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Abstract This paper prowdes a novel method for nonhnear
ldentiticatlon of mtdtipl e turbogenerators m u live-nmchme 12-bus
power system using Continually (Mine Trained (COT) Artificial
Neural Networks (ANNs), Erich turbogenerntor m the powersystem
1s equ]pped with an adaptlve ANN Idenbiier, winch 1s able to
ldentify/model its particularturbogencratorand rest of the network
to which it is connected from moment to monwnt, based on only
local measurements E:xh adaptlw ANN dentilier can be LIsed m

the design of a nonhncur controller for each turbogemxator in a
rmultimachinepower system, Simulnhon results for the adaptive
ANN Identifiers are presented

Keywords: Adaptive kientilication, hhdtunachrne Power System,
Artificial Neural Networks, Control,

1. INTRODUCTION

The increasing complexity of modern power systems
highlights the need for advanced system identification
techniques for effective conlrol of multimachme power
system. Synchronous lurbogcncrntors suppl} most of the
electrical energy produced by mankind and are largely
responsible for maintaining the stability and security of the
electrical network. The effective control of these machines
is, therefore, important. However, turbogenerators ,arehighly
non-linear, time varying, fast acting, MuJtiple Input Multiple
Output (MIMO) machines with a wide range of operating
conditions and dynamic characteristics that depend on the
entire power systcm to wiuch each of these is connected
[1,2] Conventional automatic \’oltage regulators and turbine
governors are dcsignled to optimally control each of these
ttrrbogenerators around onc opcratmg point. at other
operating points cuch Iurbogcnerator’s performance is
degraded. Adttptive controllers for (urbogenet-ators can be
designed using linear models and traditional techniques of
identification, analysis. and synthesis to achieve the desired
performance. Often restrictive assumptions are made [3]
about the likely disturbances. However, due to the nonlinear
time varying nature of a turbogenerator. it cannot be
accurately tnodelled as a linear device.

Moreover, when different turbogenerators with conventional
controllers (are connected. low frequency oscillations may
result Power Svstcm Stabilizers (PSSS) arc used to chnp
such oscillations, but (IIC particular position and mtnsfer
function of a PSS is noI a simple decision and is usually also
based on some linearized system model.

In recent years, renewed interest has been shown in the ‘area
of power systems control using nonlinear control theory.
particularly to improve system transient stability [4-8],
Instead of using an approximate linear model, as in the design
of the conventional power system stabilizer. nontinear models
are used and nonline~urfeedback Iinearintion techniques ~are
employed on the power system models. thereby alleviating
the operating point dependent nature of the linear designs.
Using nonlinear controllers, power system transient stability
can be improved significantly. However, nouline,ar
controllers have a more complicated structure and ,are
difficult to implement relative to line~ar controllers, In
addition, feedback lmearimtion methods require exact system
parameters to cancel the inherent system nonlinearities, and
this contributes further to the complexity of stability analysls.
The design of decentrahzed linear controllers to enhance the
stability of interconnected nonlinear power systems within
the whole operating region is still a challenging task [9].
However. the usc of Artificial Neural Networks offers a
possibility to overcome this problem,

Artificial Neural Networks (ANNs) are able to identi&/
model such time vatymg single turbogenerator systems [10,
11] tand, with continually online training these models can
track the dynamics of the turbogenerator system thus yielding
adaptive idenufication. COT ANN controllers have been
successfully implemented on single turbogenerators using
ANN identifiers [12J. ANN identification of turbogenerators
in a multmulchinc power system has been successfully
invcstigtrted on a two identical machine system [13],

This paper explains how the COT ANN can be used to
idemtify turbogenerators in a multi-machine power system,
where there ,we always changes in the operating points of the
generators, and ch~nnges in the network coltilguration,
Simulation results are presented to show successful
identificmion of multiple turbogenerators in a complex
environment. The identification of the turbine and exciter
dYUaItllCS is excluded.

11, MULTIMACHINE POWER SYSTEM

The multi-machine power system in Fig. 1 is modeled in the
MATLAB/SIMULINK environment using the Power System
Blockset (PSB) [14]. Each machine is represented by a
seventh order model. There are three coils on the d-axis ~and
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two on the q-axis and the stator transient terms tare not
neglected. A five-nwchine 12-bus system is chosen, in order
to llhtSlt2Mt? tht3 varioLlsconcepts involved in the identification
process. Machines G 1 and G5 ,are larger machines (300
MVA) compared to machines G2 ,and G4 (200 MVA).
Machine G5 is the infinite bus, The machine parameters are
given in Appendix A 115], Although it is possible to
identi@/model gener~tors with exciters and ~ttrbiaes using
ANNs [10,11,13], in this paper, machines without exciter,

turbine, automatic voltage regulator and governor are
identified using ‘anANN.

?(10h,,,
,,

+ 1~

J--.-/j
(\/’)b ‘,
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Fig.I Multi-maclhine power system with ANN Identifiers

III. ADAPTIVE NEURAL NETWORK IDENTIFIERS

Fig. 1 shows that four generators are each equipped with ,an
ANN identifier (ANN1). The ANN identifiers are trained
online ,and are therefore called .:1dopllw A’eura/ Nerwork
ldentl~ers,

The ANNI is developed using the series-p,arallel Nonlinear
Auto Regressive Moving Average (NARMA) model [16],

This model output y (Fig. 2) at time k+/ depends on both

past n values of output and m past values of input, The ANNI
output equation takes the form given by eq, (1),

[

v(k), ,v(li -1), . . ...v(k–n+ l).
y(k+l)=f ’ 1 (1)

u(k), u(k–l), . . ..t{(rtl+l)l)

where y(k) ,andu(k) represent the output and input of the plant
at time k respectively. This model has been chosen in
preference to other system identiticat ion models 116J,
because online le~araingis desired to identify the dynamics of
the turbogenerator, and therefore avoids a feedback loop in
the model, which in turn allows static backpropagation to be
used to adjust the ANN weights, This reduces the
computational overhead substantially for online training.

I%e ANN identifiers (ANNI) in Fig. 1 are feedfotward
mttltilayer perception networks, and each has three layers
consisting of an input layer with twelve neurons. a single
hidden layer with sigmoidal activa(ioa func[ions consisting of
fourteen neurons. and an output Iaycr with two neurons,
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Fig. 2 Plnntiadaptive ANN identifier

The ANNI’s inputs, outputs and output errors are shown in
Fig. 2, The plant described in Fig. 2 represents a generator
and the network (o which it is connected, A sampling
frequency of 100 Hz is chosen, which is sutlciently fast for
the ANNI to reconstruct the speed and terminal voltage
signals from the sampled input signals.

The inputs to the ANNI shown in Fig. 3 tare the deviation of
the actual power AP to its turbine, the deviation of the actual
field voltage AU’ to its exciter, the deviation of the actual
speed A~ ,and the deviation of the actual RMS terminal
voltage AV1 of its generator. These four inputs are also
delayed by the sample period of 10 ms and, together with
eight previously delayed values, form twelve inputs
altogether. For this set of ANNI inputs. the ANNI outputs

~arethe estimated speed deviation A~ and the estimated

terminal voltage deviation AJ;, , of its particular generator.

4)(k)

A,qk-1)

~P(k-2)

A l~(k)

A [J~k- /)

A u~k-2)
A<”~~,
‘l[”(~./)

“’’(k.~)
~V/k)

A V,(k- 1)

~ 1;(k.2)

Fig. 3, ANNI input m]d output signals

The number of nettrons in the hidden layer of the ANNI is
detertnined heuristically. The ANNI weights tare set to
random values [-0. 1, 0.1] ‘and backpropagation is used to
update the weights of the ANNI. The differences between

the respective deviations in aclua/ outputs of the plant (AVt,

Au) and the estimaled outputs of ANNI (Ar~, , A~ ) form the
error signals for upchting the weights in the ANNI (Fig. 2).
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A reasonable le,arning rate is detertnined by training this
neural network ,and setting the Ie,arning rate parameter so that
a compromise is achieved between the training time ,and the
accuracy of the netwclrk.

IV, SIMULATION RESULTS

A consmnt field voltage (Jf and a turbine power signal P are
applied to each of the generators at a particular steady state
operating point. Then the ANNI is trained by adding pseudo-
r,andorn binary signals AUf ,and AP (generated in MATLAB
during the simulation) to Uf and P respectively, These
random signals excite the full range of the dynamic response
of the genemtors,

The pseudorandom signals in Figs. 4 and 5 show + 5~0

deviations in the steady state values of [J and P of generator
G1 at operating poinls given in Appendix B. 1. Simikar
training signals are applied simulmncously to the other
generators (G2, G3, Ci4).

Tune m secmk

Fig.4 Training sigml A(Jfapplied to the generator (31

.004( :- ---- --- ! I p
I

I I II
4 6 III i2 14 16 lx 50

rltne III wwr]ll~

A letting gain of 0.3 is used for the backproplgation
algorithm. The ANNI is onty required to generalize one time
step (1O ms) tahead, so no momentum term is used. The
training errors ,are insignificant after onty a few seconds of
training.

Figs. 6 and 7 show the speed deviation ~audterminat voltage
deviation respectively of generator G 1 and ANNI #1 during
the first few seconds of training. Figs. 8 and 9 present these
results during the fourth and fifth second of training. They
show that the ANNI #1 is able to track the outputs of
generator G1 within the first two seconds of training. The
outputs of the generators and the AiVNIs ,are shown by solid
<anddashed lines respectively in all diagrams.

.4
xl{)

I 5 r-–- ——-1--–- ---- ---- I-- -- -— 1 ,

, .,
() ()5 I If 2s2 3

Tm]cI]>wads

Fig, 6 Speed deviatioo of the generator Cil (zt@ and the ANNI #l ( ZIOJ)

-3
X10

‘ ~—–”~-–”––”-—~

.30L~.. --...–.1-. ..––..—l.-– –-––J-–-—-l_.___. _,
() 5 1 15 ~ ~~ 3

Tm e m seconds

the ANNI HI (A l’, )

Fig. 5 “~raining signal ,4P applied to geowxtor ~ 1

0-7803-6674-3/00/$10.00 (C) 2000 IEEE

0-7803-6674-3/00/$10.00 (C) 2000 IEEE 12960-7803-6672-7/01/$10.00 (C) 2001 IEEE 1296

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 23, 2009 at 11:45 from IEEE Xplore.  Restrictions apply. 



-4
x 10

“1)rnc lrl .wmh

Fig. 8 Speed deviation ot’lhe generxtor (il (AfiJJ id the ANN I ill ( AO )
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Fig. 9 Terminal voltage deviation of the generfiior G I (Al; ) and

the ANN1HI (.4L’()

Figs. 10 and 11 show the speed deviation and terminal
voltage deviation. respectively. of generator G2 and ANNI #2
during the fourth ancl fitlh second of training. Once again,
ANNI #2 is able to track the outputs of g.mcrator G2 within
the first two seconds of its training. Similar results have been
found for generators G3 and G-1. All results show that the

errors between the ANNIs’ outputs and generators’ outputs
are insignificant after a fcw seconds of online (raining.

Figs, 8 to 11 prove that the ANNIs have learned the dynamics
of the generators, nnd the network to which they are

‘rL”>. ,. ,eco”<L,

10 Speed devi~hon of the generator Ci2 (A(o) and the ANN1 1#2( A co )

-3
Y.10

Fig. 11 Terminal voltage deviation of the generator ~2 (41< ) and

the ANNI #2 (A V, )

After five seconds of training (Figs. 6 to 11 at operating
points given in Appendix B, 1), the operating points ,are
changed (Appendix B,2) and the training continues.
However. the training signals are now reduced to only + 2%
deviations in the field voltnge [~ and input power P, and the
results for generator G3 and ANNI #3 appear in Figs. 12 and
13, and those for generator G4 and ANNI #4 in Figs, 14 ,and
15. The results for generators G1 and G2 have been found to
be similar to those of generators G3 and G4. Moreover,
despite the changes in the operating points, the ANNIs care
able to track the output changes of the generators

connected, with sufikient accuracy, immediately.
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Fig, 15 Terminal voltage deviation of the generator G4 (AV ) and

the ANNI #4 (A V, )

Fig. 12 Speed deviation of the generator G3 (l(u) and the .ANNI ~#3(,4 OJ)

.3
x 10
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V, CONCLUSIONS

A multiple number of multi-layer feedforward neurat
networks have been successfully applied to identi@/tnodel
multiple turbogenerators in a power system, Simulation
results indicate that the proposed scheme is potentially very
promising for identifying highly nouline.ar MIMO
turbogenerators in the input-output representation form.
Furthermore, it is impormnt to emphasize that no ofl-hne
trairring isnecessarv, Such neural network models nmy first
be used in a multi-machine power system plant simulator and
eventually find a place in the control rootn, providing pkant
operators,and power system control engineers with enhanced
understanding of the operation of the turbogenemtors,
However, further laboratory testing is still needed to evaluate
critically the goodness and coni5dence levels of these models
under development for multimachine power systems,

-05

-1

‘1’,,,,. ,,, .< C’,3,,<1.

Fig. 13 Termirml voltage deviation 01’[Iw gcnmalor (i3 (Al; ) md the ,ANNI

#3(/l); )

V], ACKNOWLEDGEMENTS
4X IO-5

m-”-2 - -----.

The authors gratef~dly acknowledge financial support from
the National Science Foundation, USA, National Research
Foundation, South Africa. M L Sultan Technikon, and the
University of Natal. South Africa.

VII, REFERENCES

[1]

[2]

[3]

[4]

[5]

[61

P.M. Anderson, A. A. Fourid, “Power system control and sLtbdity”, New
Yoi-k: IEEE Press, 1994, lSBN O-7803- I029-2,
B. Adkins and tLG. H.arley, ‘The general theory of alternating current
machines”, London: Chapman and Hall, 1975, IS13N 0-412-15560-5,
Q.H.WU and B. W. Hogg, “Adaptive control Ier for a turbogenemtw
system”, IEE Proceedings, vol. 135, Pt D, no 1, 1988, pp 35-42.
Q.Lu and Y.Sun. “Nonlinear stabilizing control of’ multinmchine
systems,” IEEE Trims. Power System, vol. 4, 1989, pp. 236-241.

W. Mielcznrski and A.Zajaczkowski. “Nonlinear field voltage control of
a SplCbr O1lOLIS generator using feedback linearization”, Automaiica,
VO]. 30, 1994, pp. 1625-1630.
J. W. Chapnum, M.t).llic, C. A. King, L.Eng and H. Kaufman,
“Stabilizing a multimachine power system via decentralized feedback

5 52 54 56 5,s 6 62 64 66

llnle m seconds

Fig. 14 Speed deviation of the generator G4 (Aw) and the .ANN1 #4 ( zloJ )

0-7803-6674-3/00/$10.00 (C) 2000 IEEE

0-7803-6674-3/00/$10.00 (C) 2000 IEEE 12980-7803-6672-7/01/$10.00 (C) 2001 IEEE 1298

Authorized licensed use limited to: Missouri University of Science and Technology. Downloaded on October 23, 2009 at 11:45 from IEEE Xplore.  Restrictions apply. 



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

linearizing excitation control”, IEEE Trans. Powers System, vol. 8,
1993, pp. 830-839,
Y. Wang, D,J.llill. I..Guo and 11.tl.hltddle(on.“Transienl stability
enhancement and voltage regulation ol’ pow cr sys(en]”. I I;i;t? Trans.

Power System. vol. 8.1993. pp. 620-627.
Y.Wsm& G.Guo. D.J.Hill and L.Gao, “Nrrnlinew decentralized control
for mttkimacbine power system transient st~bility enhancement”,
Proceedings of 1995 Stockholm Power Tech Conference, pp. 435-440,
Z.Qiu, J, F. Dorse~, J.Bond and J,D. McCltlley, “Application of robust
control to sustmned oscillations in power systems”, IEEE Trans.
Circuits System, L vol. 39, 1992, pp. 470-476,
G. K. Venayagamoorthy and R,G, Htuley, “A continually online trained
mtiflcial neural network identifier for a turbogenc rater”, Proceedings of
1999 IEEE International Ilwtric hluchines and Drives Conference. (J-
7803-5293-9/99. pp. 404-.400.
G,K.Venayag:tl~~o,Jllby and I<,(;.llarlq. “llllplenlctl(t]ti{>l) of an
adaptive neural net work identifier for c(~ective control of
turbogenerators”. Prucecdings uI’ 1999 IEIK hkldilp~st t’ower Tech
Conference, BP1’99-43 I -6.
G.K. Venayagamoorthy and R.G.ti:Mey. “Experimental studies wltb a
continually onllne Llained artiflc iat neural network controller for a
turbogenerator”. Proceedings of the International Joinl Conference on
Neural Networks. lJCNN 1999, vol. 3. pp. 2158-2163.
G.K.Venayagamoortlly and R.G.Harley, “Decentralized online netsro-
identification of turbogenerators in a multi-machine power system”,
Proceedings of IEEE PES 2000 summer meeting, paper no.
2000 SM408,
G. Sybille, P. Brunelle. R,Champagne, L. Dessamt and tloang Lehuy,
“Power system blockwt version 2.0”, Mathwnrks Inc.. 2(JO0.
P. Kundur, Power System Stability and Control. McGraw-Hill, 1994.
p, 813,
K.S.Narendm and K. IJ:litl]:ts>lrittl)y. “’ldentilication and control of
dynamical SVS(COISusirs~ neural nc{works”, IIl;l; Trans. on Neural
Networks. v~l 1. no 1. flw. 199(J. pp 4 27

APPENDIX A

Parameters of the generators ((; 1. (;2. (;3 & (}4)

Xd(pti)
Xd;(pu)
xd (pIA)

.Vq (pu)
Xg“’(pu)
x, (pu)
&zm (Pu)
H (s)
(-Opocll),
(MVA)
L-L 1‘OILS
Freq. (Hz)

P, (pu)
Q (@)
~ (pu)

l’, (pu)
Q (pu)
K (Pu)

G] (;2 ( ;-?

1.80 1.80 1.80
().30 0.30 0.30
().25 0.25 0.25
1.70 I .70 I 70
().25 0.23 (),25
().20 (),2() ().2()

().0025 ().0025 ().() () ’25
().5 6.175 6.5
300 200 300

1lx(x) I 3800 I 3800
(10 60 60

APPENDIX B

B.I First set of operating points

(31 c;> (;3
().6668 0.65] ] 0,6668
().0726 ().0444 0.0726
L1893 1.1X93 1.1893

11.2S~cond sd ofoPwalIng pOllllS

(;/ ( ;2 ( ;.?

() 6668 (),651] () 3336
0.0002 -(J,0310 -0.0125
1.1884 1.1877 1.1691

G.1
1.80
0,30
0.25
I .70
(),25
0,2[)
().0025
6.175
200

13800
60

(.;4
0,651 ]
0.0444
1.1893

( ;4
().25()2
-0.0449
1.1519
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