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Abstract- A novel method for nonlinear 
identification of a Static Compensator connected to a 
power system using Continually Online Trained (COT) 
Artificial Neural Networks (ANNs) is presented in this 
paper. The identifier is successfully trained online to 
t rack the dynamics of the power network without any 
need for offline data and can be used in designing an 
adaptive neurocontroller for a Static Compensator 
connected to such system. 

I. INTRODUCTION 

Static Compensators (STATCOMs) are power 
electronic based shunt connected Flexible AC 
Transmission System (FACTS) devices which can control 
the line voltage Vat the point of connection to the electric 
power network. Regulating reactive and active power 
injected by this device into the network provides control 
over the line voltage and over the DC bus voltage inside 
the device respectively [I]. A power system containing 
generators and FACTS devices, is a nonlinear system. It is 
also a ,non-stationary system since the power network 
configuration changes continuously as lines and loads are 
switched on and off. 

In most of the papers in the recent years, linear control 
techniques have been used to model STATCOMs and 
consequently to design their controllers. In such an 
approach the system equations are linearized at a specific 
operating point and based on the linearized model, PI 
controllers are tuned in order to have the best possible 
performance [2, 31. However STATCOMs are highly 
nonlinear devices, the rest of the power system is also 
nonlinear and continually changes topology, and the 
drawback of designs based on linear techniques is that 
their performance degrades as the system operating 
conditions change. Controllers that use nonlinear models 
on the other hand can give good control capability over a 
wide range of operating conditions, but they have a more 
sophisticated structure and are more difficult to implement 
compared to linear systems. 

A nonlinear neural network based neurocontroller can 
solve this problem and a possible control scheme appears 
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in Fig. 1. The neurocontroller needs a model of the plant 
being controlled, but because the power system is a 
nonlinear and nonstationary process, a continually variable 
model is needed. A second neural network can be used to 
continually identify this model, shown as the ANN 
identifier in Fig. 1. It can be trained online without 
requiring large amounts of offline data [4,5]. 

DSSirsd 
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I I 

Fig I .  Neural indirect adaptive control scheme 

This paper deals with designing a continually online 
trained (COT) artificial neural network identifier (ANNI) 
in order to modeliidentify a STATCOM connected to a 
power system. It considers a power system network 
consisting of a single machine infinite bus system (SMIB) 
together with a STATCOM connected to the middle of the 
transmission line. Multilayer Perceptron (MLP) neural 
networks are used to identifyimodel the power system 
network called the olant. Such identifiers can be used for 
designing an adaptive neurocontroller [6] for the 
STATCOM. 

11. STATCOM IN A SINGLE MACHINE INFINITE 
Bus SYSTEM 

Fig. 2 shows a STATCOM connected to a single 
machine infinite bus system, and it is simulated in PSCAD. 
The generator is modeled together with its automatic 
voltage regulator (AVR), exciter, govemor and turbine 
dynamics all taken into account [7]. The generator is a 
37.5 MVA, 11.85 kV (line voltage) machine and real 
parameters are used for the entire system. 

0-7 803-7 898-9 /03/$17 .OO 02003 IEEE 2964 

http://gkuinar(L;iece.org


c-------c 
STATCOM 

Fig 2. STATCOM connected to SMIB system (plant) 

The STATCOM is first controlled using a 
conventional PI controller as described in [2] (Fig. 3). 
D-axis and Q-axis voltage deviations are derived from the 
difference between actual and reference values of the 
power network line voltage V and the DC bus voltage Vdc 
(inside the STATCOM) respectively, and are then passed 
through two PI controllers, whose output values de, and 

de, in turn determine the modulation index m,and 

inverter output phase shift a applied to the PWM module 
as in (1). 

Controlling the voltage Vat the point of connection to 
the network is the main objective of the STATCOM 
considered in this paper. 

Parameters of the STATCOM PI controllers are 
derived so that the controller provides satisfactory and 
stable performance when the system is exposed to small 
changes in reference values as well as large disturbances 
such as a three phase short circuit on the power network. 

The "Plant" indicates the generator, its controllers, 
transmission line, the STATCOM and the PWM module 
with Ae, and Ae,as inputs and AV(1ine voltage 

deviation) and AVdc (DC bus voltage deviation) as 
outputs, whereas "Controller" represents line voltage and 
DC bus voltage control loops. 

PLANT 

Fig 3. STATCOM controller 

111. ADAPTIVE NEURAL NETWORK IDENTIFIER 

A schematic diagram of the ANN identifier (ANNI) 
connected to the plant is shown in Fig. 4. The ANNI is a 
three layer MLP type neural network having a single 
hidden layer with sigmoidal activation knction and the 
backpropagation algorithm is used for its training. The 
number of neurons in the hidden layer is heuristically 
chosen to be fourteen. 

Fig 4. Plant / Adaptive ANN Identifier 

The inputs of the ANN1 are the plant inputs Aed and 

Aeq and outputs A V  and AVdc at times & I ) ,  (1-2) and 

(1-3) along with a constant threshold input and the 
sampling time step is 250 AS (Fig. 5). 

For the combination of inputs shown in Fig. 5 ,  the 
ANNI generates estimated values of the plant outputs 

( A V  and A V d c )  at time t .  The estimated outputs are then 
compared with their corresponding actual values at time I 
and the difference forms the training error which is used to 
update the weight matrices using the backpropagation 
algorithm with a small learning gain of 0.03 [SI. 
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Feedforward operation and the backpropagation training 
algorithm for a multilayer perceptron neural network 
(MLPN) appear in the Appendix. 

n 

Fig 5. Artificial Neural Network Identifier structure 

IV. IDENTIFIER TRAINING 

Two sets of training results are presented in this paper. 
The first set which is called forced-training, shows how 
the ANN1 tracks the plant dynamics when it is perturbed 
using Pseudorandom Binary Signals (PRBS). The second 
set, called natural training, shows the identifier tracking 
when the PRBS is stopped and the system is exposed to a 
large disturbance such as a three-phase short circuit [4]. 

The flowchart for training the identifier is shown in 
Fig. 6 .  It is first .trained using forced training until 
sufficient accuracy is achieved and then PRBS is stopped 
and the natural training process takes place. 

A .  Forced Training 

In order to train the ANNI, the entire system is 
simulated under normal mode (controlled by its PI 
controllers) until it reaches steady state (i.e. the values of 
controller outputs Aed and Aeq become constant at 8 sec) 

after PSCAD is initialized; then the PI controllers are 
deactivated and their outputs Aed and Aeq held constant 

at Aedoand Ae,, respectively. PRBS signals are then 

added to the Aedo and be,, from an extemal source. The 

PRES signal magnitudes (Figs. 7 and 8) are limited to 
+_ 10% of the controller constant outputs Aedo and Aeqo. 

The modulation index mo applied to the inverter as 

the result of the PRBS disturbances is shown in Fig. 9. The 
inverter output phase shift command a contains similar 
deviations. 

START (3 
I Run the simulation until Aed and A e  become constant q 

wth S. and S, In Position 1 (F14 21 
I - .  , I 

I 

Add PRBS signals to the constant Aedoand Ae 

A 

0 z z 
Q 

a 
LL c 

Lu 
0 
LL e 

Use error signal F to update the weights of the ANN1 using 

X S  t ,n 
z 
L 
Q Stop the PRBS signals and with constant Aedoand Ae 

apply a three-phase shoo circuit to the system 

z 
Calculate the error and update the weights as mentioned above. 

Fig 6 .  Flowchart for training the identifier 

8 8 5  9 9 5  ro 10s ,I 1 1 5  12 
Time h s r )  

Fig 7.  Forced PRBS training signal Aed applied to the 
plant 
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4% 8 5  9 9 5  10 105 11  115 12 
l7ma ( S I C )  

Fig 8. Forced PRBS training signal Be, applied to the 
plant 

Simulation results of the identifier tracking the plant 
dynamics are shown in Figs. I O  and 11. The difference 
between the plant outputs and the ANNI outputs are 

negligible. The error between A V  and A V  is limited to 
0.005% while the maximum error between AV,and 

A Vdc is 0.15% 

Time [sec) 

Fig 9: Modulation Index applied to the STATCOM 

The ANNI is then trained with the PRBS signals at a 
few more operating points to ensure that i t  can track the 
dynamics of the system over a wide range of the operating 
conditions. After being trained at each operating point, 
final values of the weights are saved and used as initial 
weights for training at the new operating point. Figs. 12 
and 13 show the simulation results when a 5% increase is 
applied to the reference voltage of the generator’s exciter 
which changes the operating point of the system to a new 
point. The results show that the identifier correctly tracks 
the plant’s dynamics when the operating point changes. 

i ime (sec) 

Fig 10. Actual and estimated values of AV 

Fig 11. Actual and estimated values of AVdc 

, . , , . .  , . , . . ,  

, . . , . .  

. . . . , . ,  

. . I .  

10 102  10.4 106  108 I 1  112 11.4 1 1 6  118 12 
Time (sec) 

Fig 12. Actual and estimated values of AV with 5% 
change in the v,e, of the Exciter 
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Fig 15. Actual and estimated Vdcduring a three-phase 
short circuit 

Similar tests at different operating points (as 
mentioned above) are carried out for natural training of the 
identifier, and the simulation results show satisfactory 
system identification by the ANNI at the multiple 
operating points. 

V. CONCLUSION 

A continually online trained multilayer perceptron 
neural network is introduced that can identifyhodel a 
STATCOM connected to a power system. Simulation 
results show that the identifier tracks the dynamics of the 
plant with high precision while no offline data is required 
for its training. 

Conventional PI controllers have mostly been used for 
controlling a STATCOM, while their performance is 
highly dependent on the system operating point and is 
degraded by any changes in the operating point or the 
power network characteristics. A nonlinear neurocontroller 
can eliminate this problem but it needs an identifier such 
as the one described in this paper. Further research is still 
in progress to design STATCOM neurocontrollers and 
compare the results with that of a conventional controller. 

VI. APPENDIX 

Multilayer Perceptron Network (MLPN) 

A.  Feedfonvard Operation 

Typical structure of a three layer multilayer 
perceptron is shown in Fig. 16 [SI. The three layers of 
neurons (input, hidden and output layers) are 
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interconnected through weight matrices Wand V and map 
n inputs to m outputs. 

x E R“ through the input weight matrix 

determines the activarion vector a E R : 

At each time step k the weight matrices Wand V are 
updated using equation (6): 

(6) 
Forward propagation of the input vector A.W(k) = y,.AW(k - 1) + y,.e,(k).xT(k) 

W E Rh““ 
h A V ( k )  = y,,, .AV(k - 1 )  + y, .$(k).dr ( k )  

Hidden Layei 

Fig 16. Three layer feedforward neural network with 
MLPN structure 

Elements of a are then passed through a nonlinear 
activation function (e.g. a sigmoidal function as in (3)) to 
create the decision vector d E Rh : 

(3) 

4 = i = l ,  ..., h 

By propagating the decision vector d through the 
output weight matrix V E RhXm,  the estimated output 
vector p can be obtained 

(4) j = V.d 

B. Backpropagation Algorithm 

MLPN weights are updated using the gradient decent 
based backpropagation algorithm. The error vector 
ey E R” is defined as the difference between the actual 
and estimated outputs and is then hackpropagated through 
the outuut matrix V to obtain the decision error vector 

where y,,,and y,are the niomentum gain and 

learning gain respectively. 
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ey = y - j  

e, = VT.ey ( 5 )  

.cor = dj.(l-dj).ed, i = 1, ..., h 
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