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Restrictions on the potential and cross section for collisions 
between rigid rotors 

Louis Biolsi 

Department of Chemistry. University of Missouri-Rolla. Rolla. Missouri 65401 
(Received 9 May 1974) 

A restricted distorted-wave treatment of the total cross section when two rigid diatomic molecules 
with orbital and nuclear spin angular momenta collide is examined. There are certain restrictions on 
the intermolecular potential and on the possible combinations of the various quantum numbers. These 
restictions are examined for the lowest order nonspherical elastic and the lowest order inelastic 
contributions to the total cross section. The effects of degeneracy averaging and of collisions between 
indistinguishable molecules are also briefly examined. 

The purpose of this paper is to examine the restric
tions on the intermolecular potential and the possible 
quantum states for the lowest order nonspherical elastic 
and the lowest order inelastic contributions to the scat
tering cross section for a system of colliding rigid di
atomic molecules with rotational structure. A restricted 
distorted-wave expansion is used and the intermolecular 
potential is expanded in a complete set of functions. The 
formal results presented in this paper restrict the sum
mations over this complete set. This work is based on 
the scattering formalism developed by Curtiss and his 
co-workers. 1 

I. APPROXIMATIONS TO THE POTENTIAL 

Consider a collision between rigid diatomic molecules 
a and b, separated by intermolecular distance r. The 
rotation R makes the intermolecular axis parallel to the 
space fixed z axis and, in a body fixed coordinate sys
tem, S. and s" are the rotations that bring the inter
nuclear axes of molecules a and b, respectively, paral
lel to the intermolecular axis after the rotation R has 
been performed. In addition, there is a body fixed 
nuclear spin coordinate system, denoted by Q. and Q&. 

A complete set of functions in the space of r, R, S., 
Sb, Q., and Qb is provided by the orbital angular momen
tum eigenfunctions (spherical harmoniCS), denoted by Y, 
and the nuclear spin eigenfunctions, denoted by 'Y. The 
intermolecular potential is expanded in this complete 
set2; 

V(rS.5bQ.Qb) = L 'O(L" LbH.Hb V1V2V31 r) 
A 

x Y(L., - VI - V2 - v3Is.)Y(Lbv1Isb) 

where the index A denotes the set of indices La, Lb , H., 
Hb • Vl> v2 , and V3, and 'O(A I r) is the expansion coeffi
cient of the potential. 

In most applications the potential will be spin inde
pendent; i. e. , 

H. = Hb = V2 = V3 = 0 

and the expansion of the potential in a complete set 
becomes 

V( rS.Sb) = L '0 (L.Lb VII r) Y(L., - VI Is.) 
8 

X Y(Lbv1ISb) , 

where the index (3 denotes the set of indices L •• Lb. and 
VI. Gioumousis and Curtiss3 found certain restrictions 
on the expansion coefficient for a potential of the form 
given in Eq. (2). For instance 

(3) 

when molecule a is a homonuclear diatomic molecule. 
An exactly similar restriction holds if molecule b is 
homo nuclear . Also 

(4) 

if molecules a and b are identical. 

It will be useful to take VI to be zero in some in
stances. This Simplification requires the assumption 
that there is no component of angular momentum along 
the z axis. In this case Eq. (2) becomes 

V(rS.sb ) = (1/417) L [(2L. + 1)(2Lb + 1) ]1/2 
L.Lb 

X PL (S.)PL (Sb) , 
• b 

where the P's are Legendre polynomials. This is simi
lar to the potential considered by Takayanagi. 4 

A restricted distorted-wave expansion is obtained by 
considering a perturbation potential in which the unper
turbed potential is taken to be the spherical approxima
tion. Thus the expansion coefficient of the potential can 
be written ass 

(6) 

where '0 (0) (r) is the spherical term in the expansion and 
6 is the Kronecker delta; i. e .• 

6 (A; 0) = 6 (L.; 0)6 (L b ; 0)6 (H.; O)ii (Hb ; 0) 

X6(VI;0)6(v2;0)6(V3;0) • 

Also, if the interaction is between two electrostatic 
multipoles, the expanSion coefficient has the form6 

'0(1) (A I r) = a(A)¢ (r) • 

Thus the spin independent potential in Eq. (2) can be 
written as 

(7) 

2004 The Journal of Chemical Physics, Vol. 61, No.5, 1 September 1974 Copyright © 1974 American Institute of Physics 



Louis Biolsi: Collisions between rigid rotors 2005 

I 

+¢(r)L a({3)Y(La, -1I1 !Sa)Y(4I1Js,,), (8) 
/3 

where the prime on the summation sign indicates that 
L(l' Lb , and 111 cannot all be zero. 

The potential in Eq. (5) is of interest since it can be 
compared, in a qualitative way, to the potentials used 
to represent atom-rotor collisions. This comparison 
will suggest which of the terms in the summations over 
La and 4, and thus vl> will contribute most significantly 
to the potential. A potential that is often used to de
scribe the interaction between an atom and a rigid rotor 
is7- 9 

(9) 

Upon orientation averaging, this gives the Lennard
Jones (12,6) potential. The form of the repulsive part 
of the potential is somewhat arbitrary. However, the 
form of the attractive part of the potential is chosen to 
represent the long range forces between the atom and 
the rotor. 10.11 

Another form used to represent interactions between 
atoms and rotors is12 

V(r, e) '" L 'U(1! r)P.e(cos9) • (10) 
.e 

If L(l or 4 is taken to be zero, Eq. (5) has this form. 
The good results obtained from Eq. (9)7 and Eq. (10),13 
considering just the first few values of 9.., suggest that 
the first few terms in the summations over La: and Lb in 
Eq. (8) will contribute most significantly to the aniso
tropy in the potential during rotor- rotor collisions. 

II. THE ELASTIC CROSS SECTION 

One of the most fruitful methods of obtaining detailed 
information about intermolecular potentials is via the 
use of scattering theory combined with molecular beam 
scattering data. Both the differential and the total cross 
sections contain useful information about the interaction 
process. Since recent work7-

9 indicates that informa
tion about anisotropy in the potential can be obtained 
from the total cross section and, since expressions for 
the total cross section are less complicated than the ex
pressions for the corresponding differential cross sec
tion, only the total cross section will be considered in 
this paper. 

Expressions for the three lowest order contributions 
in a restricted distorted-wave expansion of the nonde
gene racy averaged total cross section when two rigid 
diatomic molecules with orbital and nuclear spin angular 
momenta collide are available. 14-16 The contributions 
are labeled Q (0), Q (1), and Q (2), where Q (01 is the usual 
result for the scattering of spherical molecules; i. e. , 
it accounts for the contribution of 'U IO) (r) to the scat
tering. 

The expression for Q(l) contains the lowest order 
elastic contribution to the cross section from 'U(1l (A I r). 
The expression for Q(2) can be written as 

Q(2J = Q(21) + Q(22J , 

where Q(2J.) accounts for elastic contributions to the 
cross section and Q(22) accounts for the lowest order in
elastic contribution of 'U(1) (A I r) to the scattering. Since 
it is reasonable to expect a close relation between in
elastic scattering and anisotropy in the potential, the ex
pression for Q(2Zl is especially interesting. Also, since 
Q(zli represents a second order nonspherical elastic ef
fect, it will be ignored in this paper. 

Consider Q(1). Equation (35) in Ref. 14 is 

Q <. ~'o;; p)(2. /k) f,; r [(2) + 1)(2L, + I) l' ,,(-!).{;. ~ ~) ~;. ~ ~) 
x {(- i)A+l[exp(- i21]:\) - 1 h'(g; L 1L 10A;g)f(An! kk) + C. C.} , (11) 

where 

b1 = J" - Ja+;\.+ Ll - ja+ib 

and TI,. is the phase shift. The meaning of the various symbols and indices is given in Ref. 14. Also 

f(A;\.~ I kk) = - (- i)A(21.J./1i2)J XA (k I r)'U (1) (A I r)Xx(k I r}r 2dr , 

where the Xl. (kl r) are the wavefunctions that satisfy Eq. (13) in Ref. 14 and 
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where 

b2 = 2(Ja + Ja) +">..+ L+ L2 - Ll + la +lb -la -lb -"fa -T" . 
The properties of the three-j coefficients lead to the result 

where 

b3 =L1 + la+ 1b -la -lb -Ya -To . 
There are constraints on the summations in Eq. (11). Since 

(j1 j2 j3\ = 0 unless 1 j1 - j21 :::)3 ::5;j1 + j2 \m1 m2 m3) 
the summation over Ll is constrained by the triangular relations A(J..J",L1) and A(Ji,Ji,L1). Also, since 

(; ~ ~) 0 0 unle" j,+ }, + j, Is even 

the summations over L" and Lb are constrained by the values of £(J. and Ia and of 4 and l b , respectively. 

For a spin independent potential, Eq. (14) becomes 

where 

b4 = L(J. + 111 + Ja + Ji, + 1'a + £" + 1(J. + 1~ - 1a - 1b • 

Since T( g; LaLaO{:3;g) depends on 111 only through (- I)Vl, allowing 111 to be zero simply changes b4• Only terms in 
which La = 4 contribute to Q (1) which can be written as 

where 

(13) 

(14) 

(15) 

(16) 

(17) 

Notice that anisotropy in the potential contributes to Qtl) not only through the "anisotropy parameter" Ct, contained in 
j, but also through the coupling coefficients. The summation over L .. is constrained by the triangular relations 
A (J.JaLa) and A (Ji,J"L",). 

J. Chern. Phys., Vol. 61, No.5, 1 September 1974 
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Equation (18) results from a spin independent potential and a spin dependent wavefunction. If all spin dependence 
is removed, the result 

(19) 

is obtained where 

bS =X+V1+ma+ mb' 

The restriction in relation (16) means that there is no contribution to Eq. (19) unless L. is even. This restriction 
does not apply if the wavefunction is spin dependent. 

Using Eqs. (7) and (12), the expression for fin Eq. (19) is 

f({3x>" I kk) = - (- i)A(2/J./1Z2)0!(L.L.V1) f XA (k I r)1>(r)XA (k I r)r2dr (20) 

with L. even. It is important to realize that O! is not necessarily an arbitrary parameter. For instance, the inter
action of two nonoverlapping charge distributions is given by17 

V(rS.Sb) = L ib7(_1)Lb+V1[(L._lx.I)!(Lb_I~I)!]1/2(L.+Lb)![(L.+ IV11)!(L.-lv11)!(L.+ Ix.I)!(4+ IV1J)!]-1/2 
La Lbvavb v1 

where 

b7 = Xa - Ix. 1- ~ + I Xb I 
and the D's are the irreducible representations of the rotation group. Also, the ?J's are defined in Ref. 17. The 
coordinate system used requires that Xa and X~ be zero. The relation between the spherical harmonics and the irre
ducible representationsll leads to the result 

'l)(1)({3lr) =41T(-1)L b(La+4)! ?J~ Q1J(2La+ 1)(2Lb+ 1)(L.+ I v11)! (La - Iv11) !(Lb + I v11)! (L b - I v11)! ]-1/2r -(La+Lb+1) , (21) 

where La, 4, and V1 are not all zero. Clearly, depending on the defihition of 1>(r), then 0!({3) is determined by 
Eq. (21). 

Equation (21) represents the long range forces. It only contributes to Q(1) in the spin independent case if L. = Lb 
and L. is even. Thus the lowest order contribution to Q(1) in this case has the dependence r-5• If the states are spin 
dependent but the potential is spin independent, the restriction L. = 4 requires the lowest order contribution to Q(ll to 
have the dependence r-3 which represents the interaction between two rigid spheres with embedded dipoles. 

III. THE INELASTIC CROSS SECTION 

The expression for the lowest order inelastic contribution to the cross section, Eq. (B1) in Ref. 16, is consider
ably more complicated than the expression for Q(l). Thus, to simplify the analysis, 'all spin dependence will be re
moved. The result is 

(
A A L)2 

Q(22l = /l. (l.1.L.)/l. (lb1~b)Il:(AXL)/l.(L.L&L){j (£.lb1.1b; J.JbJ."Jb);:'* (2£. + 1)(21".+ 1)(2£&+ 1)(21"& + 1) 
A~ 000 

where the triangular relations constrain the summations. 

Notice that if v1 is zero; i. e., the potential is of the form given in Eq. (5), other constraints on the summations 
occur. In this Case La + Lb + L must be even. If L. + Lb is even (i. e;, L. and L& are both odd or both even), then 
X+ X" must be even; i. e., 

X= X"±n , (23) 

where n is an even integer. This restricts the summation over X. If one of the molecules is homonuclear then, 

J. Chem. Phys., Vol. 61, No.5, 1 September 1974 
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using relation (3), both LII and Lb must be even. 

Now consider the consequences if L. + 4 is odd (i. e., L. even and 4 odd or vice versa). Then A+):" must be odd; 
i. e. 

- , 
A=A±n (24) 

where n' is an odd integer. In this case if molecule a is homonuclear, then Lb must be odd and vice versa. These 
arguments are unchanged if the potential is spin independent and the wavefunction is spin dependent. 

Assume that the most important long range contribution to Q(22) comes from dipole forces. In this case, using Eq. 
(21), L. + L" = 2. Thus if III is zero, expression (23) restricts the summations in Eq. (22). If both molecules are 
heteronuclear then the possible values of LII and l,b are L. = 2,Lb = 0 and vice versa and L. = 4 = 1. The last case 
corresponds to the interaction between two point dipoles. If molecule a is homonuclear then, using relation (3), L. 
is restricted to 0 and 2 with Lb restricted to 2 and 0, respectively. An exactly similar result is obtained if molecule 
b is homonuclear. 

Equation (22) only gives the lowest order inelastic contribution to the cross section. However, using the S-matrix 
formalism, an expression for the total inelastic cross section has been obtained. The result is given in Appendix B 
in Ref. 16. For a spin independent potential this result reduces to 

QI N = 6 (HII H~1l21l3 L1 L2 ; OOOOL. L 5 )(161TP.2k/1f 4"k)(2J. + 1)(2Jb + 1)L (2X + 1)(- 1)bS 

UL 

where 

bs = 2(.]. + Jb + m) 

and'W is given by Eq. (15) in Ref. 15. Since 'W contains the product of three-j coefficients 

(25) 

then the choice of L. and L b , i. e., L. + L" either even or odd, restricts the summation over A in the same way that 
it was restricted for Q(22) • 

In the Born approximation, it is assumed that the nonspherical terms make no contribution to the expression for 
X. This leads to considerable simplification of the expression for QIN. The result is given by Eq. (B2) in Ref. 
16; i. e. , 

where 

b,= 2(J.+Jb + m) • 

Using Eq. (13), the summations over £ .. + £ .. +L.; 1r,+£,,+4; and A+X+L must be even. Also, if III is restricted to 
zero, the summation L1 + L2 + L must be even. 

For a spin independent potential, Eq. (26) becomes 

. I (J. J.. L .. ) (Jb"J& Lb) Q~N = (16p.2k/1f 4k) L (2L 1 + 1)(-1)"9 L (2L .. + 1)(2Lb + 1)(_1)L .. +L b • ....... • • ........ • 
AlL 8 J.. - J .. J. - J.. J" - Jb Jb - Jb 

~ L.. L" L 0 12 
X . ..,.. ,.. - T(g;L .. 4L{3;iJfXA(k/r)'l)(!)(J3/r)Xl(k/r)r2dr 

J .. - J. J" - J" m - m 
(27) 

The choice of L. and Lb ; i. e., L .. + 4 either even or odd, restricts the summation over A in the same way that it was 
restricted for Q(22). 

J. Chem. Phys., Vol. 61, No.5, 1 September 1974 
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IV. THE DEGENERACY AVERAGED CROSS SECTION 

In most molecular beam experiments the z-component states are not selected. Then the cross section should be 
degeneracy averaged. In this case8

•
14 

Q~1).=o. (28) 

Thus, for the degeneracy averaged cross section, the lowest order non-spherical elastic contribution is from Q~1J., 
given by Eq. (42) in Ref. 14. For a spin independent potential this becomes 

Q~~) =o(g;g).:l(LaL bL)[21T/(2Ja+ 1)(2Jb + 1)k 1 L (2La+ 1)(2Lb + 1)(2L+ 1)(- 1)b1O 

where 

and 

f ({3ff n'X: ! kk'7?) 

= - (- i)A(2f.L/n2)f x>.(k !r)'lJ(l) ({3! r)GA,(k') 

x{'lJ(ll ({3' !r)XICk!r) }r2dr. 

BAt'L 

(30) 

Interestingly, there are no more restrictions on the 
summations over La, L b , and L for Q b~) than were ob
tained for Q(22). The removal of all spin dependence 
does not further restrict the summations over La, 4 
and L. 

An expression for Qb21) is given by Eq. (43) in Ref. 
14. However the restrictions on the summations are 
the same as those obtained without degeneracy aver
aging. 

V. COLLISIONS BETWEEN INDISTINGUISHABLE 
MOLECULES 

When indistinguishable molecules collide, the wave
function must be properly symmetrized. In this case 
the lowest order nonspherical elastic contribution to the 
degeneracy averaged total cross section is not zero but 
is given by Eq. (13) in Ref. 16. The restrictions on the 
summations over La, L b , and L are the same as those 
obtained for Q(1). Similarly the restrictions on the sum
mations over Ls , Lb , and L for the lowest order inelastic 
contribution to the total degeneracy averaged cross sec
tion when indistinguishable molecules COllide, given by 
Eqs. (16) and (17) in Ref. 16, are the same as those ob-

tained for Q(22) • 

The results given in this paper are still quite formal. 
However, in actual numerical calculations, attention is 
almost always restricted to a very limited set of transi
tions upon molecular collision, thus severely restricting 
the possible values of the various quantum numbers. In 
such calculations, the more general restrictions on the 
quantum numbers and the intermolecular potential pre
sented here should be useful. 

lSee L. W. Hunter and C. F. Curtiss, J. Chern. Phys. 58, 
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