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A Statistical Simulation Model for Mobile Radio Fading
Channels

Chengshan Xiao and Yahong R. Zheng
Department of Electrical & Computer Engineering
University of Missouri, Columbia, MO 65211, USA

Abstract— Recently, a Clarke’s model-based simulator was
proposed for Rayleigh fading channels. However, that
model, as shown in this paper, may encounter statistic de-
ficiency. Therefore, an improved model is presented to re-
move the statistic deficiency. Furthermore, a new simulation
model is proposed for Rician fading channels. This Rician
fading simulator, which is using the improved Rayleigh fad-
ing simulator with finite number of sinusoids plus a zero-mean
stochastic sinusoid as the specular (line-of-sight) component,
is different from all the existing Rician fading simulators,
which have non-zero mean deterministic specular component.
The statistical properties of the proposed Rayleigh and Ri-
cian fading channel models are analyzed in detail, which
shows that these statistics either exactly match or quickly
converge to the theoretically desired ones. Additionally and
importantly, the probability density function of the Rician
fading phase is not only independent from time but also uni-
formly distributed, which is fundamentally different from
that of all the existing Rician fading models. The statistical
properties of the new simulators are evaluated by numerical
results, finding good agreement in all cases.

I. INTRODUCTION

Mobile radio channel simulators are commonly used in
the laboratory because they allow system tests and eval-
uations which are less expensive and more reproducible
than field trials. In the past, there are many different ap-
proaches to the modeling and simulation of a mobile ra-
dio channel [2]-[25]. Among them, the well known math-
ematical reference model due to Clarke [2] and its simpli-
fied simulation model due to Jakes [5] have been widely
used for Rayleigh fading channels for about three decades.
However, Jakes’ simulator is a deterministic model, and it
has difficulty to create multiple uncorrelated fading wave-
forms for frequency selective fading channels and multiple-
input multiple-output (MIMO) channels, therefore differ-
ent modifications of Jakes’ simulator have been reported
in the literature [9], [15], [17], [18]. Despite the extensive
acceptance and application of Jakes’ simulator, some im-
portant limitations of the simulator were determined and
discussed in detail recently [20]. It was shown in [20] that
Jakes’ simulator is wide-sense nonstationary. It was further
pointed out in [23] that the second-order statistics of Jakes’
models [5] and its various modifications [9], [15], [17], [18],
[20] do not match the desired ones of Clarke’s reference
model. Moreover, even in the limit as the number of sinu-
soids approaches infinity, the autocorrelations and cross-
correlations of the quadrature components, and the auto-
correlation of the squared envelope of the modified simula-
tors fail to match the desired correlation statistics. These
statistic deficiencies are removed by those models proposed
in [24], [25]. Recently, Pop and Beaulieu [22] proposed an-
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other simulation model directly based on Clarke’s reference
model, and they made some interesting view points. In this
paper, it will be shown that Pop and Beaulieu’s model [22]
may encounter statistic deficiency as well, and an improved
model will be presented.

For Rician fading channel simulations, all the existing
Rician channel models assume that the specular (line-of-
sight) component is either non-zero constant [1], [13], or
deterministic time-varying parameter [4], [15]. These as-
sumptions were probably made in favor of mathematically
convenient derivations, but they are not reflecting the phys-
ical specular components. For example, constant specu-
lar component implies Direct Current (DC) signals which
is impossible to get from fading channels; deterministic
time-varying is contradicting the random nature of specular
component from time to time and from mobile to mobile.
Moreover, all these Rician fading models are non-stationary
in the wide sense according to [4], and the probability den-
sity function (PDF) of the fading phase is time-dependent
[4], [15], [27]. In this paper, a statistical simulation model
will be proposed for Rician fading channels. The specular
component will be assumed a zero-mean random variable
with pre-chosen angle of arrival and random initial phase.
This assumption implies that different specular component
in different channel may have different initial phase, which
is true in the physical channel.

The rest of this paper is organized as follows. Section II
briefly reviews Pop and Beaulieu’s Rayleigh fading simu-
lator, especially on its statistical properties, then an im-
proved simulator is proposed. Section III presents a new
statistical sum-of-sinusoids simulation model for Rician
fading channels, statistical properties of this new model
are analyzed in detail. Section I'V presents the performance
evaluation of the new Rayleigh and Rician simulators by
extensive numerical results. Section V draws the conclu-
sion.

II. A WSS RAYLEIGH FADING CHANNEL SIMULATOR

In this section, we present some key second-order statis-
tics of a recently proposed wide-sense stationary sum-of-
sinusoids Rayleigh fading channel simulator. It is shown
this WSS channel simulator has statistic deficiency. Fur-
thermore, we propose an improved model for Rayleigh fad-
ing channels.

A. Pop and Beaulieu’s Simulator

Based on Clarke’s mathematical reference model [2], [27],
Pop and Beaulieu [22] developed a Rayleigh fading simula-

144



tor whose low-pass fading process is given by:

X(t) = Xc(t)+7Xs(t) (1a)
X.(t) = \/%,é cos (wdt cos %Tn + d)n) (1b)
X(t) = \/%é sin (wdt cos %Tn + ¢n> , (1)

where wy is the maximum angular Doppler frequency, ¢,
are mutually independent and uniformly distributed over
[—m, 7) for all n. Note that a normalization constant is used
to make X (¢) have unit power. In [22], Pop and Beaulieu
gave excellent and detailed discussion on the PDF of the
fading envelope, and the autocorrelation of the complex en-
velope of this model. In order to further reveal the statisti-
cal properties of this model, we present some second-order
statistics of this model as follows:

N
1 2mn
Rx, x. (1) = N T; cos (wdT cos T) (2a)
1 Y 2mn
Rx. x.(1) = N ngl cos <wd7' cos N) (2b)
N
1 . 2mn
Rx.x, (1) = N nzzjl sin (wdT cos T) (2¢)
1 & 2mn
Rx.x. (1) = “5N nz::l sin (wdT cos T) (2d)
Rxx (1) = 2Rx.x.(7) + j2Rx.x.(7) (2e)
1
Rixpzixp(r) = 144Ry x (1) +4Ry x, (1) + 5 (20)

where Rx_ x,.(7) and Rx,_x,(7) are the autocorrelations of
the quadrature components, Rx, x, (7) and Rx,_x,(7) are
the cross-correlations of the quadrature components, and
Rxx(7) and Rjx2|x2(7) are the autocorrelations of the
complex envelope and the squared envelope, respectively.
It is noted that R|x|2x2(7) contains fourth-order statis-
tical information of the quadrature components of this
model.

The proof of these statistics shown above is similar to the
proof procedure of Theorem 1 of [24], details are omitted
here for brevity. Figs. 1-3 show the autocorrelations of the
complex envelope and squared envelope for this model with
N =17, N =18 and N = co.

From eqns (2) and Figs. 1-3, we can observe and make
the following remarks:

Remark 1: Although the statistics of this model with
N = oo are the same as the desired ones of Clarke’s math-
ematical reference model, when N is finite, the statistics of
this model is different from the desired ones.

Remark 2: The statistics of this model are not asymp-
totically converging to the desired ones when N increases.
This is agreeable to the discussion of the real part of
RX)((T) in [22].

Remark 3: When N is finite and odd, the imaginary
part of Rxx(7) can be significantly different from zero,
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Fig. 1. The real part of the autocorrelation of the complex envelope

of the model in [22] with N =17, N = 18 and N = oo for reference.
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Fig. 2. The imaginary part of the autocorrelation of the complex

envelope of the model in [22] with N = 17, N = 18and N = oo for
reference.
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Fig. 3. The autocorrelation of the squared envelope of the model in
[22] with N =17, N = 18 and N = oo for reference.
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the desired statistics for Clarke’s mathematical reference
model, which also implies that the quadrature components
of this model is statistically correlated when N is odd. This
was not realized in [22].

B. A New Rayleigh Fading Channel Simulator

To remove the shortcoming of Pop and Beaulieu’s model,
we propose an improved simulation model as follows:

Definition 1: The normalized low-pass fading process
of a new statistical sum-of-sinusoids simulation model is

defined by
Y(t) = Yu(t)+5Ys(t) (3a)
T
Y.(t) = 4/ N ; cos(wgt cos ay, + Pp) (3b)
T
Yi(t) = 4/ ~ ;::1 sin(wgqt cos ay, + ¢p) (3¢)
with
2
an:%_’_anv In:l:Q:”'?N’ (4)

where ¢, and 0, are statistically independent and uni-
formly distributed over [—m, ) for all n. It is noted that
the difference between this improved model and Pop and
Beaulieu’s model is the introduction of random variables
05, to the angle of arrival.

It can be shown that the first-order statistics of this im-
proved model is the same as those of Pop and Beaulieu’s
model. However, the second-order statistics of this im-
proved model are different, and they are presented as fol-
lows:

Theorem 1: The autocorrelation and cross-correlation
functions of the quadrature components, and the autocor-
relation functions of the complex envelope and the squared
envelope of fading signal Y (¢) are given by

Ry (7) = 5Jofuwar) (54)
Ryy.() = 3Jofuwar) (5b)
Ry.y.(1) =0 (5¢)
Ryy.(r) =0 (5d)
Ryy (1) = Jo(war) (5e)
Riypiyp() = 1+ Blwar) + . (50

Proof: The proof is similar to those of Theorems 1

and 2 in [24], details are omitted for brevity. [ ]
It should be emphasized here that the autocorrelation
and cross-correlation functions given by (5a)-(5e) do not
depend on the number of sinusoids N, they match the
desired second-order statistics exactly irrespective to the
value of N. Furthermore, the autocorrelation function of
the squared envelope asymptotically approaches the de-
sired one [27] as the number of sinusoids N approaches
infinity, while good approximation has been observed when

N is as small as 8. These analytical statistics will be con-
firmed by numerical results in Section IV. Also, if we
choose 6,, = 6 for all n, all the statistics of Y'(¢) will be
the same as shown above, but the convergence of the en-
semble average in simulation is slower.

Before concluding this section, it is important to point
out that the new simulation model can be directly used
to generate uncorrelated faders for frequency selective
Rayleigh channels, MIMO channels, and diversity comb-

N

ing techniques. Let Yi(t) be the kth Rayleigh fader given
by
% {Z cos [wdtcos (427”1 j\_’enk) + ¢n,k:|
n=1

N
) . 2mn + 0
+3 E sin {wdtcos (%) + ¢n,ki| } s (6)
n=1

where 0, and ¢, ; are mutually independent and uni-
formly distributed over [—m, ) for all n and k. Then, Yj(¢)
retains all the statistical properties of Y (¢) which is defined
by equations (3), furthermore, Yy (¢) and Y;(t) are uncorre-
lated for all k£ # [, due to the mutual independence of 6,, s,
Dnk, On, and ¢, when k # [.

Y (t)

III. RiciAN FADING CHANNEL SIMULATOR

In this section, we present a statistical Rician fading sim-
ulation model and its statistical properties.

Definition 2: The normalized low-pass fading process
of a new statistical simulation model for Rician fading is
defined by

Z(t) = Ze(t) +7Zs(t) (7a)
Ze(t) = [Ye(t) + VK cos(wat cosfo + ¢0)| /VT+ K  (7b)
Zs(t) = [Ys (t) + VK sin(wgt cos 6y + ¢0)] /N1+ K  (7¢)

where K is the ratio of the specular power to scattered
power, 0y and ¢g are the angle of arrival and the initial
phase, respectively, of the specular component, and ¢q is a
random variable uniformly distributed over [—m, 7).

We now present the correlation statistics of the fading
Z(t) in the following theorem.

Theorem 2: The autocorrelation and cross-correlation
functions of the quadrature components, and the autocor-
relation functions of the complex envelope and the squared
envelope of fading signal Z(t) are given by

Ryz,.z.(t) = [Jo(wqT) + K cos(wqT cosbp)] /(2 + 2K) (8a)
Ry z.(1) = [Jo(wqT) + K cos(wqT cosbp)] /(2 + 2K) (8b)
Rz.z. (1) = Ksin(wgtcosbo)/(2 + 2K) (8c)
Rz,z.(1) = —Ksin(wgrcosby)/(2+ 2K) (8d)

Rzz(t) = [Jo(wyqr) + K exp(jwqTcosbp)] /(1 + K) (8e)

R 712 22(7) {1+Jg (wqT)+2K [1+ Jo(wqT) cos(wqT cos Op)]

+K2 4+ %}/(1+K)2. (8f)

Proof: Based on the assumption that the initial phase

of the specular component is random and uniformly dis-
tributed over [—m,7), and it is independent from the ini-
tial phases of the scattered components, one can prove this
theorem by using the results of Theorem 1. |
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We now present the PDFs of the fading envelope |Z] and
phase U(t) = arctan [Z.(t), Z4(t)]*.

Theorem 3: When N approaches infinity, the envelope
|Z| is Rician distributed and the phase W(¢) is uniformly
distributed over [—7, 7), and their PDFs are given by

fi2(2) 214+ K)z-exp [-K — (1+K)z2]

I [Qz K(1+K)] 23>0

) = o yel-mm), (o)
where Iy(-) is the zeroth-order modified Bessel function of
the first kind.

Proof:  Since all the individual sinusoids in the sums
of Y.(t) and Y(t) are statistically independent and iden-
tically distributed, according to the central limit theorem
[28], when the number of sinusoids N is large, Y.(¢) and
Y;(t) become to Gaussian random processes. Moreover,
since Ry,y, (1) = 0 and Ry,y,(7) = 0, Y.(t) and Y;(¢) are
independent. Therefore, Z.(t) and Z4(t) defined by equa-
tions (7) are also independent.

When the initial phase ¢y of the specular component is
chosen, then the conditional joint PDF of Z.(¢) and Zs(¢)
is given by

Favizs e al0) = — 5 { Tz = me(OF = [z —ma(0)}

(9a)

where m.(t) = \/Fcos(wdt cosfy + ¢o) and ms(t) =
VK sin(wgt cos 0 + ¢o)-

Since the initial phase ¢g is uniformly distributed over
[—7, ), the joint PDF of Z.(t) and Z,(t) can be calculated
by

" 1
fZC=Zs (ZC’ZS) ch-,Zs (207zs|¢0) ’ Z - deg

—T

1
—exp (—zl—22—K) Iy {2 K (22 —|—z§)} .
T

Applying the transformation of the Cartesian coordi-
nates (z., zs) to polar coordinates (z, 1), we obtain the joint
PDF of the envelope |Z| and the phase ¥ = arctan(z., z)
as follows:

(1+K)z

fizo(2:9) = cexp [~ K — (14 K)z?]

x Iy [22 K(1+K)], 23>0, ¥ € [, 7).

Then, the PDFs of the envelope and the phase can be
obtained by the following two equations

f\Z\(z): - f‘Z"‘P(Z,dJ)d’L/}, f\p(qb):/o f‘Z"‘I](Z,’gZ))dZ.

This completes the proof. |
We now make the following three remarks based on The-
orem 3.
Remark 4: Both the fading envelope and the phase are
stationary because their PDFs are independent of time t.

!The function arctan(z,y) maps the arguments (z,y) into a phase
in the correct quadrant in [—m, 7).

This is very different from the previous Rician models [4],
[15], where the PDF of the fading phase is a very com-
plicated function depending on time ¢, and therefore the
fading phase is not stationary as pointed out by Aulin in
[4]. Here, the fading phase of our new model is not only
stationary but also uniformly distributed over [—, ).

Remark 5: The fading envelope and phase of our new
Rician model are independent from each other. The PDFs
of the envelope and the phase of our Rician channel model
cover the Rayleigh fading (K = 0) as a special case.

Remark 6: The PDF of the fading envelope of our Rician
model can be derived by using two-dimensional random
walk procedure. Details are omitted.

Another important second-order statistics associated
with fading envelope are the level crossing rate (LCR).
LCR is defined as the rate at which the envelope crosses a
specified level in the positive slope. The following theorem
provides the LCR result of our Rician model.

Theorem 4: When N approaches infinity and 6y = 7/2,
then the level crossing rate L|z| of the new simulator output
is given by

Liz| = V27(K + 1)pfa- exp[-K — (K + 1)p°]
I [Qp\/K(K ¥ 1)]

where p is the normalized fading envelope level given by
|Z|/|Z|rms With |Z|,ms being the root mean square enve-
lope level.

Proof: When N approaches infinity, the fading enve-
lope is Rician distributed as shown in Theorem 3. Using
the same procedure provided in [27], one can prove eqn
(10). |

It is noted here that if K = 0, then Z(t) = Y (¢) becomes
to Rayleigh fading, and the LCR is simplified to be Ljy| =
V27mpfqexp(—p?); however, if K # 0 and 6y # 7/2, then
the LCR has no closed form solution [27].

(10)

IV. PERFORMANCE EVALUATION

The performance evaluation of the proposed fading sim-
ulator is carried out by comparing the corresponding sim-
ulation results with those of the theoretical limit when N
approaches infinity. Throughout the following discussions,
the newly proposed statistical simulators have been imple-
mented by choosing N = 8 unless otherwise specified, all
the ensemble averages for simulation results are based on
500 random samples unless otherwise specified.

A. FEvaluation of Correlation Statistics

The simulation results of the autocorrelations of the com-
plex envelope and squared envelope of the simulator output
are shown in Figs. 4-6, respectively.

As can be seen from Figs. 4-6, the simulation results show
that the real part of the autocorrelation of the complex en-
velope, which contains the autocorrelation information of
the quadrature components, and the imaginary part of the
autocorrelation of the complex envelope, which contains
the cross-correlation information of the quadrature compo-
nents, match the theoretically desired ones very well even
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Fig. 4. The real part of the autocorrelation of the complex envelope
Z(t). 6o = w/4 for K =1 and K = 3 Rician cases.

Imag part of RZZ('(), N=8

T T T T
— - Simulation
— Theory
s !
K=3

08 K=1 7
06t ,
0.4 |

T 02

N

T

£ o - — ==
—02f N
—0.4f B

N
-0.6f f
08 K=0, (Rayleigh) 1
» \ , , \ \ \ \ , \
0 1 2 3 4 5 6 7 8 9 10
Normalized time: 'd’(
Fig. 5. The imaginary part of the autocorrelation of the complex

envelope Z(t). 6p = w/4 for K =1 and K = 3 Rician cases.
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Fig. 6. The autocorrelation of the squared envelope |Z(t)|2. 6y = 7/4
for K =1 and K = 3 Rician cases.

though N is as small as 8. It is also shown in Fig. 6 that
the autocorrelation of the squared envelope of the simula-
tor is very close to the desired one, for both Rayleigh and
Rician fading cases.

B. FEvaluation of PDFs of the Envelope and Phase

Figs. 7 and 8 show that the PDFs of the fading envelope
and phase of the simulator with N = 8 are in very good
agreement with the theoretical ones. It is also noted that
when N > 8, these PDFs will have even better agreement
with the theoretically desired ones.

PDF of the fading envelope, N=8
T T

Simulation
— Theory

Fig. 7. The PDF of the fading envelope |Z(t)|.
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K=0, (Rayleigh)
0151 i
0.145[- B
. . . . . . . . .
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v (xm)
Fig. 8. The PDF of the fading phase ¥(t).

C. FEvaluation of LCR

The simulation results of the normalized level crossing
rate (LCR), %7 of the new simulator are shown in Fig. 9,
where the theoretically calculated LCR are also included
in the figure for convenient comparison, indicating good

agreement in all cases.
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Fig. 9. The normalized LCR of the fading envelope |Z(t)|.

V. CONCLUSION

In this paper, an improved sum-of-sinusoids statistical
simulation model is proposed for Rayleigh fading chan-
nels. Based on this improved Rayleigh fading model, a
new simulation model is presented for Rician fading chan-
nels. The specular (line-of-sight) component of this Ri-
cian fading model is a zero-mean stochastic sinusoid with
a pre-chosen angle of arrival and a random initial phase.
Compared to all the existing Rician fading models, which
have non-zero mean deterministic specular component, the
new model better reflects the random nature of specular
component from time to time and from mobile to mobile,
additionally, the PDF of the Rician fading phase is inde-
pendent from time and uniformly distributed over [—, 7),
which is different from that of all the existing Rician fading
models.

It has also been shown that the autocorrelation of the
squared envelope, the PDFs of the fading envelope and
phase, and the level crossing rate of the new simulator ap-
proach those of the theoretically desired ones as the num-
ber of sinusoids approaches infinity, while good convergence
can be reached even when the number of sinusoids is small.
All these statistical properties of the new simulator have
been evaluated by extensive simulation results with excel-
lent agreement in all cases. It has been pointed out that
the new simulation model can be directly used to generate
multiple uncorrelated faders for frequency selective chan-
nels, MIMO channels, and diversity combining techniques.
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