form a set of closed equations to be solved 
for Ds (z) and ds (z). Moreover, a very simple relationship 
exists between the self-propagator goo(z) (the probability 
for the excitation to be on the site at which it started) and the 
quantities ds (z). In particular it follows from Eqs. (5) and 
(7) that 

zgoo(z) = 1 - L lid,. (8) 

We will make direct use of this relationship in the analysis 
which follows. 

B. Luminescence observables 

Upon averaging over the disorder in the hopping rates, a 
translationally invariant effective-medium obeying Eqs. 
(4 )-( 8) results. The traps, source, and radiative terms may 
now be reintroduced into the equations and the latter solved 
to obtain an expression for the yield Y to low order in the 
concentration of traps. Survival probabilities and lumines­
cence observables associated with a random distribution of 
trapping centers in an otherwise translationally invariant 
medium have been studied previously. For our purposes it 
will suffice to consider an evaluation of Y that is to relatively 
low order in x, the concentration of traps. It should be added 
that such a low order calculation would be insufficient for 
time-dependent quantities such as the survival probability 
n(t) = "I.nPn (t). Terms of higher order in x have been 
shown to dominate the behavior of this latter quantity at 
long times. 14 Fortunately, this is unimportant for either the 
yield or the steady-state luminescence intensity because they 
are primarily determined by dynamical behavior at relative­
ly short and intermediate times t $. 'Tr before the survival 
probability has reached its final asymptotic behavior. 14 In 
other words, for sufficiently small x, the quantum yield and 
other steady-state trapping observables are accurately de­
scribed by the low density expansion, whereas time-depen­
dent quantities are not. 

To first order in x, the quantum yield may be expressed 
in terms of the solution to the exactly solvable problem of a 
single traplS,I6 embedded in the effective medium. Various 
low order improvements to the first order theory have also 
been obtained by a number of workers. These include the 
average T-matrix approximation studied by Huber and 
Ghosh,17 and a similar but not identical approach used by 
Kenkre and Parris. 18 Both approaches reduce to the first 
order theory in the limit of small x. The approach of Kenkre 
and Parris has the added advantage that it recovers the exact 
high concentration limit, x -1, and therefore offers a reason­
able interpolation for any concentration of traps. In what 
follows we will make use of the analysis and final expressions 
of Ref. 18 to study the luminescence yield. The result is an 
expression for the quantum yield which depends upon the 
Laplace transform of the self-propagator goo(z) at a value of 
its argument equal to the radiative decay frequency kr 
= lI'Tr of the excitation. Specifically, one obtains l8 

Y = X'TJ{'Tc + X'Tr + (1 - x)'T m}. (9) 

Equation (9) involves the effective motion parameter 'T m , 

which has units of time, defined through the relation 19 

( 10) 

In the present context goo(z) is the configurationally aver­
aged propagator described in Eq. (5) withn = m = 0, which 
has been reexpressed in Eq. (8). It, and therefore the yield, is 
an explicit functional of the frequency-dependent diffusion 
tensor Ds (z) which is an output of the self-consistent Eqs. 
(6) and (7). 

We should note that it is implicitly assumed in the pres-
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ent analysis that the transport properties of the lattice are the 
most important factor influencing the total rate for excita­
tion trapping, and thus in determining the change in lumi­
nescence when trapping impurities are added. This is not 
guaranteed. Indeed, as pointed out elsewhere,18.20 there is 
always the possibility that the rate limiting step for trapping 
will be that associated with the capture process itself. This 
can occur if the rate at which excitation moves through solid 
is substantially greater than the rate at which capture occurs, 
i.e., if l' m ~1'c' This limit has been observed21 in some pure 
systems, where the luminesence intensities have been shown 
to reflect only the capture rate kc . In a system such as the one 
considered here, where the degree of disorder may be varied, 
one can effect changes in the rate of transport by the inclu­
sion of energetically inaccessible impurities (broken bonds) 
and thereby slow the exciton down to insure that the motion 
limited regime is achieved. Once this is done the luminesence 
intensities will provide a direct probe of transport properties. 
In the present analysis we focus on the motion limited re­
gime wherein 1'm >1'c' 

III. DISCUSSION 

Combining the different results from Sec. II gives us a 
means for explicitly calculating the yield. First, for a given 
set of transport parameters {w, t, p, and z = 1/1'J we nu­
merically solve the self-consistent Eqs. (6) and (7) to obtain 
the components of the diffusion tensor D s (z) . Once these are 
obtained they can be used either in Eq. (5), or in Eqs. (7) 
and ( 8 ) to obtain the motion parameter 
1'm = goo [z;{Ds (z)}]. The motion time can finally be used 
with a given set oftrapping parameters {x,1'c} in Eq. (9) to 
evaluate the yield and to study its behavior as a function of 
the different parameters. 

In Figs. 1-4 we have followed this procedure to calcu­
late the yield as a function of the concentration of connected 
bonds p, for different values of the microscopic anisotropy t 
and exciton lifetime 1'r (measured in units of the hopping 

1.0 

0.8 

0.6 

Y 

0.4 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

P 

FIG. 1. Luminescence yield Yas a function of the concentration of connect­
ed bonds p, for different values of the microscopic anisotropy ratio; = Wz I 
Wx ' For this set of curves the radiative lifetime of the excitation was set 
equal to 104 times the hopping rate in the x-y plane, i.e., Wx'Tr = 10'. The 
six curves in the figure correspond, from top to bottom, to values of; = 1, 
0.5, 0.1, 0.05, am, and 0, respectively. 
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FIG. 2. Luminescence yield Yas a function of the concentration of connect­
ed bonds p, for different values of the microscopic anisotropy ratio 
; = WzI Wx' For this set of curves the radiative lifetime of the excitation 
was set equal to 10:' times the hopping rate in the x-y plane, i.e., 
Wx'Tr = 103

• The six curves in the figure correspond, from top to bottom, to 
values of; = 1,0.5,0.1,0.05,0.01, and 0, respectively. 

time 1/ W). A short description of the actual procedure used 
is given in the Appendix. In each of these figures we have 
taken the trap concentration x = 0.01, and the capture time 
1'c = O. Figures 1-4 correspond, respectively, to exciton 
lifetimes which are 104

, 103
, 102, and 10 times the mean time 

1/W between hops in the x-y plane. In each figure the mi­
croscopic anisotropy t = Wz/Wx = Wz/W is varied from 
t = 1 (the isotropic three-dimensional limit) to t = a (the 
isotropic two-dimensional limit). Specifically, the six curves 
in each figure correspond to anisotropy ratios t = 1, 0.5, 0.1, 
0.05, 0.01, and 0, with higher values of t corresponding to 
higher yields for a given value of p in each figure. 

The critical rise in luminescence with increasing p seen 
in the first two figures is familiar from measurements on 
mixed molecular crystals reported in the literature. In each 
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FIG. 3. Luminescence yield Yas a function of the concentration of connect­
ed bonds p, for different values of the microscopic anisotropy ratio 
; = WzI Wx' For this set of curves the radiative lifetime of the excitation 
was set equal to 102 times the hopping rate in the x-y plane, i.e., 
Wx'Tr = lQ2. The six curves in the figure correspond, from top to bottom, to 
values of; = I, 0.5, 0.1, 0.05, 0.01, and 0, respectively. 
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0.5 ,-------------, 
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FIG. 4. Luminescence yield Yas a function of the concentration of connect­
ed bonds p, for different values of the microscopic anisotropy ratio 
; = Wj Wx ' For this set of curves the radiative lifetime of the excitation 

was set equal to ten times the hopping rate in the x-y plane, i.e., Wx r, = 10. 
The six curves in the figure correspond, from top to bottom, to values of 
; = 1,0.5,0.1,0.05, om, and 0, respectively. 

curve a more or less abrupt rise begins at the transport 
threshold associated with the effective medium critical 
point, which is at p = 1/3 for the three-dimensional curves 
(S'> 0) and at p = 1/2 for the two-dimensional curves 
(S' = 0). Note that the critical nature of the transition be­
comes increasingly less pronounced as the lifetime of the 
excitation approaches that of the hopping time. Indeed, in 
Fig. 4, where the excitation makes an average often hops in 
the x-y plane before decaying radiatively back to the ground 
state, the yield is substantially reduced (note the change of 
scale). It is also interesting to note that in this figure the most 
anisotropic three-dimensional curve (S' = 0.01) is barely 
distinguishable from the two-dimensional one. This is not 
unexpected, since with this level of anisotropy only one exci­
ton in ten makes a hop out of the plane within its lifetime. 
The difference between these curves grows dramatically as 
the exciton becomes longer lived and the probability for hops 
out of the plane increases. 

This does point out an important point, however, name­
ly that the percolation transition, as such, is strictly a zero­
frequency transition. By this we mean that the diffusion ten­
sor vanishes at the transition point only at infinite times, or 
equivalently only at zero values of the Laplace variable z. 
The observable of interest is intimately dependent upon the 
fact that excitons have a lifetime; it is therefore sensitive to 
the transport (roughly) for times up to the lifetime of the 
excitation. This manifests itself in the fact that the expres­
sions we have used involve nonzero values of the Laplace 
variable. Thus, the critical nature of the (strict) percolation 
transition is washed out by the finite time scale involved. 
Using percolation concepts, we can say that the exciton is 
unable to tell whether it is part of a truly percolating struc­
ture, because it never lives long enough to find out. Only 
infinitely long-lived excitations display the true zero-fre­
quency behavior, but such excitations have no luminescence. 
Thus, the actual situation involves a trade-off between long 
lifetime (desirable for its information on the transition) and 
intensity (which favors a shorter lifetime). 

In view of these remarks, it is perhaps not entirely unex­
pected that the explicit curvature seen in the yield as it ap­
proaches the transition point is, in the present model, almost 
entirely unassociated with the critical behavior of the actual 
zero-frequency transport threshold. In actual fact, it arises 
from three separate sources: (1) the finite time scale of the 
experiment; (2) the functional dependence of the yield on 
the motion time T m (and thus on the diffusion tensor); and 
( 3) the demands of dimensional crossover associated with 
the anisotropy of the solid. The first source we have dis­
cussed; the second depends to a certain extent upon the low 
order form Eq. (9) that we have used for the quantum yield, 
but is generally expected to persist to all orders in x. That 
these two sources of curvature are significant can be inferred 
from the fact that, in the effective medium theory that we 
have used, the zero-frequency diffusion tensor vanishes lin­
early at the percolation threshold.8 Thus in the isotropic 
curves (S' = 1 and S' = 0) all observed curvature arises from 
these two (noncritical) sources. The fact that the exact criti­
cal behavior of the diffusion tensor is not reproduced by ef­
fective medium theory does not, we believe, invalidate the 
suggestion that additional curvature is introduced into the 
yields from these other sources. 

The last source of curvature which we have identified 
deserves some comment. The effect we refer to can be seen 
most easily in Figs. 1 and 2, where the curves associated with 
anisotropy ratio S' = 0.01 behave above p = 1/2 very much 
like the two-dimensional curves, but cross over in the region 
between p = 1/3 and p = 1/2 to the behavior exhibited by 
the isotropic three-dimensional curve. The demands asso­
ciated with this dimensional crossover introduce curvature 
that is still very much apparent in the neighborhood of the 
critical region. It can be generally inferred from Figs. I and 2 
that the general signature of anisotropy in a percolation tran­
sition as probed by the quantum yield is a broadening of the 
transition region, which for sufficiently long-lived excitation 
is very sharp in the isotropic two- and three-dimensional 
case, but becomes progressively wider as the level of anisot­
ropy increases. 

IV. CONCLUSIONS 

We have presented an approach for calculating lumines­
cence yields for anisotropic disordered systems, and have 
illustrated the approach for the specific case of an anisotrop­
ic bond-percolating lattice. Due to the nearest-neighbor re­
striction, the present model is of primary relevance to triplet 
excitations which have short-ranged transfer rates, and may 
not give a good indication of the behavior to be expected 
from longer-ranged singlet excitations. Nonetheless, the 
general features of the predicted yields are in very good 
qualitative agreement with observed behavior, and should 
provide additional insight into the meaning of results that 
have been obtained from measurements on substitutionally 
disordered mixed molecular crystals. The current calcula­
tions suggest that caution should be applied in the interpre­
tation of critical behavior seen in the luminescence yields, 
since curvature in the critical region need not be a direct 
measurement of the critical indices associated with classical 
percolation. It is hoped that this work will complement pre-
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viously obtained exact results on the one-dimensional analog 
to this problem.22 

APPENDIX 

The actual numerical procedure used to calculate the 
results displayed in Figs. 1-4 was facilitated by the quasi­
two-dimensional nature of the system considered. Thus the 
transport properties are specified by only four input param­
eters {z, W,;,p}. For a system with additional anisotropy in 
the x-y plane we would require an additional parameter (ei-

ther Wy or;y ) and additional equations to solve. The analy­
sis was further simplified by introducing the macroscopic 
anisotropy of the system, defined as 

1/ = Dz (z)/ D(z) (AI) 

in which D(z) = Dx (z) = Dy (z). Starting from the self­
consistent Eqs. (6) and (7) we observe that for fixed z, the 
effective dimensionalities can be expressed as functions of 1/ 
and D alone. For convenience we write Rz(z) = lIdz (z) 
andR(z) = lIdx (z) = lIdy(z),sothat 

R = (21T)-3 J (1- cos kx ) dk, 
z/2D + (1 - cos kx ) + (1 - cos ky) + 1/(1 - cos k z ) 

(A2) 

R = (21T) -3 ./ z dk. J 'YI( 1 - cos k ) 

z z/2D+ (1-coskx) + (1-cosky ) +1/(1-coskz ) 
(A3) 

These are readily integrated numerically. Consequently, D 
can be considered a function of 1/ obeying the equation which 
follows from Eq. (6), 

D(z,p,1/) - W(R - p)/(1 - R) = 0 (A4) 

with R = R (z,D,1/) as above. For any value of 1/ this equa­
tion can be numerically solved to give D( 1/). It remains to 
determine 1/. This can be done by finding that value of 1/ 
which obeys the equation obtained by substituting Eq. (6) 
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