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An Efficient, Fast Converging Adaptive Filter for Network Echo Cancellation 

Steven L. Gay 
Acoustics and Speech Research Department 

Bell Labs, Lucent 
600 Mountain Avenue 

Murray Hill, New Jersey, USA 

Abstract 
This paper discusses a fast eficient adaptive filtering 

algorithm for network echo cancellers PNLMS++ 
(Proportionate normalized least mean squares + +). 
Compared to the conventional normalized least mean 
squares (NLMS) algorithm, PNLMS+ + converges much 
more quickly when the echo path is sparse. When the 
echo path is dispersive, the convergence rate is the same 
as NLMS. In addition, the new algorithm diverges at the 
same rate and to the same misalignment level as NLMS 
during periods of undetected double-talk. PNLMS+ + is 
only 50% more computationally complex than NLMS and 
requires no additional memory. 

-1. Introduction 

Recently, the PNLMS [ 11 (proportionate normalized 
least mean squares) adaptive filter was developed for use 
in network echo cancellers. In comparison to the classical, 
NLMS [2] (normalized least mean squares) algorithm, 
PNLMS has extremely fast initial convergence and 
tracking performance when the echo path is sparse. 
Fortunately, network echo paths usually are quite sparse. 

Though network echo cancellers now have echo path 
lengths of about 64 ms, the “active” part of the echo path is 
usually only about 4 to 6 ms long. The additional length of 
the filter is used to cover the “flat delay” in the long- 
distance network between the echo canceller and the 
hybrid/local-loop circuit. The period of this flat delay is 
unknown from call to call. The true echo path coefficients 
corresponding to the flat delay are zero. After the flat 
delay comes a short, exponentially decaying response (the 
4 to 6 ms part) which quickly dampens to a relatively 
insignificant level. PNLMS exploits this characteristic, by 
effectively windowing the data with weights roughly 
proportional to the magnitude of the estimated impulse 
response. Heuristically, this is a good idea, because as the 

adaptive coefficients converge to a sparse impulse response, 
the algorithm, in a sense, becomes a progressively shorter 
adaptive filter: and short adaptive filters converge and track 
faster than long ones. 

An idea by Horna [3] somewhat similar to PNLMS, but 
apparently less stable, has appeared before. The emphasis 
there was on computational and memory efficiencies 
realized by using logarithmic representations of the adaptive 
coefficients and the excitation sequence, although, the 
faster-than-NLMS convergence was also noted. 

It is important to note that unlike many algorithms, 
PNLMS’s convergence speed is not gained at the price of 
increased sensitivity to near-end noise and/or double-talk 
detection errors. Computationally, PNLMS is about 50% 
more complex than NLMS, but requires no additional 
memory. 

There are, however, some disadvantages to PNLMS. 
After fast initial convergence on the larger coefficients, the 
remaining small coefficients adapt at a rate slower than 
NLMS. Also, if the impulse response is dispersive or 
consists of several sparse impulse responses, the rate of 
convergence can actually be much slower than NLMS’s. 
While these are not expected to be serious handicaps in the 
intended application, they may prove limiting in unforeseen 
circumstances or alternate applications. PNLMS++ 
addresses these deficiencies by using both the NLMS and 
PNLMS algorithms in the coefficient vector update. The 
result is an algorithm, which converges and tracks near the 
rate of the faster of the two algorithms, NLMS or PNLMS. 
PNLMS++ also retains the advantageously slow double-talk 
divergence rate of PNLMS. Fortunately, PNLMS++’s 
computational complexity and memory requirements are no 
greater than PNLMS’s. 

2. PNLMS 

In this section we derive the PNLMS coefficient update 
from a cost function that favors sparse solutions, a view 
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slightly different than taken in [ I ] .  First, we define the 
signals, vectors and matrices used in the paper, 

X, is the far-end signal which excites the echo path, 

X ,  = [X, , . . . , X n - L + l ] *  is the excitation vector, 

h, = [ho, ..., hL-,lT is the true echo path impulse 
response vector, 
V ,  is the near-end signal, or near-end noise, 

y ,  = x:h, + V ,  is the combination of the echo 

and from the near-end signals, 

h, = [h0,, ,..., hL-,,,] is the adaptive filter 

coefficient vector, 

e,, = y ,  - X ,  h,-l is the error or residual-echo 
signal, 

G, = diag{g,,, ,..., gL-,,,}is the diagonal 

individual step-size matrix, and 
p is the “stepsize” parameter and is chosen in the 
range, 0 < p < 1 . 
6 is the regularization parameter (this prevents 

division by zero when X , X ,  , is very small). 

T 

T 

T 

The general form of an adaptive filter’s error calculation 
and coefficient update is 

where r,is the coefficient update vector at sample 

period n. One way to determine r, is to minimize a 
weighted version of its norm subject to the constraint that 
the a posteriori error, 

(3) T T 
e n  = Y n  -x,h,  = e ,  -px,r,, 

is zero when p is one. Hence, we write the cost 
function, 

C, = 6rnTG:r, +(e ,  -xi., >’ (4) 

This is reminiscent of Douglas’s approach in [4] except 
that there, instead of a quadratic function of r, various 

norms of r,, are minimized. 

For PNLMS, G , is diagonal with diagonal elements 
roughly proportional to the magnitude of the estimated 
coefficients. 

Consider h,-, as a point in an L dimensional space with 

basis vectors corresponding to the columns of an L by L 
identity matrix. When hn-l has only one large value, then 
the point that represents it in this space lies near one of the 
coordinate axes. According to the first term of (4) the cost 
of moving orthogonal to the axis is expensive (but not 
impossible) while moving ]parallel to it is relatively cheap. 
So, the cost function favors moving the coefficient estimate 
vector on trajectories roughly parallel to the basis vectors. 
This is equivalent to saying, that it favors sparse coefficient 
estimate vectors. 

Using the matrix inversion lemma it can be seen that (4) 
is minimized by, 

This is slightly different than the PNLMS update vector 
described in [l]. There:, the denominator in (5) is 
X ~ X ,  +a which can become unstable for impulsive 
excitation signals. Note that when G, = I ( 5 )  reduces to 
the standard regularized NLMS coefficient update. 

The individual step-size matrix is calculated from the 
coefficient vector of the previous sample period according 
to the following steps, 

L-1 

Ll =CY; 

where6p and p are small positive numbers. 8p 
prevents the algorithm from misbehaving when the adaptive 
coefficients are all near zero (e.g. at initialization) and p 
prevents individual coefficients from freezing when their 
magnitude is much smaller than the largest coefficient, 
L,, . Typically, aP = 0.01 and p = 5 / L. If p is set 

to one, then G, = 1 and PNLMS behaves like NLMS. 
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Figure 1 compares the trajectories of the adaptive filter 
coefficients for NLMS, PNLMS and PNLMS++ (described 
below) for sparse echo paths. For ease of presentation we 
have chosen L=2. The filter coefficients are initialized at 

h, = [.Or 1 .4 rand  the true coefficients are at 

h, = [1.4 .Olp. Note that the PNLMS trajectory 

follows the coordinate axes, while the NLMS trajectory 
proceeds more or less directly from the initial point to the 
solution ( V ,  = 0 in this simulation). Even though it 

seems that NLMS is taking a shorter route, PNLMS is 
getting there faster. When the simulation is stopped after 
40 sample periods, PNLMS is closer than NLMS to 
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-1 
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- 
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N O )  

Figure 1: Trajectories of NLMS, PNLMS, and PNLMS++ 
for a “sparse” echo path. 

Figure 2 shows the results of a simulation similar to that 
of Figure 1 except that here dispersive echo paths are 
considered. The filter coefficients are initialized at 

ho = [-1 1]Tand the true coefficients are at 

h,, = [l lr . This time the trajectories of the three 

algorithms need to cross a coordinate axis. This is no 
problem for NLMS, but when the PNLMS coefficients get 
close to the axis, the PNLMS cost function causes the 
trajectory to favor horizontal rather than vertical 
movement. Hence, PNLMS bogs down. This time when 
the simulation is stopped after 40 sample periods it is 
NLMS that is closer to h, . 

The results of more realistic simulations are shown in 
Figures 3 and 4. Here the filter lengths are 512 
coefficients. Figure 3a shows the coefficient error of 
PNLMS and NLMS adaptive filters when white Gaussian 
noise is used as the excitation and near-end signals. The 

echo path, shown in figure 3b, (a typical network echo path) 
is relatively sparse. Here, PNLMS converges much faster 
than NLMS. At 3.2 seconds the background noise power, 
Ov2, was raised from -39 dB below the echo to -10 dB 
below the echo to show the effect of undetected double-talk 
on the coefficient error. Note that even though PNLMS 
converges much faster than NLMS, they both diverge at 
about the same rate and to about the same value. 

Figure 4a shows the coefficient error of PNLMS and 
NLMS when the echo path is dispersive, as shown in figure 
4b. Here, PNLMS converges much more slowly than 
NLMS. 

-4- PNLMS 

Sampld40 ‘ . 
Target Point-> . 1 

08 

p =0.1 
6 =0.001 
p =0.001 

<--Starting Point 

0 0 2  0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  
NO) 

Figure 2: Trajectories of NLMS, PNLMS, and PNLMS++ 
for a “dispersive” echo path. 
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Figure 3: A) Coefficient error convergence for NLMS and 
PNLMS. B) A sparse echo path impulse response. 
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3. PNLMS++ periods and PNLMS on the even. The coefficient error 

Coefficient Error 
PNLMS++ uses both NLMS and PNLMS type 

coefficient updates. Two implementation methods have 
been investigated. One, where the update algorithm 
alternates each sample period and the other where both 
types of updates are done in the same sample period. The 
first method is slightly less complex and so is preferred 
over the second. To distinguish these two methods we will 
refer to the alternating update algorithm as 
PNLMS++(AU) and the double update algorithm as 
PNLMS++( DU). 

Coefficient Error 
coeff 0 
Error, 

..... -40'.7 NLMS + 
PNLMS 

.=.n 1 -- 
0 0 5  1 1 5  2 25 3 3 5  4 

E%%%h 
0 2  

L 

I 
0 100 200 300 400 500 600 

samples 

Figure 4: A) Coefficient error convergence for NLMS and 
PNLMS. B) Dispersive echo path impulse response. 

In both implementations, in any given period of samples, 
whichever algorithm converges faster will contribute most 
to the updates. If PNLMS bogs down, as it does in figure 
2, NLMS moves the coefficients forward. So, as shown in 
figure 2, PNLMS++ converges about as fast as NLMS. On 
the other hand, under sparse conditions, when PNLMS 
converges quickly, it mainly determines the convergence 
speed of PNLMS++. In figure 1, we see that PNLMS++ is 
about as close to the true echo path as PNLMS is when the 
simulation is terminated. 

3.1 Alternating Updates: 

First, we discuss the "alternating update" procedure, 
PNLMS++(AU), where each sample period the coefficient 
vector is updated using either the NLMS or PNLMS 
algorithm. This could be done any number of ways; for 
example, one could normally use the NLMS update, and 
then use PNLMS every kth  sample period, or vice-versa. 
Here we simply use NLMS updates on the odd sample 

................ 
............ PNLMS 

dB PNLMS++(AU 
' 'I ................ ........ ; ...... 

-30 

-40 

0 0.5 1 1.5 2 2.5 3 3.5 4 
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.y __ ............. " .... 

i; .. 

t 
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samples 

performance of PNLMS++(AU), PNLMS, and NLMS is 
Figure 5: A) Coefficient error convergence for NLMS, 

PNLMS, and PNLMS++(AU). B) Sparse echo path impulse 
response. 

shown in figure 5a for a sparse echo path (figure 5b) and for 
a dispersive echo path in figure 6. The convergence of 
PNLMS++(AU) is close to the faster of the two algorithms, 
PNLMS or NLMS. 

The average PNLMS++(AU) complexity is actually lower 
than PNLMS. However the maximum computational 
complexity (usually a more relevant benchmark for real- 
time applications) is the same. Obviously PNLMS++(AU) 
requires no more memory over PNLMS. The alternating 
update mechanism is easy to implement. It can be 
accomplished by always using the PNLMS algorithm and 
changing p back and forth from 1 to its normal PNLMS 
value. 

0 0.5 1 1.5 2 2.5 3 3.5 4 
seconds 

Echo Path 
0.2 

a 
e o  

r -0.1 

n 

) 0.1 

-0.2 ' 1 
0 300 400 500 600 100 200 

samples 

Figure 6: A) Coefficient error convergence for NLMS, 
PNLMS, and PNLMS++(AIJ). 8) Dispersive echo path 
impulse response. 
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Coefficient Error 

3.2 Double Updates 

An alternate method of using both NLMS and PNLMS 
coefficient updates is to use both NLMS and PNLMS 
coefficient updates each sample period. The error 
calculation and coefficient updates can be written as, 

g = hfl-l + pG,x, (x:G,x, + @-‘e,  

E = y, -x:g (12) 

h, = g + px, ( x ~ x ,  + 6)-’ E (13) 

Equations (10) and (1 1) represent the PNLMS part of the 
update (G, is determined from equations (6) through (9)) 
and equations (1 2) and (1 3) represent the NLMS part. 

Equations ( IO)  through (13) can be simplified into a 
single error calculation and coefficient update, 

(14) 

(15) 

coeii  
Error, 
dE 

0 0.5 1 1.5 2 2.5 3 3.5 . 4 

&%%%l 

Figure 7: Coefficient error convergence for NLMS, 
PNLMS, and PNLMS++(DU) for a sparse echo path. 

Coefficient Error 

0 0.5 1 1.5 2 2.5 3 3.5 4 
seconds 

Figure 8: Coefficient error convergence for NLMS, 
PNLMS, and PNLMS++(DU) for a dispersive echo path. 

sparse, while figure 8 shows that PNLMS++(DU) performs 
about as well as NLMS when the echo path is very 
dispersive. So, PNLMS++(DU) implicitly “selects” that 
mode of operation that yields the fastest convergence. This 
“implicit mode selection” takes place by virtue of equation 
(13). PNLMS++(DU) costs one more addition per tap per 
sample period over PNLMS. No extra memory is needed. 

4. Conclusions 

The performance of PNLMS++(DU) versus PNLMS and 
NLMS under the echo path conditions described above is 
virtually the same as PNLMS++(AU). The only 
differences are that the stepsize, p, and the PNLMS 
parameter p need some minor adjustments in 
PNLMS++(DU) to yield the same final coefficient error. 

Figure 7 shows that the PNLMS++(DU) performance is 
about the same as PNLMS when the echo path is very 

PNLMS++ provides improved convergence and tracking 
over PNLMS when the echo path impulse response is 
dispersive, thus, increasing the range of applications of the 
algorithm. PNLMS and PNLMS++ have about the same 
complexity. 
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