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Adaptive Critic Neural Network-Based Object
Grasping Control Using a Three-Finger Gripper

S. Jagannathan, Senior Member, IEEE, and Gustavo Galan

Abstract—Grasping of objects has been a challenging task for
robots. The complex grasping task can be defined as object con-
tact control and manipulation subtasks. In this paper, object con-
tact control subtask is defined as the ability to follow a trajectory
accurately by the fingers of a gripper. The object manipulation sub-
task is defined in terms of maintaining a predefined applied force
by the fingers on the object. A sophisticated controller is necessary
since the process of grasping an object without a priori knowledge
of the object’s size, texture, softness, gripper, and contact dynamics
is rather difficult. Moreover, the object has to be secured accurately
and considerably fast without damaging it.

Since the gripper, contact dynamics, and the object properties
are not typically known beforehand, an adaptive critic neural
network (NN)-based hybrid position/force control scheme is
introduced. The feedforward action generating NN in the adaptive
critic NN controller compensates the nonlinear gripper and
contact dynamics. The learning of the action generating NN is per-
formed on-line based on a critic NN output signal. The controller
ensures that a three-finger gripper tracks a desired trajectory
while applying desired forces on the object for manipulation. Novel
NN weight tuning updates are derived for the action generating
and critic NNs so that Lyapunov-based stability analysis can be
shown. Simulation results demonstrate that the proposed scheme
successfully allows fingers of a gripper to secure objects without
the knowledge of the underlying gripper and contact dynamics of
the object compared to conventional schemes.

Index Terms—Adaptive controller, adaptive critic, neural net-
works (NNs), object grasping, three-finger gripper.

I. INTRODUCTION

ANY planetary exploration to Mars is considered a long-
duration mission. Therefore, before any human mission,

NASA plans to construct a greenhouse on Mars equipped with
autonomous robots to perform complex tasks such as harvesting
wheat, rice, fruits, and vegetables, besides cleaning, cooking,
and so on. Grippers capable of manipulating objects such as
plant trays, fruits, and vegetables are required in the greenhouse.
In order to manipulate objects, contact with the object has to be
made and suitable grasping forces have to be applied. For suc-
cessful manipulation, suitable grasping forces have to be deter-
mined without the knowledge of the type of object to be secured
by the gripper.

Human fingers manipulate objects by using adequate forces
even when the weight and the friction coefficient of the object
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contact are unknown. Further, human fingers use tactile sensing
to feel the texture of the object so that the required forces can
be applied to manipulate the object without any slippage. Based
on grasping operations typically performed by humans, several
methods [1], [3], [4], [7]–[10] have been proposed for robot
grippers. These methods involve making contact with the ob-
ject at the right location and orientation by traveling along a
predefined path by assuming that the properties of the object
are known accurately.

Designing grippers to perform the grasping of objects of dif-
ferent shape, size, and texture is a complex and expensive task
since the manipulating forces cannot be accurately determined.
To minimize the complexity and cost, most of the designs rely
on feeding the robot with a variety of possible object patterns.
The position of the object relative to the gripper, its weight, ori-
entation, and shape are specified beforehand. Using this infor-
mation, the gripper is guided through a predefined trajectory to
reach and to grasp the object with the proper force, while the
integrity of the object is guaranteed throughout the manipula-
tion. If the applied force is not sufficient, then the object can slip
whereas too much applied force can destroy the object. More-
over, for successful manipulation, the fingers of a gripper have
to make contact with the object at the right location and orien-
tation to avoid slippage.

Securing an object can be summarized in three steps:
1) defining a trajectory for the arm to position the gripper
around the object, 2) defining another trajectory for the fingers
to make contact with the object at the right location and
orientation, and 3) applying suitable forces on the object for
manipulation. Even though the objects to be manipulated in a
greenhouse can be described, the object properties cannot be
determined. Further, even when the object weight and shape are
known, the contact dynamics can be still unknown. Moreover,
it is not practically viable to change grippers based on weight,
size, shape, and texture of the object. Therefore, a sophisticated
controller design without using the size, weight, texture, and
contact dynamics is necessary for manipulating objects. Thus,
designing a learning controller is of paramount importance
for the greenhouse operation since the controller scheme has
to ensure that the fingers make good contact and they apply
the required forces on the object to avoid slippage without
the knowledge of the properties of the object such as texture,
weight, and contact dynamics.

One of the problems endured in grasping an object is the
ability of the gripper to reach an object in different positions
and orientations [4], [10]. For every time the object’s location
and orientation varies, a new trajectory for the gripper must

1045-9227/04$20.00 © 2004 IEEE
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be computed. This problem is similar to a conventional trajec-
tory-tracking problem in robot manipulators using vision feed-
back and, therefore, it is omitted in this paper. However, once the
gripper is positioned around the object, a trajectory is computed
for the fingers to make contact with the object and to apply the
required forces for manipulation. Given the predefined trajec-
tory, the robot’s gripper controller has to respond accurately to
every new path it is planned for [4], [10].

Since the selection of grasping forces based on the properties
of an object is a challenging task, a neuro-fuzzy scheme may be
designed to address this problem by using certain a priori in-
formation but this is not attempted. Instead, by performing de-
tailed experiments in the laboratory, suitable forces are identi-
fied based upon the type of object. The grasping controller then
has to ensure that the predefined forces are applied on the object
for manipulation without causing any damage to the object.

Several techniques have been developed to identify and
grasp objects using robot grippers. Novel concepts such as
visual recognition [1], object avoidance [10], moving targets
[10], switching control [7], grasp quality measures [8], force
feedback [9], and force control [3] were proposed. Such
techniques determine an adequate trajectory for the gripper to
reach and grasp an object. However, the controllers presented
in [1], [7]–[9] are either heuristic in nature or focus on object
recognition [1]. No viable controller scheme to grasp an object
in the presence of uncertainties is available in the literature.

For grasping tasks, the texture of the object can be described
to some extent based on the contact friction dynamics. Sub-
sequently, the required forces can be calculated based on the
weight and the type of object. It is assumed that a vision feed-
back is available to identify the type of object and its approxi-
mate weight so that a desired force can be selected for grasping.
It is also assumed that the gripper will be at correct position
and orientation around the object before making contact with
the object. Even if the above information is supplied to a con-
troller, uncertainties still exist in terms of contact dynamics and
the object weight.

Therefore, this paper presents the design of a hybrid posi-
tion/force controller with online learning feature to enable the
fingers of a robot gripper track the planned path not only to make
contact with the object, but also to apply the predefined forces.
Further, as it is very difficult to determine the texture and hence
the contact dynamics beforehand in most grasping applications,
this learning controller must guarantee performance in the pres-
ence of uncertainties.

Neural networks (NNs) have been shown to be a very effec-
tive tool for the control of nonlinear dynamical systems when
the system/environment dynamics are not completely known. In
reinforcement learning or adaptive critic-based NN [2] method,
the learning is performed based on a performance measure from
a critic NN instead of gradient information supplied to the NN
using the backpropagation algorithm. In other words, the output
provided by the critic NN conveys much less information than
the desired output required in supervised learning. Nevertheless,
their ability to generate correct control actions makes adaptive
critics important candidates where a lack of sufficient struc-
ture in the task definition makes it difficult to define a priori
the desired outputs for each input, as required by supervised

learning control [2]. In our scenario, where the desired outputs
are the gripper and the contact dynamics, which are considered
unknown, a supervised learning scheme cannot be utilized for
training an NN.

In this paper, a novel adaptive critic NN-based gripper con-
troller is developed for grasping objects. The action generating
NN in the adaptive critic approximates the dynamics of the
gripper and the contact so that the object can be approached
and manipulated with the required force without damaging it.
A critic output is used to tune the action generating NN weights
so that the action generating NN approximates the gripper/envi-
ronment dynamics accurately. The adaptive critic NN controller
utilizes a conventional proportional and derivative (PD) tracking
loop to enable the fingers to follow a desired trajectory and an
additional force control loop to ensure that the predefined forces
are applied on the object. Closed-loop performance is guaran-
teed through novel NN weight algorithms that are proposed in
the paper.

In Section II, a brief background on NNs and stability of
nonlinear system are presented. The dynamic modeling of a
three-finger gripper used in our work is given in Section III
along with a novel adaptive critic algorithm. Simulation results
are included to illustrate the validity of the approach in Sec-
tion IV. Section V presents the conclusions of this work.

II. NN BACKGROUND

A general function can be approximated using
an NN with at least two layers of appropriated weights given by

(2.1)

where and are constant-weight matrices of appropriate
dimension (the first column of these matrices include the bias
vectors so that tuning the weight matrices results in tuning the
biases as well), is the input vector, is the vector of
hidden-layer activation functions, and is the error in approxi-
mation. If the input to the hidden-layer weight matrix is se-
lected as the identity matrix and the vector of hidden-layer acti-
vation functions is selected as a basis function, then a one-layer
NN will result. Define the net output for a one-layer NN as

(2.2)

For suitable approximation, must form a basis to
the function that is being approximated. For instance, it is
well known in the NN literature that radial basis functions
form a basis [6] to a large class of functions. From the NN
approximation theory, it is known that (2.2) can approximate
any continuous function over a compact set and a set of target
weights exist. The control objective is to tune the actual weight
estimates such that they approach their targets. In this paper,
we will show how to select basis functions using the physics
of the gripper (dynamic variables) instead of selecting them in
an arbitrary manner. Further, the tedium of solving analytically
the regression matrix [6] needed for each gripper as required in
the conventional adaptive control is avoided. Novel NN weight
updates are also introduced.
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All neurocontroller designs have relied upon the function ap-
proximation property (2.1). It would be desirable to use more
advanced learning and intelligent features of NNs in controls de-
sign as suggested in [11]. A particular intriguing NN topology
is adaptive critic. Adaptive critic designs [11] utilize reinforce-
ment learning for NN weight tuning. These designs address the
general problem of how to optimize a measure of utility or goal
satisfaction over multiple time periods into the future, in an un-
known noisy, and nonlinear environment.

In the adaptive critic NN architecture, the critic NN evaluates
the system performance and tunes the action-generating NN,
which in turn provides the control input signal to the system
being controlled. Papers dealing with control using adaptive
critic NN architecture are too numerous to mention. For de-
tails see [11]–[14]. Very few papers [13] present the closed-loop
stability analysis with performance guarantee. This paper over-
comes these limitations.

A. Stability of Systems

To formulate the controller, the following stability notion is
needed. Consider the nonlinear system given by

(2.3)

where is the time, is a state vector, is the input vector,
and is the output vector [6]. The solution to (2.3) is uni-
formly ultimately bounded (UUB) if for any , a compact subset
of , and all there exists an and a number

such that for all .

III. GRIPPER MODELING AND CONTROL DESIGN

The dynamics of a single finger of a three-finger gripper in
the -direction, as shown in Fig. 1, are expressed as [3]

(3.1)

where is the position in the direction the velocity
and acceleration in the -direction, respectively, is the mass
of a finger for all the moving parts, represents the force re-
quired to grasp the objects, is a bounded unknown distur-
bance whose upper bound is given by , is the
control input, and the Coulomb frictional force of the actu-
ator gear system. The friction can be accurately represented by
the LuGre model [5] as given next. The finger dynamics in the

-direction in (3.1) are expressed using LuGre model as shown
in (3.2) at the bottom of the page, where

(3.3)

and is incorporated as an additional state variable. According
to [5], the additional state variable is not related to any physical
variable. However, the LuGre model is an experimentally vali-
dated model for the friction and the contact dynamics.

The LuGre model in (3.2) captures the static and dynamic
characteristics of friction. The static parameters include the vis-
cous , Coulomb , and static . The
dynamic parameters are represented by and
[5] with the Stribeck velocity factor denoted as . The
dynamics can be rewritten in a compact form as

(3.4)

with as a nonlinear function (in terms of the states
and ) of the gripper dynamics and it is expressed as

(3.5)

The dynamics shown in (3.4) can be expanded to a gripper
with three fingers, each finger moving on the – plane. The
dynamics of the three-finger gripper can now be written as

(3.6)

where is the positional vector composed of
, which represent the and co-

ordinates of the fingers 1, 2, and 3, respectively,
is the diagonal mass matrix, is a vector of
nonlinear functions

with , are the nonlinear fun-
ctions of the dynamics in terms of the and coordinates of the
finger, and its corresponding additional state . Thus, the vector

is composed of the dynamics of all the fingers moving
in the – plane. The mass matrix is expressed as

(3.7a)

(3.2)



398 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 15, NO. 2, MARCH 2004

Fig. 1. Schematic of a three-finger robot gripper.

with known as the moment of inertia, the mass of the
moving parts for each finger (defined to be equal), and radius
of the outer pinion, is the control input vector,

the vector of bounded disturbances whose upper bound is
, and is the vector of grasping forces. The

vector of nonlinear functions can be expressed as

(3.7b)
where

(3.7c)

with the variable taking values from ,
and are the static and dy-
namic parameters, is the additional state, is the Stribeck
factor, respectively, for each finger in the and directions.

A. Gripper Controller Design

Our objective is to design a control input that guaran-
tees a desired gripper motion and applied force. Given a desired
trajectory for the fingers, define the filtered tracking
error as

(3.8)

where is a design matrix selected through pole place-
ment with , representing the trajectory error in
position , and velocity , respectively.
This selection must ensure that when the filtered tracking error
converges to zero, the trajectory error eventually converges
to zero. Common usage is to select diagonal with positive
entries. Then (3.8) is a stable system so that is bounded as
long as the controller guarantees that the filtered tracking error

is bounded.
In the presence of bounded disturbances, the gripper dy-

namics are expressed from (3.6) as

(3.9)

Differentiating (3.8) and multiplying by the inertia matrix ,
one obtains

(3.10)

Rewriting (3.10) using (3.9) as

(3.11)

where

(3.12)

Defining the unknown nonlinear dynamics of the gripper as

(3.13)

yields the filtered tracking error system

(3.14)

where represents the actual force.
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Given a smooth trajectory and when the mass matrix is
accurately known, the control input can be selected as

(3.15)

with known accurately, where
, and is the gain matrix. The outer loop

is a proportional force controller where is
the gain matrix for the force controller component, rep-
resents the desired force vector, and is the force error

. Applying (3.15) in (3.14) in the absence of
disturbances, the filtered tracking error system can be shown
to be asymptotically stable. However, the viscous and the
Coulomb frictional forces are not known and nonmeasurable
and hence the function in (3.14) is unknown. Conse-
quently, a novel learning controller scheme is necessary. In this
paper, the gripper dynamics and the object contact environment
are considered unknown and a one-layer NN-based critic is
employed to approximate the contact dynamics that is given
by . Further, by appropriately choosing the NN weight
updates, the stability of the closed-loop system is proven in the
subsequent sections.

Let the control input be selected as

(3.16)

with being an auxiliary input, then the closed-loop
system dynamics become

(3.17)

or

(3.18)

where is the approximated value of , and
is the approximation error . The

designer beforehand specifies the approximation error bound
using position and force tolerance values. From (3.18), it is clear
that the closed-loop filtered tracking error system is driven by
the functional approximation error. If the functional approxima-
tion error and disturbances are nonzero, then the stability of the
closed-loop filtered tracking error system needs to be ensured.

B. Adaptive Critic NN Controller Design

Here, a one-layer action generating NN is used to approxi-
mate the unknown dynamics. The unknown dynamics are ex-
pressed as linear in the tunable NN weights as given in (3.19).
Along with a novel tunable algorithm, a secondary adaptive
function (known as a critic signal) is developed by the Lyapunov
stability analysis [2]. Assume, therefore, that there exists a con-
stant ideal set of weights for a one-layer NN, where

represents the input so that the nonlinear dynamics can
be written as [6]

(3.19)

where provides a suitable basis and the error in ap-
proximation such that with the bound
known (e.g., maximum position and force tolerances). For suit-
able approximation properties, it is necessary to select a large

enough number of hidden-layer neurons. However, through in-
spection, an NN input vector can be chosen based on the func-
tion it is trying to build [6]. One such basis vector is given
by . Next, the adaptive critic controller struc-
ture is defined.

C. Adaptive Critic Controller Structure

A choice of the critic output signal is given by

(3.20)

where is a diagonal positive-definite matrix,
is the vector of sigmoid functions, and is an auxil-

iary critic signal which is defined later. Defining the action-gen-
erating NN functional estimate by

(3.21)

where is a matrix of actual weights. The next step
is to determine the weight updates so the performance of the
closed-loop filtered tracking error dynamics of the fingers is
guaranteed.

Let be a matrix of unknown target weights required for the
approximation to hold in (2.2) and assume they are bounded by
known values so that

(3.22)

then the error in weights during estimation is de-
fined as

(3.23)

Let the control input be selected as

(3.24)

Substituting the control input (3.24) in (3.14) yields the filtered
tracking error system as

(3.25)

The structure of the proposed adaptive critic NN controller is
shown in Fig. 2. An inner action-generating NN loop eliminates
the nonlinear dynamics of the fingers. The outer PD tracking
loop designed via Lyapunov analysis guarantees the object con-
tact control stability and accuracy in following a desired planned
trajectory. The outer proportional force controller loop ensures
that the fingers exert the desired forces. Finally, the proposed
adaptive NN critic design is modular so that existing industrial
controllers can be easily modified to obtain the proposed one
by simply adding the inner NN and robust control loops. This
modular design avoids the need for the redesign of the industrial
control systems.

The next step is to determine an appropriate weight tuning
method so that the closed-loop stability of the grasping con-
troller can be demonstrated.

Theorem 3.1: Assume that the desired trajectory for the fin-
gers, the unknown disturbances, and the approximation errors
are bounded, respectively, by the constants . Select
the action-generating NN weight tuning update as

(3.26)
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Fig. 2. Adaptive critic NN controller structure.

where is a constant learning rate matrix and with
the minimum singular value of the gain matrix , sat-

isfying

(3.27)

Define the robust input (auxiliary input) as

(3.28)

with the auxiliary critic signal selected as

(3.29)

where is the diagonal matrix derivative of
, is a constant positive-definite diagonal

matrix, and a sigmoid term where with ,
is a constant design matrix upper bounded as

, and . Then the tracking error
and the weight estimation errors are UUB. Further, the force
errors are also UUB.

Proof: In the presence of disturbances and approximation
errors, and not taking into consideration initially the force con-
trol loop, the closed-loop system is expressed as

(3.30)

a) Position error and NN weights estimation error bounds:
Select the Lyapunov function candidate as

(3.31)

where and are given by

Recall the critic signal

(3.32)

whose time derivative is defined as

(3.33)

We evaluate the first derivative of along the system trajecto-
ries to get

(3.34)

Since the mass matrix is a constant matrix of mass ele-
ments of the fingers, the fourth term in (3.34) becomes zero.
Substituting (3.30) in (3.34), we have

(3.35)

Since the mass matrix is a diagonal positive-definite matrix, the
tracking error can be expressed as

(3.36)

Substituting (3.36) into (3.35)

(3.37)

Rewrite (3.37) as

(3.38)
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Since and , then . Sub-
stituting the weight update for the action-generating NN from
(3.26), the critic signal (3.29), and robust control term (3.28)
into (3.38), the first derivative of the Lyapunov function can be
expressed as

(3.39)

Rewriting (3.39) as

(3.40)

which is negative as long as the term in the braces is negative.
Rearranging (3.40) results in

(3.41)

In other words

(3.42)

yields the first derivative negative as long as

(3.43)

or

(3.44)

From (3.43) and (3.44), is negative outside a compact set. Ac-
cording to a standard Lyapunov theorem [6], it can be concluded
that the tracking error and the NN weights estimates are
UUB.

b) Force error bounds:
To show the bound on the force tracking error , we use

an approach that can be compared to Barbalat’s extension [6].
Thus, note first that in part of the proof we have shown that all
quantities on the right-hand side of (3.36) are bounded. There-
fore, from the invertibility of it follows that is bounded.
Now, substitute the control (3.24) into the error dynamics (3.14)
to obtain

(3.45)

or

(3.46)

This may be written as

(3.47)

where all quantities are the right-hand side are bounded. There-
fore, we get

(3.48)

This expression shows that the force tracking error is
bounded.

Remark 1: Equations (3.43) and (3.48) present the filtered
tracking error and weight estimation error bounds, respectively.
The tracking error bound can be made as small as desired by
increasing the smallest eigenvalue .

Remark 2: The force tracking error bound (3.48) can be
made as small as desired by increasing the force tracking error
gain . Increasing the force tracking error gain may cause
overshoots and undershoots, which, in turn, may damage the
object that is being grasped.

The contribution of both the NN and the robust control terms
can be evaluated by removing the adaptive critic NN inner loop
and the robust control term from the controller design. Then
a hybrid PD position with a proportional force controller will
result as presented next.

If the NN and the robust inputs are ignored, the control input
becomes

(3.49)

Substituting the control input (3.49) in (3.14) yields the filtered
tracking error system as

(3.50)

where the nonlinear gripper and the contact dynamics are as-
sumed to be bounded above by a constant given by

. Closely observing the torque input from (3.49), it is clear
that the controller is a hybrid PD position and a proportional
force controller. Of course, a proportional, integral, and deriva-
tive (PID) controller can be designed for both position and force
components and similar analysis can be carried out. However,
in any case, an NN inner loop is still required for achieving the
best performance during a grasping operation. The performance
of the hybrid PD/proportional force controller is presented next
when the NN inner loop is removed.

Theorem 3.2: Assume that the desired trajectory of the fin-
gers and the unknown disturbances and bounded, respectively,
by the constants and . Select the control input for the
gripper from (3.49), and then the position and force tracking
errors are UUB.

Proof: In the presence of disturbances and dynamics, and
not taking into consideration initially the force control loop, the
closed-loop system (3.50) is expressed as

(3.51)

a) Position error bound:
Select the Lyapunov function candidate as

(3.52)

whose first difference is given by

(3.53)

Since the mass matrix is a matrix of constant elements,
the second term in (3.53) becomes zero. Substituting (3.51) in
(3.53) yields

(3.54)
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Equation (3.54) can be expressed as

(3.55)

The Lyapunov derivative is negative if and only if

(3.56)

According to a Lyapunov theorem [6], it can be concluded that
the tracking error is UUB.

b) Force error bound:
To show an upper bound on the force tracking error , we

use an approach similar to that in Theorem 3.1. Thus, note first
that in part of the proof we have shown that all quantities on the
right-hand side of (3.51) are bounded given the unknown gripper
and contact dynamics are bounded above. Therefore, from the
invertibility of it follows that is bounded. Rewriting (3.50)
as

(3.57)
where all quantities are the right-hand side are bounded. There-
fore, we get

(3.58)

This expression shows that the force tracking error is
bounded and can be made as small as desired by increasing the
force tracking error gain .

Remark 1: This theorem clearly demonstrates that when the
NN loop is ignored, a hybrid PD position and proportional force
controller results. A similar analysis can be done even if a hybrid
PID position and force controller are used. The expressions for
the tracking and force error bounds will be similar to (3.56) and
(3.58), respectively, due to the presence of uncertainties in the
dynamics and external disturbances.

Remark 2: Equations (3.56) and (3.58) present the tracking
error bound on the position and force, respectively. These
tracking and force error bounds depend upon the upper bound
on the unknown dynamics of the gripper, contact, and the
controller gains. Though the error bounds can be reduced
arbitrarily by selecting the gains, the resulting error bounds will
be larger than in the case when an adaptive critic NN controller
is not utilized. The NNs learn the uncertain dynamics so that
the tracking error bounds depend upon the approximation
error , which is considerably smaller than the bound on the
uncertain dynamics .

Remark 3: The PD or PID controller gain tuning can be
avoided with the addition of an NN inner loop.

IV. SIMULATION RESULTS

In this section, the adaptive critic NN controller is simulated
and the control objective is to guide the fingers of a robot gripper
to follow a trajectory. The dynamics of the gripper are expressed
as (3.36), with 6.1 10 kg m the moment of inertia,

0.10 kg is the mass component for the and direction of
the moving parts of each finger, and 0.294 10 N/m is the
radius of the outer pinion. The LuGre model for the Coulomb
friction, which is obtained from [5], is used in the simulation.
The additional state variables defined in the LuGre model are
initialized to zero.

The static and dynamics parameters of the LuGre model are
selected as , , , ,

, for the three fingers in
both and directions. The force measuring method described
in [3] is used. Select as the contact point of a finger on
the object and is the actual coordinate of a finger. The
measured forces are calculated using the sensor stiffness coef-
ficient 3 10 N/m along with the deformation of the
object in the and directions for a finger as and

, respectively. Then the sensed forces for each finger
are given by if and if

, respectively, in the and directions. When
and , the finger has made contact with the object. When

and , the finger has not yet made any con-
tact. Unless the contact with the object is made, necessary forces
cannot be applied on the object. The sensed forces now given for
the three fingers and separately expressed in the and com-
ponents, are provided in the vector form as

For simulation purposes, a straight-line trajectory was plan-
ned for the fingers of the gripper along the – plane. The dura-
tion of travel on the path is expected to be 10 s. Any trajectory for
the fingers can be planned as long as the fingers can travel along
the path. The objective for the fingers is to enclose an object by
traveling at a constant speed from their initial location by fol-
lowing the predefined path until the fingers have made contact
with the object. Once the contact is established, the fingers have
to exert the desired forces on the object for manipulation while
ensuring that the trajectory tracking errors, any overshoots, and
undershoots in the finger trajectory are minimized to avoid any
potential damage to the object.

The adaptive critic NN-based controller allows the fingers not
only to track the path and to make contact with the object at the
right location but also it guides the fingers to apply the required
forces once a contact is made even when the properties of the ob-
ject and contact dynamics are not available. The adaptive critic
NN controller uses an estimated value of the object and contact
dynamics.

The system parameters given above were used to test the con-
troller. Since the proposed adaptive NN controller has a conven-
tional PD tracking loop, for critical damping, the positional and
derivative gains of the PD tracking controller are selected using

and Using this relationship, the
PD gain values were obtained as , , and

where is the identity matrix of appropriate dimen-
sion. The proportional gain coefficient for the force controller
is selected as
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Fig. 3. Tracking performance of the adaptive critic NN controller.

Fig. 4. Tracking error using the adaptive critic NN object contact controller.

Two cases were considered; 1) object contact and 2) grasping
control. For both Case 1 and 2, the design parameters were held
constant once they were selected. Note that the adaptive critic
NN controller includes an NN inner loop, a PD position tracking
controller outer loop, and an additional proportional force con-
troller outer loop.

Case 1: Object Contact Control: In this case, the force con-
troller loop is not required throughout the object contact control
simulation. The objective of the fingers for object contact con-
trol is to reach and to make contact with the object. The NN
controller loop directs the fingers toward the object for making
contact. Figs. 3 and 4 depict the performance of the adaptive
NN critic controller. Fig. 3 shows the actual and desired trajec-

tory response of the fingers along the – plane. Fig. 4 illus-
trates the corresponding trajectory tracking errors. It is clear that
the fingers track the desired trajectories accurately with a small
tracking error. Within a very short time of 1 s, the tracking er-
rors converge close to zero.

Further, all the fingers stop once contact is established with
the object so that no damage is induced. The performance of
the adaptive critic NN controller can be best described as fol-
lows. Controller uncertainty with regards to gripper and contact
dynamics will result in tracking errors. The critic NN generates
an output signal based on the magnitude of the tracking error.
The critic NN signal is used to tune the action-generating NN
weights online so that the action-generating NN approximates
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Fig. 5. Tracking response without the NN (PD object contact controller).

Fig. 6. Tracking errors using PD object contact controller.

the uncertain contact and gripper dynamics accurately. As a
consequence, the tracking error is significantly reduced and
the fingers are able to follow the path and make contact with
the object.

To show the contribution of the NN, the controller is simu-
lated without the action generating and critic NNs. A conven-
tional PD position controller results. Figs. 5 and 6 present the
trajectory response and the tracking error, respectively. It is clear

that the fingers do not track the given trajectory. Further, the
fingers do not even make contact with the object, as observed
from the results. Thus, a standard PD controller without an NN
is not suitable for object manipulation. From the analytical re-
sult presented in Theorem 3.2, it is clear that the tracking error is
a function of the bound on the uncertain dynamics. Since there
is no online learning via approximation, bounded errors render
an inferior performance.
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Fig. 7. Force response using an adaptive critic NN grasping controller.

Fig. 8. Force response without the adaptive NN critic.

Case 2: Object Grasping Control: Here, the force-control
loop is included and desired force values are selected by using
the properties of the object to be secured. Also in this case, the
contribution of the adaptive critic NN is demonstrated by re-
moving the NN inner loop. Fig. 7 displays the performance of
the NN-based adaptive critic hybrid position/force controller for
the object that was used in Case 1. Similar to the case of ob-
ject contact control, the tracking errors were very small. This
figure presents the force response along with the desired forces
for each finger in the and directions. From this figure, it is
clear that the actual force tends to be equal to the desired force
even when the gripper and the contact dynamics are unknown

to the controller. The fingers apply the prescribed forces once
contact is established with the object. As a result, the proposed
hybrid position/force controller performed impressively by suc-
cessfully establishing contact with the object and then manipu-
lating the object.

In order to study the contribution of the NN, the adaptive critic
NN inner loop is removed for this simulation. Then the con-
troller presented in Fig. 2 becomes a hybrid PD tracking con-
troller for position with a proportional force control loop. Figs. 8
and 9 illustrate the response of the hybrid PD position/propor-
tional force controller for the grasping task. Here the fingers do
not make contact with the object. Consequently, the force re-
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Fig. 9. Force tracking errors without the adaptive NN critic.

sponse is zero, which makes the force tracking error magnitude
equal to the desired force. As a result, the object is not manipu-
lated, which is undesirable.

V. CONCLUSION

The task of grasping—object contact and manipulation—is
complex and requires a sophisticated controller to compensate
for the nonlinear gripper and contact dynamics. In this paper,
a novel adaptive critic-based NN controller is presented for
guiding the fingers so that they follow a predefined trajectory.
The gripper controller includes an action-generating NN for
compensating the dynamics, a critic signal for tuning the
action generating NN, an outer PD position tracking loop,
and an additional outer proportional force control loop. The
tuning for the action-generating NN is performed online and
it offers guaranteed tracking performance. The grasping task
is accomplished when the gripper makes contact with the
object and it secures the object via applying suitable forces.
The net result is a novel hybrid position/force controller that
guarantees the performance in terms of tracking a predefined
path and then applying the prescribed forces on the object.
The simulation results indicate that the proposed controller
performs impressively compared to a hybrid PD position and a
proportional force controller without the NN inner loop.
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