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Abstract: This paper provides a novel method for nonlinear
identification of multiple turbogenerators in a five-machine 12-bus
power system using Continually Online Trained (COT) Artificial
Neural Networks (ANNs). Each turbogenerator in the power system
1s equipped with an adaptive ANN 1denufier, which 1s able to
identify/model its particular turbogencrator and rest of the network
to which it is connected from moment to moment, based on only
local measurements Euch adaptive ANN identifier can be used m
the design of a nonlincar controller for cach turbogenerator in a
multimachine power system. Simulation results for the adaptive
ANN 1dentifiers are presented

Keywords: Adaptive ldentification, Multimachine Power System,
Artificial Neural Networks, Control.

I. INTRODUCTION

The increasing complexity of modern power systems
highlights the need for advanced system identification
techniques for effective control of multimachine power
system. Synchronous turbogencrators supply most of the
electrical energy produced by mankind and arc largely
responsible for maintaining the stability and security of the
electrical network. The effective control of these machines
i, therefore, important. However, turbogenerators are highly
non-linear, time varying, fast acting, Multiple Input Multiple
Output (MIMO) machines with a wide range of operating
conditions and dynamic characteristics that depend on the
entire power system to which each of these is connected
[1.2] Conventional automatic voltage regulators and turbine
governors are designed (o opumally control cach of thesc
turbogenerators around onc opcrating point. at other
operating points cach turbogenerator’s  performance  is
degraded. Adaptive controllers for turbogenerators can be
designed using linear models and traditional techniques of
identification, analysis. and synthesis to achieve the desired
performance. Often restrictive assumptions are made [3]
about the likely disturbances. However, due to the nonlinear
time varying nature of a turbogenerator, it cannot be
accurately modelled as a linear device.

Moreover, when different turbogenerators with conventional
controllers are connected. low frequency oscillations may
result  Power System Stabilizers (PSSs) are used to damp
such oscillations, but the particular position and transfer
function of a PSS is not a simplc decision and is usually also
based on some linearized system model.

In recent years, renewed interest has been shown in the area
of power systems control using nonlinear control theory.
particularly to improve system transient stability [4-8].
Instead of using an approximate linear model, as in the design
of the conventional power system stabilizer. nonlinear models
are used and nonlinear feedback linearization techniques are
employed on the power system models, thereby alleviating
the operating point dependent naturc of the linear designs.
Using nonlinear controllers, power system transient stability
can be improved significantly. However, nonlinear
controllers have a more complicated structure and are
difficult to implement relative to linear controllers. In
addition, feedback linearization methods require exact system
parameters to cancel the inherent system nonlinearities, and
this contributes further to the complexity of stability analysis.
The design of decentralized linear controllers to enhance the
stability of interconnected nonlinear power systems within
the whole operating region is still a challenging task [9].
However, the usc of Artificial Neural Networks offers a
possibility to overcome this problem.,

Artificial Neural Networks (ANNs) are able to identify/
model such time varying single turbogenerator systems [10,
11} and, with continually online training these models can
track the dynamics of the turbogenerator system thus yielding
adaptive identification. COT ANN controllers have been
successfully implemented on single turbogenerators using
ANN identifiers {12]. ANN identification of turbogenerators
in a multimachinc power system has been successfully
investigated on a two identical machine system [13].

This paper explains how the COT ANN can be used to
identify turbogenerators in a multi-machine power system,
where there are always changes in the operating points of the
generators, and changes in the network configuration.
Simulation results are presented to show successful
identification of multiple turbogenerators in a complex
environment. The identification of the turbine and exciter
dynamics is excluded.

[I. MULTIMACHINE POWER SYSTEM

The multi-machine power system in Fig. | is modeled in the
MATLAB/SIMULINK environment using the Power System
Blockset (PSB) [14]. Each machine is represented by a
seventh order model. There are three coils on the d-axis and
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two on the g-axis and the stator transient terms are not
neglected. A five-machine 12-bus system is chosen, in order
to illustrate the various concepts involved in the identification
process. Machines (Gl and G5 are larger machines (300
MVA) compared to machines G2 and G4 (200 MVA).
Machine G5 is the infinite bus. The machine parameters are
given in Appendix A [15]. Although it is possible to
identify/model generators with exciters and turbines using
ANNs [10,11,13], in this paper, machines without exciter,
turbine, automatic voltage regulator and governor are
identified using an ANN.

Fig. 1 Multi-machine power system with ANN Identifiers

III. ADAPTIVE NEURAL NETWORK IDENTIFIERS

Fig. 1 shows that four generators are each equipped with an
ANN identifier (ANNI). The ANN identifiers are trained
online and are thercfore called Adaptive Neural Network
Identifiers.

The ANNI is developed using the series-parallel Nonlinear
Auto Regressive Moving Average (NARMA) model [16].

This model output y (Fig. 2) at time k+/ depends on both

past n values of output and /m past values of input. The ANNI
output equation takes the form given by eq. (1).

) vik), vik=1), ... v(k-n+1),
k+1)=[|" ) : 1
Mkl f{ ulk)oulk=1),. . utk-m+1) ()

where y(k) and u(k) represent the output and input of the plant
at time k respectively. This model has been chosen in
preference to other system identification models [16],
because online learning is desired to identify the dynamics of
the turbogenerator, and therefore avoids a feedback loop in
the model, which in turn allows static backpropagation to be
used to adjust the ANN weights. This reduces the
computational overhead substantially for online training.

The ANN identifiers (ANNI) in Fig. 1 are feedforward
multilayer perceptron networks. and each has three layers
consisting of an input layer with twelve neurons. a single
hidden layer with sigmoidal activation functions consisting of
fourteen neurons, and an output layer with two neurons,

Input P .| Plant Plant outputs 4V, dw
T / Time dela
Time delay — line Yol
line @
| Artificial Neural v, A“’»( - )
_P__,_A_. etwork [dentifier _\ 2‘
Uy — T ANN outputs i
Weights update
erTors

Backpropagation
Algorithm

Fig. 2 Plant/adaptive ANN identifier

The ANNI’s inputs, outputs and output errors are shown in
Fig. 2. The plant described in Fig. 2 represents a generator
and the network to which it is connected. A sampling
frequency of 100 Hz is chosen, which is sufficiently fast for
the ANNI to reconstruct the speed and terminal voltage
signals from the sampled input signals.

The inputs to the ANNI shown in Fig. 3 are the deviation of
the actual power AP to its turbine, the deviation of the actual
field voltage AU, to its exciter, the deviation of the actual
speed Aw and the deviation of the actual RMS terminal

voltage 4V, of its generator. These four inputs are also
delayed by the sample period of 10 ms and, together with
eight previously delayed values, form twelve inputs
altogether. For this set of ANNI inputs, the ANNI outputs

- . n .
are the estimated speed deviation A g and the estimated

terminal voltage deviation A I}, . of its particular generator.

AP(k)

AP(k-1)
AP(k-2)
AUfk)
AUfk-1)
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/,/ \( D

Fig. 3. ANNI input and output signals

The number of neurons in the hidden layer of the ANNI is
determined heuristically. The ANNI weights are set to
random values [-0.1, 0.1] and backpropagation is used to
update the weights of the ANNI. The differences between

the respective deviations in actual outputs of the plant (4V,
Aw) and the estimated outputs of ANNI (4 72 , 44 ) form the
error signals for updating the weights in the ANNI (Fig. 2).
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A reasonable learning rate is determined by training this
neural network and setting the learning rate parameter so that
a compromise is achieved between the training time and the
accuracy of the network.

IV. SIMULATION RESULTS

A constant field voltage Urand a turbine power signal P are
applied to each of the generators at a particular steady state
operating point. Then the ANNI is trained by adding pseudo-
random binary signals AU, and 4P (generated in MATLAB
during the simulation) to U; and P respectively. These
random signals excite the full range of the dynamic response
of the generators.

The pseudorandom signals in Figs. 4 and 5 show * 5%
deviations in the steady state values of / and P of generator
G1 at operating points given in Appendix B.1. Similar
training signals are applied simultancously to the other
generators (G2, G3, G4).
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o itl"
|

0.04

0.02

0

-0.0:

-0.04

-0.

-0.08;
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-0.1 I
0

Tune in seconds
Fig.4 Training signal AU applied to the generator Gl
004

0.03 [ EHen

0.02

0.01

Deviation in the input power of the generaior  pu

Time m seconds

Fig. § Training signal AP applied to generator G1

A learning gain of 0.3 is used for the backpropagation
algorithm. The ANNI is only required to generalize one time
step (10 ms) ahead, so no momentum term is used. The
training errors are insignificant after only a few seconds of
training.

Figs. 6 and 7 show the speed deviation and terminal voltage
deviation respectively of generator G1 and ANNI #1 during
the first few seconds of training, Figs. 8 and 9 present these
results during the fourth and fifth second of training. They
show that the ANNI #1 is able to track the outputs of
generator Gl within the first two seconds of training. The
outputs of the generators and the ANNIs are shown by solid
and dashed lines respectively in all diagrams.

1.5
! ,

Gen #1 1\ i‘w ll\lliﬂlﬂif
BESNY
e
g 9 v “{V[ H"i ”l,f% %‘%
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Fig. 6 Speed deviation of the generator Gl (4w and the ANNI #1 ( Aw )
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Fig. 7 Terminal voltage deviation of the gencrator G1 (4] ) and

the ANNI#1 (4V, )
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Fig. 9 Terminal voltage deviation of the generator G1 (4] ) and

the ANNI #1 (41 )

Figs. 10 and 11 show the speed deviation and terminal
voltage deviation. respectively. of generator G2 and ANNI #2
during the fourth and fifth second of training. Once again,
ANNI #2 is able to track the outputs of gencrator G2 within
the first two seconds of its training. Similar results have been
found for generators G3 and G4. All results show that the
errors between the ANNIs™ outputs and generators™ outputs
are insignificant after a few seconds of online training.

Figs. 8 to 11 prove that the ANNIs have learned the dynamics
of the generators, and the network to which they are
connected, with sufficient accuracy.
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Fig. 11 Terminal voltage deviation of the generator G2 (4V; ) and

the ANNI #2 (4V, )

After five seconds of training (Figs. 6 to 11 at operating
points given in Appendix B.l), the operating points are
changed (Appendix B.2) and the training continues.
However. the training signals are now reduced to only + 2%
deviations in the field voltage {/; and input power P, and the
results for generator G3 and ANNI #3 appear in Figs. 12 and
13, and those for generator G4 and ANNI #4 in Figs. 14 and
15. The results for generators G1 and G2 have been found to
be similar to those of generators G3 and G4. Morcover,
despite the changes in the operating points, the ANNIs are

able to track the output changes of the generators
immediately.
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i N S V. CONCLUSIONS

o
Y

F : i, | A multiple number of multi-layer feedforward neural
‘ ~——~~§r networks have been successfully applied to identify/model
multiple turbogenerators in a power system. Simulation
results indicate that the proposed scheme is potentially very
promising for identifying highly nonlinear MIMO
i turbogenerators in the input-output representation form.
o Furthermore, it is important to emphasize that no off~line
(N } ' training is necessary. Such neural network models may first
. ) | Lo be used in a multi-machine power system plant simulator and
P i eventually find a place in the control room, providing plant

b ; : . v operators and power system control engineers with enhanced
' ' understanding of the operation of the turbogenerators.
However, further laboratory testing is still needed to evaluate
critically the goodness and confidence levels of these models
under development for multimachine power systems.
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APPENDIX A

Parameters of the generators (G1. G2. G3 & G4)

Gl G2 G3 G4
Xapu) 1.80 1.80 1.80 1.80
Xs (pu) 0.30 0.30 0.30 0.30
X4 (pw) 0.25 0.25 0.25 0.25
Xq (p4) 1.70 1.70 1.70 1.70
X, (pu) 0.25 0.25 0.25 0.25
Xi (pu) 0.20 0.20 0.20 0.20
Ritator (PU) 0.0025 0.0025 0.0025 0.0025
H(s) 0.5 6.175 6.5 6.175
Capacity 300 200 300 200
(MVA)
L-L Volts 13800 13800 13800 13800
Freq. (Hz) 60 60 60 60

APPENDIX B

B.1 First set of operating points

Gl G2 G3 G4
Pe (pu) 0.6668 0.6511 0.6668 0.6511
Q (pu) 0.0726 0.0444 0.0726 0.0444
Vi (pu) 1.1893 1.1893 1.1893 1.1893

B.2 Second set of operating points

(il ;2 3 (14
Pe (pu) 1.6668 0.6511 (.3336 0.2502
Q (pw) 0.0002 -0.0310 -0.0125 -0.0449
Vi(pw 1.1884 1.1877 1.1691 1.1519
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