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A Suite of Robust Controllers for the
Manipulation of Microscale Objects

Qinmin Yang, Student Member, IEEE, and S. Jagannathan, Senior Member, IEEE

Abstract—A suite of novel robust controllers is introduced for
the pickup operation of microscale objects in a microelectro-
mechanical system (MEMS). In MEMS, adhesive, surface tension,
friction, and van der Waals forces are dominant. Moreover, these
forces are typically unknown. The proposed robust controller
overcomes the unknown contact dynamics and ensures its perfor-
mance in the presence of actuator constraints by assuming that the
upper bounds on these forces are known. On the other hand, for
the robust adaptive critic-based neural network (NN) controller,
the unknown dynamic forces are estimated online. It consists of an
action NN for compensating the unknown system dynamics and a
critic NN for approximating a certain strategic utility function and
tuning the action NN weights. By using the Lyapunov approach,
the uniform ultimate boundedness of the closed-loop manipulation
error is shown for all the controllers for the pickup task. To
imitate a practical system, a few system states are considered to be
unavailable due to the presence of measurement noise. An output
feedback version of the adaptive NN controller is proposed by
exploiting the separation principle through a high-gain observer
design. The problem of measurement noise is also overcome by
constructing a reference system. Simulation results are presented
and compared to substantiate the theoretical conclusions.

Index Terms—Adaptive neural network (ANN), micromanipu-
lation, reinforcement learning, robust controller.

I. INTRODUCTION

M ICROELECTROMECHANICAL systems (MEMS) are
a relatively new technology involving the miniaturiza-

tion of systems areand components to create complex ma-
chines that are of micrometer size in nature. These are used
in a variety of applications involving sensing, actuation, and
communication. The MEMS has revolutionized a major part
of the sensor and actuator industry. Typical MEMS products
include inkjet printer heads and accelerometers for airbags [1].
Although these products require little or no assembly, automatic
assembly of hybrid MEMS devices is desirable. Much effort
has been put forth for the microassembly or micromanipulation
[1], [2], [4]–[6], [11]–[14]. Among them, in [1], the pickup and
release tasks with van der Waals force are analyzed, whereas in
[6], manipulation using a scanning electron microscope (SEM)
is introduced. Research effort in [4] proposed a manipulation

Manuscript received November 10, 2006; revised August 27, 2007 and
September 10, 2007. This work was supported in part by ECCS 0216191,
by ECS 0621924, and by the Intelligent Systems Center. This paper was
recommended by Associate Editor F. L. Lewis.

The authors are with the Department of Electrical and Computer
Engineering, University of Missouri-Rolla, Rolla, MO 65401 USA (e-mail:
qyy74@umr.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2007.909943

system in open air and fulfilled manipulations with a gold-
coated piezoresistive silicon cantilever.

Modeling of such microscale devices for actuation is a whole
lot different than in macroscale system. At microscale, surface
forces are predominant, whereas volumnic forces are negligible
[1]. The dominant forces acting on a MEMS system are mainly
van der Waals, capillary, and electrostatic forces, whereas the
forces due to gravity are negligible. Typically, these forces vary
much with environment and could not be precisely measured.
Furthermore, uncertainties, for instance, fabrication imperfec-
tions and complex system nonlinearities, make the actuation
and manipulation of such devices difficult.

At the same time, modeling and simulation are critical
and fundamental for designing proper handling techniques.
Work on the modeling adhesive forces and the utilization of
the models in micromanipulation have been carried out by
many researchers. Arai et al. [5] studied the effects of at-
tractive forces and handling strategies in micromanipulation.
Rollot et al. [28] studied various modes in micromanipulation
by combining analytical microforce models and Newton–Euler
dynamics, whereas Sitti and Hashimoto [29] built the model
for manipulation of nanoparticles, and Feddema et al. [30]
introduced a computational model of van der Waals forces and
electrostatic forces for interactions between a microsphere and
a microcube.

Designing controllers for the manipulation and handling of
microscale objects poses a much greater challenge in terms of
accommodating the nonlinearities in the system. Hence, these
forces have to be modeled to design a controller for the MEMS.
To confront some of the issues of nonlinearities and uncertain-
ties in such MEMS, a robust controller is designed. The robust
controller requires the upper bound on the uncertainties and
nonlinearities.

Moreover, in practical control problems, the amplitude of the
control signal is subject to prescribed actuator constraints due to
saturation. Ignoring these constraints may lead to unsatisfactory
performance or even instability of the closed-loop system. In
adaptive control systems, the saturation problem becomes par-
ticularly critical because of the parameter adaptation transients,
which may introduce large control signals [25]. However, the
research activity devoted to the problem of controlling a nonlin-
ear system in the presence of saturation is still limited [23], [24].
Thus, in this paper, actuator constraints have been incorporated
into the robust controller design, in contrast to other works [7],
where no explicit magnitude constraints are treated.

On the other hand, in the case of a robust adaptive
critic-based neural network (NN) controller, the reinforcement

1083-4419/$25.00 © 2007 IEEE



114 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 38, NO. 1, FEBRUARY 2008

learning feature [11] is utilized to approximate the uncertainties
online. The reinforcement-learning-based NN (RLNN) struc-
ture consists of two NNs: 1) an action NN for compensating
the uncertain nonlinear system dynamics and 2) a critic NN for
tuning the weights of the action NN. A novel utility function,
which is viewed as the system performance index over time,
was defined as the critic NN input. The critic signal approx-
imates the long-term performance measure and provides an
additional corrective action based on current and past long-
term system performance, in contrast with the standard adaptive
dynamic programming scheme [9], [16]–[18], where the critic
signal alone is used to tune the action NN weights, and in
standard adaptive NN (ANN) control literature, where a short-
term performance is normally utilized [7]. The critic NN out-
put along with the filtered tracking error is used to tune the
action NN.

Providing tracking error information to the action NN will
make the proposed controller similar to the other adaptive
controllers [7]; therefore, it is avoided. Moreover, a Lyapunov
approach is used to show the stability of the closed-loop system
in contrast with the existing schemes in adaptive dynamic-
programming-based critic NN control schemes [16]–[18]. The
proposed NN structure has an advantage over supervised learn-
ing NN-based controllers, where the desired system outputs
are not required. In our scenario, the desired outputs are the
probe location and the contact dynamics, which are typically
unknown. An offline learning phase is not required in this
approach, in contrast with adaptive dynamic-programming-
based critic control schemes [16]–[18].

Finally, in many practical problems, not all state variables
are measurable due to technical or economic reasons [33]. For
instance, in the micromanipulation system, a laser measuring
instrument [32] or a SEM [13] is employed to obtain the
position of the microobjects, whereas the velocities are not
measured. Nevertheless, the obtained information is usually
contaminated with measurement noise. Therefore, an output
feedback controller is designed by implementing a high-gain
observer, which is used to estimate the actual system states,
which also include the velocities. The bounded measurement
noise is integrated into a new reference system and over-
come. Theoretical and simulation results indicate that the out-
put feedback ANN controller is able to successfully perform
the task.

Therefore, in this paper, both robust and adaptive critic-based
NN controllers, and their output feedback version are proposed
for the pickup task in a micromanipulation system. These
two controllers are contrasted based on their performance.
The main contributions of this paper can be summarized as
follows.

1) A computation model for the pickup task is formulated,
considering the unknown microadhesive forces including
van der Waals, surface tension, and electrostatic forces.

2) A robust controller is designed to accommodate the un-
known interactive microforces for the task of picking up
the microparticles.

3) An adaptive critic-based NN scheme is introduced to
achieve a better response—a cost function is utilized to
evaluate the system performance. The NNs are updated in

an online fashion without offline training phase, and the
persistent excitation condition requirement is overcome.

4) To overcome the unmeasured states in the presence of
measurement noise, a high-gain observer is added with
the NN controller.

A brief background on NNs and the stability of the nonlinear
system are given in Section II. The interactive force analysis of
the pickup task and associated dynamic models are presented
in Sections III and IV, respectively. Next, the robust and ANN
controller designs are given in Section V. Finally, Section VI
shows the simulation results to substantiate our theoretical
conclusions.

II. BACKGROUND

A. NN Background

A general function f(x) = C(s) can be approximated us-
ing an NN with, at least, two layers of appropriated weights
given by

f(x) = WTσ(V Tx) + ζ (1)

where W and V are constant-weight matrices of the NN (the
first column of these matrices include the bias vectors, so that
tuning the weight matrices results in tuning the biases as well),
x is the input vector, σ(V Tx) is the vector of the hidden-layer
activation functions, and ζ is the error in approximation. If the
input to the hidden-layer weight matrix V is selected randomly
and kept constant, and the vector of the hidden-layer activation
functions is selected as a basis function, whereas the output
layer weights are only tuned, provided that a sufficiently large
number of nodes in the hidden layer are chosen, then a one-
layer NN will result [10]. For simplicity, define the net output
for a one-layer NN as

y = WTσ(x) + ζ. (2)

For suitable approximation, σ(x) must form a basis to the func-
tion that is being approximated. Since it is already known that
(2) can approximate any continuous function over a compact set
and a set of target weights exists, then the control objective is
to tune the weights such that they approach their target values.

NN controller designs have relied on the function approxima-
tion property (1) [15]. Thus, the performance of the controller
mainly depends on the learning algorithm, as suggested in [16].
Among various NN controller structures, adaptive critic designs
[16] utilize reinforcement learning for NN weight tuning. These
designs address the general problem of how to optimize a
measure of utility or goal function in an unknown, noisy, and
nonlinear system.

In a typical adaptive critic NN architecture, the critic NN
evaluates the system performance index and tunes the action
generating NN, which in turn provides the control input signal
to the plant to be controlled. Many papers that deal with control
using the adaptive critic NN architecture are mentioned here.
For details, see [9] and [16]–[18]. However, very few papers
[16] present the closed-loop stability analysis with performance
guarantee. This paper overcomes these limitations by using the
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Fig. 1. Object-handling task.

Lyapunov approach for control applications. Next, the follow-
ing definition is required.

B. Stability of Closed-Loop Systems

Consider a nonlinear system given by

ẋ = f(x, u)

y =h(x) (3)

where x is the state vector, u is the input vector, and y is
the output vector [6]. For a control input u, the closed-loop
system (3) is uniformly ultimately bounded (UUB), if for all
x(t0) = x0, there exist a ε > 0 and a constant T = T (x0, ε),
such that ‖x(t)‖ < ε for all t ≥ t0 + T .

III. INTERACTION FORCE MODEL

Manipulation and handling of microscale objects are re-
quired for the assembly and maintenance of micromachines and
their parts. In this paper, we consider the manipulation of mi-
crosized sphere-shaped objects or microparticles that are 50 µm
in diameter. When manipulating objects in the microdomain,
the pickup should be understood using microphysics [2], [3].
Modeling is necessary for picking up and placing microspheres
laying on a planar substrate. In the manipulation process, the
microsphere is to be picked up and placed at another location
for assembly. As a brief description, the probe, which is treated
as the end effector and manipulator, is lowered to make contact
with the microsphere. Once contact has been established, the
microobject has to be picked up by retracting the probe as a
result of adhesive forces [4]. Next, the probe will be moved with
the microobjects to a desired target position. After that, the ob-
ject will be placed on the substrate by creating a repulsive force.

However, the process of placing the microobject is also an
intricate process and different from that of the pickup. Gen-
erally, by selecting proper system parameters, the spheres can
be picked up by the probe due to the attractive force between
them [1]. On the other hand, the job of releasing the spheres
needs totally different techniques. Various placing methods
have been introduced in [1], [13], [14], and [31]. For instance,
in [31], electrostatic interaction is utilized. In this paper, we will
concentrate our work on the pickup task of microspheres.

For the purpose of designing a controller for the object-
handling task, we shall restrict ourselves with the intricacies
of the physics during the pickup process, as shown in Fig. 1.

Fig. 2. Rough plate and plane sphere.

The adhesion forces are dominant in the system. They are con-
sidered to play an important role in the manipulation process.
These are given by the following:

• van der Waals forces;
• surface tension (or capillary);
• electrostatic (or Coulomb) forces.

A. Van der Waals Force

The van der Waals force acts between atoms resulting from
the interaction between electrons in the outermost bands ro-
tating around the nucleus of the atoms. An overview of it
is given in [19]. Van der Waals forces are present in every
environmental condition. Depending on the object geometry
and material type, the van der Waals force can be calculated
based on the interaction energy between atoms or molecules.
For ideal geometries, the van der Waals forces are given by

FVdW
bp =

Aw
bpRb

6D2
bp

FVdW
bs =

Aw
bsRb

6D2
bs

FVdW
bb =

Aw
bbRb

6D2
bb

(4)

for ball–probe (bp), ball–substrate (bs), and ball–ball interac-
tions, respectively. Here, Rb is the sphere radius, Aw

ij is the
Hamaker constant of the “i−water−j” interface, and Dij is
the separation distance. Furthermore, van der Waals forces are
greatly influenced by the surface roughness [2]. It has been
shown that increasing the surface roughness decreases the van
der Waals forces [4]. Thus, taking the surface roughness into
consideration, as shown in Fig. 2, the van der Waals force is
expressed as [6]

Fvdwb =
(

z

z + b/2

)2

Fvdw (5)

where z is the distance, b is the height of the surface irregular-
ities, and Fvdw is the van der Waals forces between the plane
plate and the sphere.
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Fig. 3. Capillary force parameters during a sphere and flat surface contact.

B. Surface Tension Force

In ambient operational environment, the water layer is
present on the surface of the sphere and the substrate. A liquid
bridge occurs between them at close contact, as shown in Fig. 3.

In [20], the macroscopic theory of capillarity is proven to be
applicable for a curvature radius on the order of molecular size.
Assuming that 1) r � p � Rp; 2) the surfaces are coated with
a film of constant thickness e; 3) the contact angle is 0, which
should be the true in our case; and 4) the surface attraction
through the liquid phase is negligible, the capillary force can
be written as [21]

F cap = 4πγRp

(
1 − h− 2e

2r

)
(6)

where γ is the liquid (water) surface energy, e is the thickness of
the water layer, and r is the radius of curvature of the meniscus,
as shown in Fig. 3. Moreover, the volume of liquid condensed in
the bridge and the film thickness distribution can also influence
the capillary force, but it can be ignored in our case [21]. The
capillary forces for the bp and bs interactions can be calculated
from (6). It is important to notice that baking the sample
before the manipulation process can greatly reduce the capillary
forces [21].

C. Electrostatic Force

For the electrostatic force, Coulomb forces are considered
only. Using the point charge Assumption, the electrostatic force
between an uncharged metal wall and a charged sphere is
given by

F elec = ε0πd
2

(
3ε1

ε1 + 2

)2

E2 (7)

where ε0 and ε1 are the dielectric constants of free space and
the material, respectively. Parameter d is the diameter obtained
as d = d1d2/d1 + d2, where d1 and d2 are the diameters of
the two microspheres under consideration. Parameter E is
the voltage between the probe and the substrate. It has also
been shown that the electrostatic forces can be minimized by
applying an external voltage.

IV. DYNAMIC MODEL

A dynamic model of the microscale-object-handling system
is formulated, considering all the aforementioned forces [4],

Fig. 4. Intersurface distance notation. (a) Capture at a flat surface and
(b) capture at an inclination.

[7]. The objects considered in this paper include microspheres
with a diameter in the range of 50–200 µm (radius Rb varies
from 25 to 100 µm). In particular, we will also assume a
rectangular-block-shaped probe.

When the system is shown as Fig. 4, the dynamic model for
the object-handling task can be written as [4]

mpŸp =Fext sin(π/2 − θ) − FVdW
bp cos θ

− F cap
bp cos θ − F elec

bp cos θ −mpg (8)

mbD̈1 =
(
FVdW

bp + F cap
bp + F elec

bp

)
cos θ

− FVdW
bs − F cap

bs − F elec
bs −mbg (9)

Yp =D1 + Rb + (Rb + D2) cos θ (10)

where Ÿp is the instantaneous acceleration of the probe, Fext

is the external force applied on the probe, θ is the angle of
inclination of the probe with the vertical axis, FVdW

ij is the
van der Waals forces, F cap

ij is the capillary forces, and F elec
ij

is the electrostatic forces for the bp and bs interfaces presented
in (4)–(7), respectively. Here, mp is the mass of the probe, and
mb denotes the mass of the microsphere. Thus, D1 and D2 can
be seen as the system states, whereas Fext is the control input.
There are two constraints for this model [22].

1) A condition imposed by the substrate reaction when
the ball is in contact with the substrate at D1 = D0 =
0.4 nm. For capture, it is sufficient to show that D2 = D0

since D0 is the atomic contact distance given by 0.4 nm
[35], i.e.,

D1 = 0.4 nm ⇒ D̈1 ≥ 0. (11)

2) A detachment constraint expressed by

Fext > 2RbπWball−water−substrate (12)

where Wball−water−substrate is the surface work of
adhesion.

Practically, the manipulation time has to be small. Further-
more, the applied force has to be appropriate to prevent ball
or substrate deformation. The object and the substrate are
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sometimes fragile and will be damaged under improper applied
force due to controller design.

From (8)–(10), we can find that the dynamic model for
the manipulation and handling of microscale objects are quite
nonlinear and unknown. For instance, the water surface energy,
thickness of the water layer, Hamaker constant, electric charge
density, diameter of the object, height of immersion, and many
others are typically unknown. Under these circumstances, one
has to apply advanced control schemes in order to manipulate
such microscale objects. The control scheme must guarantee
object manipulation in the event of such unknown uncertainties
without damaging samples.

V. CONTROLLER DESIGN

The suite of controller designs proposed in this paper is based
on the filtered tracking error formulation [7]. In this paper, by
using the filtered tracking error system formulation, the robust
and robust adaptive ANN controllers have been given in detail.
For the purpose of controller design, θ is considered to be zero,
which is a valid approach to pick up microparticles [4], [26].
A similar analysis could be performed for different values of θ
as well.

A. Filtered Tracking Error Dynamics Formulation

As previously stated, placing the objects on a substrate
requires other intricate processes and will not be discussed
in this paper. The pickup of the sphere can be viewed with
increased D1 while making D2 = D0 (atomic contact distance)
when the probe is retracting. For detailed illustration, initially,
the sphere is resting on the surface of the substrate, and the
probe is parked exactly above the sphere. After the force is
applied on the probe, it will move downward and make contact
with the sphere. Due to the presence of adhesive forces between
the probe and sphere, the microobject will be picked up when
the probe is retracted. To accomplish this task, a fundamental
condition to be fulfilled [1] will be

Fbp > Fbs + Fg (13)

which means that the adhesive force between the ball and probe
Fbp should be greater than the force of surface attraction Fbs

plus the gravitational force Fg . This condition is critical for
material selection.

Hence, for microobject pickup, the control objective is
suitably chosen, as previously mentioned. Differentiating (10)
yields

Ẏp = Ḋ1 + Ḋ2 (14)

Ÿp = D̈1 + D̈2 (15)

D̈2 = Ÿp − D̈1. (16)

Let the error between the desired and the target position be
defined as

e = D2 −D0. (17)

Then, when the error becomes zero, D2 = D0. If D1 keeps
increasing, this implies that the probe has picked up the mi-
crosphere. Differentiating (17) yields

ė = Ḋ2 (18)

and, furthermore,

ë = D̈2 = Ÿp − D̈1. (19)

Let r be the filtered tracking error, which is defined as

r = ė + Λe (20)

where Λ ∈ R is a positive design parameter. Furthermore,
differentiating (20) yields

ṙ = ë + Λė. (21)

Substituting the ë and ė from (18) and (19) results in

ṙ= Ÿp−D̈1+ΛḊ2 =(F1(Yp)−F2(D1))+ΛḊ2+v (22)

where

F1(Yp)=
1
mp

(
−FVdW

bp −F cap
bp −F elec

bp −mpg
)

(23)

F2(D1)=
1
mb

(
FVdW

bp +F cap
bp +F elec

bp

)

− 1
mb

(
FVdW

bs +F cap
bs +F elec

bs +mbg
)

(24)

and v is the control input given by

v =
1
mp

Fext. (25)

Thus, the tracking error dynamics can be rewritten as

ṙ = F (X) + ΛḊ2 + v (26)

where F (X) = F1(Yp) − F2(D1) is an unknown nonlinear
function, and X = [Yp,D2]T ∈ R2.

B. Robust Controller Design

Robust controllers have been widely implemented in dy-
namic systems with unknown or slowly varying uncertain pa-
rameters. In our system, a typical robust saturation controller
can be selected as

τ = −F̂ (X) − ΛḊ2 − kvr − v1 (27)

where kv ∈ R is the feedback gain, and the auxiliary feedback
signal v1 is chosen later, with F̂ (X) being an estimate for
F (X) that is not updated online.
Assumption 1: Let FM (X) is a known scalar function that

bounds the uncertainties F̃ (X) = F (X) − F̂ (X), so that∥∥∥F̃ (X)
∥∥∥ ≤ FM (X). (28)
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The intent is that FM (X) is a simplified function that can be
computed using the bounding properties of the forces that act
upon the microsphere. The assumption is standard in robust
control literature, such as sliding mode and others [7], [33].
Observing the microforces in Section III, it can be seen that
the forces are upper bounded.

Regardless of the saturation constraint, let v = τ , and apply
(27) in (26) to obtain

ṙ = − kvr +
(
F (X) − F̂ (X)

)
+ v1 (29)

ṙ = − kvr + F̃ (X) + v1 (30)

where F̂ (X) is an accurate estimate of F (X); in the presence
of no auxiliary signal, then F̃ (X) → 0, and (30) becomes

ṙ = −kvr. (31)

If kv is properly selected as a positive constant, then, from
(21) and (31), one can readily see that e → 0, with t → ∞.
Thus, D2 = D0, and the sphere is said to be manipulated
(pickup task).

However, MEMS and other typical actuators have magnitude
constraints, and as a result, the closed-loop stability analysis is
more involved since the magnitude constraints of the actuator
are treated as saturation nonlinearity. Assuming that vmax is the
upper limit for the actuator in order to incorporate the mag-
nitude constraints with the controller, now select the control
input as

v =
{
τ(t), if |τ(t)| ≤ vmax

vmaxsgn (τ(t)) , if |τ(t)| > vmax
(32)

where v is the actual control input, and τ is the desired ap-
plied force, which is selected to be equal to (27). Hence, we
define ∆u = v − τ or v = τ + ∆u. Using (32) in (26) now
results in ṙ = −kvr + F̃ (X) + v1 + ∆u, where ∆u can be
regarded as a disturbance. In order to combat the disturbance,
define ė∆ as

ė∆ = −kve∆ + ∆u. (33)

Now, define the error as

eu = r − e∆. (34)

Differentiating (34) and substituting (33) in (34) yield

ėu(t) = −kveu(t) + F̃ (X) + v1. (35)

Select the auxiliary input in (27) as [7]

v1 =




−eu
FM (X)
|eu| , if |τ(t)| ≤ vmax|eu| ≥ β

−eu
FM (X)

β , if |τ(t)| ≤ vmax|eu| < β

0, if |τ(t)| > vmax.

(36)

In computing the robust control term v1, β is chosen as a small
design parameter.

Theorem 1: Consider the system given in (8)–(10), and
take Assumption 1. Then, using the robust controller (32), the
errors |eu|, |r|, and |e| are eventually bounded to the neighbor-
hood of β.

Proof: We will take the case when |τ(t)| ≤ vmax. Select
the Lyapunov function candidate

L =
1
2
e2u. (37)

Differentiate the preceding equation and substitute error
dynamics (35) to obtain

L̇ = −kve
2
u + euF̃ (X) + euv1

≤ −kve
2
u + |eu|FM (X) + euv1. (38)

There are now two cases to consider: |eu| ≥ β and |eu| < β.
Case 1: |eu| ≥ β: In this case, according to the definition of

the robust control term (36), one has

L̇ ≤ −kve
2
u + |eu|FM (X) − e2uFM (X)/|eu|

≤ −kve
2
u. (39)

Therefore, L̇ is negative in terms of |eu|. Hence, L decreases in
this region, and |eu| decreases toward β.
Case 2: |eu| < β: In this case, according to the definition of

the robust control term (36), one has

L̇ ≤ −kve
2
u + |eu|FM (X) − e2uFM (X)/β

≤ −kve
2
u + |eu|FM (X) (1 − |eu|/β) . (40)

The last term is generally positive in this region, so nothing can
be said about whether L is increasing or decreasing. In general,
L may be increasing in this region, so that |eu| increases toward
β. Given the boundedness of |eu| and using (34), one can
conclude that |r| is bounded. Using (20), |e| is bounded.

Similarly, the proof can be shown when |τ(t)| > vmax.

C. ANN Controller Design

In the preceding section, a robust controller with input mag-
nitude constraints is presented wherein the unknown dynamics
of the manipulation system is overcome by assuming a bounded
known function. In this section, an ANN [11] is utilized, where
the unknown manipulation dynamics are approximated online.

First, an action NN is employed to approximate this unknown
system dynamics. According to [12], a single-layer NN can be
used to approximate any nonlinear continuous function over
the compact set when the input layer weights are selected at
random and held constant, whereas the output-layer weights
are only tuned, provided that a sufficiently large number of
nodes in the hidden layer are chosen. Therefore, a single-layer
NN is employed here, whose output is defined as ŵT

1 ϕ(vT
1 X),

where ŵ1 ∈ Rn1 and v1 ∈ R2×n1 are the output and input
layer weights, n1 is the number of hidden-layer nodes, ϕ(·)
is the activation function vector, and X = [Yp,D2]T ∈ R2 is
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the action NN input. For simplicity, the action NN output is
expressed as

F̂ (X) = ŵT
1 ϕ(X). (41)

Thus, ANN control input can be selected as

v = −F̂ (X) − ΛḊ2 − kvr (42)

where kv ∈ R is the feedback gain selected to be positive
constant.

Applying (42) in (26) yields

ṙ = − kvr +
(
F (X) − F̂ (X)

)
(43)

ṙ = − kvr + F̃ (X) (44)

where F̃ (X) = F (X) − F̂ (X) is the function approximation
error. When the NN is properly trained and F̂ (X) is an accurate
estimate of F (X), then F̃ (X) → 0, and (44) becomes

ṙ = −kvr. (45)

If kv is properly selected as a positive constant, then, from
(20) and (45), one can see that e → 0, with t → ∞. Thus,
D2 = D0, and the sphere is said to be manipulated (pickup
task), with D1 continuously increasing.

The unknown function F (X) can be approximated by the
action NN as

F (X) = wT
1 ϕ
(
vT
1 X
)

+ ε(X) = wT
1 ϕ(X) + ε(X) (46)

where w1 ∈ Rn1 is the target output-layer weight, and ε(X) is
the NN approximation error. Define the weight estimation error
w̃1 ∈ Rn1 by

w̃1 = w1 − ŵ1. (47)

Thus, (43) becomes

ṙ = −kvr + w̃T
1 ϕ(X) + ε(X). (48)

At the same time, a critic NN is implemented to evaluate the
system performance index and tunes the action-generating NN.
The input to the critic NN is chosen as [11]

z(t) =

t∫
0

r2(τ)dτ. (49)

A choice of the critic NN signal is given by

R(t) = ŵT
2 σ
(
vT
2 z(t)

)
= ŵT

2 σ (z(t)) (50)

where ŵ2 ∈ Rn2 and v2 ∈ Rn2 are the output- and input-layer
weights, n2 is the number of hidden-layer nodes, σ(·) is the
hidden-layer activation function vector, and z(t) ∈ R is the
input to the NN. The critic NN input defines the long-term
system performance over time. The critic signal R(t) provides
an additional corrective action based on the current and past
performance. This information, along with filtered tracking
error, is used to tune the action NN. The critic signal can

Fig. 5. NN controller architecture.

also be viewed as a look ahead factor, which is determined
based on the past performance. The proposed RLNN controller
structure is depicted in Fig. 5. An inner-action-generating NN
loop eliminates the nonlinear dynamics of the system, while
the ANN critic design is modular, so that an existing industrial
controller can be easily updated to obtain the proposed one by
simply adding the inner NNs. This modular design avoids the
need for the redesign of the industrial control systems [15].

The next step is to determine the weight updates, so that
the performance of the closed-loop tracking error dynamics is
guaranteed.
Assumption 2: The desired trajectory D0 is bounded, so that

|D0| < DB , with DB being a known scalar bound. In fact, D0

becomes the interatomic distance.
Assumption 3: The NN approximation error ε(X) is

bounded above by |ε(X)| < εN over the compact set.
Assumption 4: Both the ideal weights and the activation

functions for all NNs are bounded by known positive values,
so that

‖w1‖ ≤w1max ‖w2‖ ≤ w2max (51)

‖σ(·)‖ ≤σmax ‖ϕ(·)‖ ≤ ϕmax. (52)

Theorem 2: Consider the system given in (8)–(10), and take
Assumptions 2–4. Let the action NN weight tuning algorithm
be given by

˙̂w1 = ϕ(X)
(
r − ŵT

1 ϕ(X) + k1R(t)
)

(53)

where k1 is a design parameter, and R(t) is the critic signal,
which is given by the critic NN in (50). Let the critic NN
weights be tuned by

˙̂w2 = −σ (z(t)) (r + R(t)) (54)

with the control signal selected by (42). Then, the filtered
tracking error r and the NN weight estimates ŵ1 and ŵ2 are
UUB, provided that

(1) kv >
1
2

(55)

(2) 0 < k1 < 1. (56)
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Proof: Since ˙̃w1 = − ˙̂w1, the updating rules (53) can be
rewritten as

˙̃w1 =ϕ(X)
(
−r + ŵT

1 ϕ(X) − k1R(t)
)

=ϕ(X)
(
−r − ē1 + wT

1 ϕ(X)

+ k1w̃
T
2 σ (z(t)) − k1w

T
2 σ (z(t))

)
=ϕ(X) (−r − ē1 + k1ē2 + η1 − k1η2) (57)

where

ē1 = w̃T
1 ϕ(X)

ē2 = w̃T
2 σ (z(t))

η1 =wT
1 ϕ(X)

η2 =wT
2 σ (z(t)) . (58)

Similarly, (54) can be rewritten as

˙̃w2 = σ (z(t)) (r − ē2 + η2). (59)

The Lyapunov function candidate is defined as

V =
1
2
(
r2 + w̃T

1 w̃1 + w̃T
2 w̃2

)
. (60)

Differentiating (60) yields

V̇ = rṙ + w̃T
1

˙̃w1 + w̃T
2

˙̃w2. (61)

Substitution of (48), (57), and (59) into (61) yields

V̇ = r
(
−kvr + w̃T

1 ϕ(X) + ε(X)
)

+ w̃T
1 ϕ(X)(−r − ē1 + k1ē2 + η1 − k1η2)

+ w̃T
2 σ (z(t)) (r − ē2 + η2)

≤
(
−kvr

2 + rε(X) +
1
2
(
r2 + ē22

))
+
(
−ē22 + ē2η2

)

+
(
−ē21 +

1
2
k1

(
ē21 + ē22

)
+ ē1 (η1 − k1η2)

)
. (62)

Simplify (62) to obtain

V̇ ≤ −1
2
(2kv − 1)r2 + rε(X) − 1

2
(2 − k1)ē21

+ ē1(η1 − k1η2) −
1
2

(1 − k1) ē22 + ē2η2. (63)

Complete the square to obtain

V̇ ≤ − 1
2
(2kv − 1)

(
r − ε(X)

(2kv − 1)

)2

− 1
2
(2 − k1)

(
ē1 −

(η1 − k1η2)
(2 − k1)

)2

− 1
2
(1 − k1)

(
ē2 −

η2

(1 − k1)

)2

+ D2 (64)

where

D2≤D2
max =

1
2

(
ε2N

(2kv − 1)
+

2
(
w2

1maxϕ
2
max+w2

2maxσ
2
max

)
2−k1

+
w2

2maxσ
2
max

1−k1

)
. (65)

This further implies that V̇ < 0 as long as (55) and (56)
hold and

|r| > εN

(2kV − 1)
+

√
2Dmax√
2kv − 1

(66)

|ē1| >
w1maxϕmax + k1w2maxσmax

(2 − k1)
+

√
2Dmax√
2 − k1

(67)

|ē2| >
w2maxσmax

(1 − k1)
+

√
2Dmax√
1 − k1

. (68)

According to a standard Lyapunov extension theorem [7],
this demonstrates that the filtered tracking error and the error
in weight estimates are UUB. The boundedness of |ē1| and
|ē2| implies that ‖w̃1‖ and ‖w̃2‖ are bounded, and this further
implies that the weight estimates ŵ1 and ŵ2 are bounded.

D. ANN Controller With High-Gain Observer

In the preceding sections, the robust and adaptive NN con-
trollers are proposed based on state feedback. However, in prac-
tical applications, Yp and D1 are usually observed by a laser
measuring system [32] or a SEM [13], which has measurement
noise, making the measurements inaccurate. In this regard, we
extend our ANN controller to an output feedback version by
implementing a high-gain observer. Similar extensions can be
done for the robust controller.

Considering the system dynamics stated in (8)–(10), the sep-
aration principle can be applied to separate the state feedback
controller scheme with the high-gain observer design [33].

By assuming that the outputs are y1 and y2, corresponding to
Yp and D1, respectively, but with measurement noise, a high-
gain observer is designated as

ẋ1 =x2 + (2/ε1)(y1 − x1)

ẋ2 = − FVdW
bp /mb + v/mp +

(
1/ε21

)
(y1 − x1)

y1 =Yp + ρ1

ẋ3 =x4 + (2/ε2)(y2 − x3)

ẋ4 =
(
FVdW

bp − FVdW
bs

)
/mb +

(
1/ε22

)
(y2 − x3)

y2 =D1 + ρ2 (69)

where x1 and x2 are the estimates of Yp and its velocity,
whereas x3 and x4 are the estimates of D1 and its velocity
with ε1, ε2 are small design constants. Here, we introduce
ρ1 and ρ2 as the measurement noise. Furthermore, the terms
of −FVdW

bp /mb and (FVdW
bp − FVdW

bs )/mb in the second and
fifth equations are the nominal model of the observer, which
is a simplified version of the model discussed in the preceding
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section, considering the fact that van der Waals forces are the
dominant adhesive forces [1] and mp � mb.
Assumption 5: The measurement noise and their derivatives

up to the second order are bounded [34] by |ρi| ≤ ρiN , |ρ̇i| ≤
ρ′iN , and |ρ̈i| ≤ ρ′′iN for i = 1, 2.
Assumption 6: The derivatives of functions F1(Yp) and

F2(D1) over the compact set are bounded by |Ḟ1| ≤ F ′
1M and

|Ḟ2| ≤ F ′
2M .

Assumption 6 is a mild assumption from microscale physics,
implying that there will be no change in the force by infinite
magnitude.

By applying the separation principle, an output feedback
ANN controller is obtained by replacing the states Yp and D1

by their estimates x1 and x3, which were provided by the high-
gain observer in (69), respectively. In other words, the control
input is now selected as

v = −F̂ (X̂) − Λ ˙̂
D2 − kv r̂ (70)

where X̂ = [x1, D̂2]T ∈ R2, D̂2 = x1 − x3 − 2Rb, ˙̂
D2 =

x2 − x4, and r̂ = ˙̂
D2 + Λ(D̂2 −D0). The updating laws for

NNs are also changed to

˙̂w1 =ϕ(X̂)
(
r̂ − ŵT

1 ϕ(X̂) + k1R̂(t)
)

(71)

˙̂w2 = − σ (ẑ(t))
(
r̂ + R̂(t)

)
(72)

where R̂(t) = ŵT
2 σ(ẑ(t)), and ẑ(t) =

∫ t

0 r̂
2(τ)dτ .

Hence, we have following theorem.
Theorem 3: Consider the system given in (8)–(10) and the

output feedback controller (70) with updating laws (71) and
(72). Let Assumptions 5 and 6 hold. Considering the original
state feedback controller (42) and the updating laws (53) and
(54), the filtered tracking error and the NN weight estimates
are UUB. Then, there exists ε1M and ε2M , such that, for every
0 < ε1 < ε1M and 0 < ε2 < ε2M , the filtered tracking error
and the NN weight estimates of the closed-loop system with
the output feedback controller (70) are UUB.

Proof: The proof is divided into two steps. The first step
is to take care of the measurement noise. The second step is to
prove the UUB of the closed-loop system.

In the first step, consider the observer for D1. Let z1 =
Yp + ρ1 and z2 = Ẏp + ρ̇1. The original system (9) and the
output can be rewritten as

ż1 = z2

ż2 =F1(z1 − ρ1) + v + ρ̈1

y1 = z1. (73)

Furthermore, by using the mean value theorem, one can
rewrite (73) as

ż1 = z2

ż2 =F1(z1) + v − Ḟ1(ζ1)ρ1 + ρ̈1

y1 = z1 (74)

where ζ1 ∈ [0 ρ1], or ζ1 ∈ [ρ1 10]. Thus, −Ḟ1(ζ1)ρ1 + ρ̈1

can be considered as a disturbance, which appears from As-
sumptions 5 and 6 to be bounded. In other words, a new ref-
erence system without measurement noise can be constructed.
The same analysis applies for D1. Such a high-gain-observer-
design-based system is thoroughly discussed in [33]. Moreover,
one can readily assert that the ANN controller based on state
feedback can be translated to system (74) with UUB stability.

Thereafter, the second step is similar to the proof in [33] and
thus omitted in this paper. As a result, the tracking error in terms
of z1, z2, and the NN weight estimates is UUB. Due to the
boundedness of the measurement noise, one can conclude that
the filtered tracking error and the NN weight estimates of the
original closed-loop system are UUB.

VI. SIMULATION RESULT

To substantiate our methods, simulation results are shown in
this section. The purpose of the controller is to provide a control
force for the probe to pick up the microobject. Initially, it is
assumed that the object is in contact with the substrate before it
is picked up by the probe. The controller provides the force to
cause the actual capture and to retain the microsphere at the tip
of the probe. Once the capture occurs, and the external force to
be applied through the probe is determined and maintained to
keep the microsphere attached to the probe.

The dynamics of the system is expressed as (8)–(10), where
mp = 1.0 × 10−5 kg is the mass of the probe, mb = 1.0 ×
10−7 kg is the mass of the microsphere, and Rb = 50 µm is
the radius of the microsphere. Initially, the probe is assumed to
park right above the object at a height of 100 µm, which means
that the approaching angle θ = 0◦. That is also the typical way
to approach microobjects for capturing [4], [26]. The surface
roughness is assumed to be 1.0 × 10−10 m [27]. The humidity
is arbitrarily set to 50% [28]. To testify the controller designs,
model uncertainties and environmental noise are added in the
systems (8) and (9) in Gaussian form with zero mean and
σ2 = 1.0 × 10−9 N2.

For comparison, a traditional proportional–differential (PD)
controller is first designed based on the filtered tracking error
with the control input selected as v = −ΛḊ2 − kvr, where
kv = 5 and Λ = 10−3. Fig. 6 shows the trajectories of the probe
and microobject, whereas Fig. 7 shows the control input. In
Fig. 6, the trajectories of D1 and D2 −D0 are depicted. The
goal of the controller is to drive the probe to adhere the particle,
which means that D1 should increase while maintaining D2 −
D0 to be zero at the same time in order to keep the object in tact.
Although the PD controller is easy to implement and capable of
picking up the microsphere, it was found that the applied force
appears to be highly oscillatory, as depicted in Fig. 7. These
oscillations might damage the fragile sample or even the probe.

By contrast, Fig. 8 displays the trajectories, and Fig. 9 depicts
the applied force on the probe by using a robust controller. The
controller parameters are also chosen as kv = 5 and Λ = 10−3

in (27). In estimating F (X), we set F̂ (X) = 1/mb(FVdW
bs −

FVdW
bp )=Aw

bsRb/6mb(1/D1−1/6D2) since, usually, van der
Waals force is the dominant adhesive force [1] and mp � mb.
Furthermore, FM (X) = F̂ (X)/10, and β = 0.1 µm in (36).
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Fig. 6. Displacement using a conventional PD controller. The trajectory of
D2−D0 denotes the distance between the probe and the microparticle (solid
line). The trajectory of D1 represents the distance between the substrate and
the particle (dashed line).

Fig. 7. Applied external force using a conventional PD controller.

Fig. 8. Displacement using a robust controller. The trajectory of D2−D0

denotes the distance between the probe and the microparticle (solid line). The
trajectory of D1 represents the distance between the substrate and the particle
(dashed line).

Fig. 9. Applied external force using a robust controller.

Fig. 10. Displacement using with an adaptive critic NN controller. The trajec-
tory of D2−D0 denotes the distance between the probe and the microparticle
(solid line). The trajectory of D1 represents the distance between the substrate
and the particle (dashed line).

The results show that the robust controller could avoid the large-
scale force oscillation before grabbing the object successfully.
However, due to the model uncertainties and other unknown
parameters, the controller output still demonstrates a small
fluctuation.

Fig. 10 shows the distances, whereas Fig. 11 shows the con-
trol input resulting from using a reinforcement-learning-based
controller with kv = 5, Λ = 10−3, and k1 = 0.8. In both the
action and critic NNs, the hyperbolic tangent sigmoid transfer
function is used. The hidden layer of the action NN consists
of ten nodes, while the critic NN consists of five nodes. The
simulation results show that the NN controller can approxi-
mate the unknown system dynamics and avoid the oscillation
phenomenon. Furthermore, because of the learning ability of
NN, the influence of the unknown uncertainties is greatly
reduced.

For quantifying the comparison results, we utilize a cost
function to measure the performance of each controller, which
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Fig. 11. Applied external force with an adaptive critic NN controller.

TABLE I
PERFORMANCE COMPARISON

is widely used for comparing control designs [17], [18]. In this
paper, we define a standard quadratic cost function as

J(t0, tf )=

tf∫
t0

(D2(t)−D0)
T Q (D2(t)−D0)+vT (t)Rv(t)dt

(75)

where R and Q are positive definite matrices (they are scalar in
our case). t0 is the initial time, while tf is the final time of the
simulation. One can see that (75) represents the amount of effort
that the controller needs, which becomes a measure of the sys-
tem response. In this paper, the parameters are set to Q = 104,
R = 106, t0 = 0 ms, and tf = 3.2 ms, respectively. As a
result, the performance index for each controller is shown
in Table I.

Mainly due to the additional robust auxiliary input, the robust
controller design is able to produce a more stable control signal
while achieving a much better outcome than the PD design
in terms of cost. From the table, we can find that the PD
controller requires more than double the effort than others.
Moreover, since a critic NN is introduced to evaluate the system
performance, the ANN controller succeeds in obtaining the
best cost.

Moreover, to testify the feasibility of our output feedback
ANN controller, the simulation is carried on with parame-
ters ε1 = ε2 = 0.01 in (69). The measurement noise is also
added in the simulation as dual-tone form [34] ρ1,2 = (sin(t) +
0.5 sin(3.33t)) × 10−6 m for both D1 and Yp. The system
response and the actual applied force are plotted in Figs. 12
and 13. Although there appears to be a huge variation of
control input at the beginning due to the measurement noise and

Fig. 12. Displacement using with an output feedback adaptive critic NN
controller. The actual trajectory of D2−D0 denotes the distance between the
probe and the microparticle (solid line). The actual trajectory of D1 represents
the distance between the substrate and the particle (dashed line).

Fig. 13. Applied external force using an output feedback adaptive critic NN
controller.

observer convergence issues, the control input soon becomes
steady, indicating that the observer approximates the actual
states.

Meanwhile, for the convenience of comparison, the displace-
ment of D1 and D2−D0 for all the controllers is demonstrated
in Figs. 14 and 15, respectively using the same scale. It can
be seen that capture occurs around 10−3 s for the proposed
robust and the robust NN controllers (both state feedback and
output feedback) since the applied force and trajectory D2−D0

stabilizes. By contrast, it takes a bit longer to capture the
microsphere by using the PD controller.

VII. CONCLUSION

In this paper, a suite of robust manipulation controllers was
presented for the pickup task of a microsphere. Closed-loop
stability is demonstrated using a robust controller by assuming
that the upper bound on the unknown dynamics of the contact
forces is known. Then, a reinforcement-learning-based adaptive
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Fig. 14. Displacement of D1 for all controller designs.

Fig. 15. Displacement of D2−D0 for all controller designs.

NN controller was presented for the task of picking up a
microsphere from a substrate, wherein the need to know an up-
per bound on the unknown dynamics is relaxed. The controllers
have been proven to have guaranteed stability, whereas the task
of manipulation was possible even when the nonlinearities and
uncertainties are not modeled for. Simulation results indicate
that the robust controller and the NN controller outperform
a conventional PD controller in terms of the response time
and applied force during the object manipulation. Furthermore,
the NN controller has an advantage over the robust controller
with regard to tolerating model uncertainties and noise. The
comparison is strengthened by using a standard quadratic cost
function. To mitigate the lack of feedback of certain states
and the presence of measurement noise, an output feedback
adaptive critic-based NN controller with high-gain observer is
proposed and verified in a simulation environment.

As part of future work, experiments need be carried out to
substantiate our theoretical conclusions. A better model should
be built based on experimental data. Additionally, a more
satisfactory estimate of F (X) has to be selected for robust
control.
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